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A\ Motivation

» Data Mining as application to analyse huge amounts of data

» One focus of Data Mining: Find interesting patterns in a data
set, e.g. cluster

» Often data very complex, sometimes multiple
representations of data available - Parallel Universes

15 September, 2008 Bernd Wiswedel: "Learning in Parallel Universes" #3

A What are Parallel Universes?

» Usually: Data given in a single feature space
— Mostly high-dimensional and numeric representation
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— Definition of one, global distance measure d (‘fi: 5""3?)
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A What are Parallel Universes?

» Parallel Universes
— Different object representations
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A Why Parallel Universes?

» Example 1: Chemistry - universes encode, e.g.
— shape (3D)
— graph structure &

— properties... 4'" ~°§
O &
@"\/

see also: A. Bender, R. Glen: Molecular similarity: a key technique in molecular informatics,

Org. Biomol. Chem., 2:3204-3218, 2004
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A Why Parallel Universes?

» Example 2: Web - universes encode, e.g.
— link structure
— meta information (categories, tags)
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A\ Why Parallel Universes?

* More examples:

— Music - universes encode
» semantic meta information (composer, artist, genre,...)
 groupings (style, category,...)
« other properties (tempo, beat, key, ...)

— Image or 3D object recognition — universes encode
 properties (has door, has wheels...)
* texture information
« histogram or intensity/color distributions
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A\ Learning in Parallel Universes

* Naive Approach:

— Consider only one universe at a time:
Ignores information in other universes
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A Learning in Parallel Universes

* Naive Approach:

— Construct joint feature space:
often impossible, introduces artifacts.
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A\ Learning in Parallel Universes

* Better:
— Consider all universes at once
— Allow to identify (local) models that occur only in few (one) universes
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A Related Approaches: Subspace Clustering

» choose subset of data and attributes for each cluster
— usually no interpretation of subspaces possible
— selects from one, large universe
— first finds also overlapping clusters
— most prominent approaches: CLIQUE, COSA
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A Related Approaches: Multi-Instance Learning

» each object has several possible representations in same
space (e.g. molecular confirmations in 3D)
— universes all possess the same semantics
— two extremes: similar in all universes, similar in at least one universe.
— number of universes per object can vary.

]
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A Related Approaches: Multi-View Learning

» each object has several possible representations
in different spaces
— universes with different semantics

— independent and complete models in each universe
(learning algorithms may assist each other)
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A\ Learning in Parallel Universes

» Clear separation of Universes (a-priori given)
« Each individual universe does not suffice for learning

» Allow to identify (local) models that occur only in few (one)
universes

* ldentify overlaps
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A One sample approach: Neighborgrams

e Supervised approach

» Construct local neighorhood histogram
(,Neighborgrams*) for objects of interest in all
universes

» Derive quality values for individual neighborgrams

» Covering-like approach to construct classification
model

* Intuitive visualization allows for interactive
exploration and user-controlled model construction
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Neighborgrams on KN-DB
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A Neighborgrams on KN-DB
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A Neighborgrams on KN-DB
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A Neighborgrams on KN-DB
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A\ Neighborgrams on KN-DB
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Summary Neighborgrams

Visualization tool for interactive exploration of clusters
Works well for small size data sets or to model minority class
Manual clustering

Semi-Automatic clustering

— Inspect proposed cluster
— Discard, accept or fine-tune cluster

Fully automatic clustering
— Sequential covering approach
— Identify greedily the next best cluster, remove covered objects, restart
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Connection to LeGo

Output is selected set of Neighborgram Clusters,
spread over different universes

Such clusters can be considered as local patterns

Open problem: Construction of a global model as
opposed to a simply aggregation of clusters

Special focus on identifying overlaps among
universes (often of special interest)
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A Summary

e Learning in Parallel Universes as simultaneous
analysis of multiple descriptor spaces

* Encompasses identification of patterns that:
— are specific to individual universes and
— span multiple universes (not necessarily all)

» Final model construction comprises all previously
identified patterns

Thanks!
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