Instance Driven Hierarchical Clustering of Document Collections and Classification by Pattern-Based Hierarchical Clustering

Hassan H. Malik and John R. Kender September 15th, 2008

> Computer Science Department Columbia University in the city of New York

Outline

- Motivation
- Instance-driven Pattern Mining
- IDHC: A More Flexible Pattern-based Hierarchical Clustering Algorithm
- CPHC: Semi-supervised Classification by Pattern-based Hierarchical Clustering
- Conclusions

Outline

- Motivation
- Instance-driven Pattern Mining
- IDHC: A More Flexible Pattern-based Hierarchical Clustering Algorithm
- CPHC: Semi-supervised Classification by Pattern-based Hierarchical Clustering
- Conclusions

Motivation

- Traditional pattern-mining suffers from
 - Frequency-based pattern significance measures
 - Global thresholds
- Pattern-based hierarchical clustering suffers from
 - An unpredictable number of patterns
 - Unnecessary coupling between pattern size and node height
 - Artificial constraints on soft clustering

Motivation - continued

- Inductive classifiers may not fully exploit the distribution of test instances in the context of the whole dataset
- Existing semi-supervised classification algorithm weaknesses
 - Dependence on flat clustering requires the number of clusters to be known in advance
 - Unnecessary step of training a classifier on the expanded training set

Outline

- Motivation
- Instance-driven Pattern Mining
- IDHC: A More Flexible Pattern-based Hierarchical Clustering Algorithm
- CPHC: Semi-supervised Classification by Pattern-based Hierarchical Clustering
- Conclusions

Traditional Pattern Mining

- Aims to mine a set of globally significant patterns from the dataset
- Does not consider local pattern significance
- Traditionally uses a frequency-based pattern significance measure (i.e., Support), and a global threshold
- "Closed interesting" itemsets (Malik and Kender ICDM'06) replaced support with an interestingness measure
 - Still, no coverage guarantees
 - Thresholds not as stable on highly correlated datasets
 - An unpredictable number of resulting patterns

Instance-driven Pattern Mining

- Eliminate the global mining step altogether
- Allow each instance to "vote" for its representative size-2 patterns, balancing global and local pattern significance
 - Sort all patterns in decreasing order of local term frequency * global term interestingness
 - Select all patterns with scores exceeding min_standard_deviation
 - Number of patterns-per-instance upper bounded by a small constant maxK
 - Why size-2? Why not size-3 etc.?

Instance-driven Pattern Mining advantages

- Coverage guaranteed
- No global threshold
- min_standard_deviation robust across datasets (experimented on 16 datasets)
- A small number of highly significant patterns for each instance
 - Central limit theorem for normally distributed scores
 - Chebyshev's inequality for the rest
- Number of size-2 patterns linear to the number of instances
 - maxK provide empirical upper limit guarantee

Instance-driven Patterns vs. Closed Interesting Itemsets

Dataset	#instances	#features	Approx. number of size-2 patterns		
			GPHC, MI	GPHC,	Ours
				YulesQ	
mm	2,521	126,373	2.4 million	{fails}	3,651
reviews	4,069	126,373	2.6 million	{fails}	5,952
sports	8,580	126,373	1.4 million	{fails}	12,607
tr11	414	6,429	4.3 million	11.4 million	604
tr12	313	5,804	3.6 million	8.8 million	464
tr23	204	5,832	7.6 million	12.2 million	282
tr31	927	10,128	7.0 million	{fails}	1,360

Outline

- Motivation
- Instance-driven Pattern Mining
- IDHC: A More Flexible Pattern-based Hierarchical Clustering Algorithm
- CPHC: Semi-supervised Classification by Pattern-based Hierarchical Clustering
- Conclusions

Instance-driven Pattern-based Hierarchical Clustering

- Each size-2 pattern forms an initial cluster, patterns added to their selected-pattern-clusters
- Use instance-to-cluster relationships to prune duplicate (in content) clusters
 - Merge labels of duplicate clusters being removed, enhancing the cluster labels
- Generate rest of the cluster hierarchy by iteratively refining clusters
 - Make patterns progressively longer, and cluster memberships progressively sparser
 - Maintain instance-to-cluster pointers for local-only processing

Cluster Refinement – an example

(a) A tra	nsaction dataset as running example	(c) Instance pattern selection					
Instance ID	Features and their local frequencies	Instance	Haze-2	Significance		Min	Selected patterns
T1	(A:2), (B:4), (D:1), (H:2), (J:4), (L:1)	ID	patterns	101	range		
T2	(A:3), (C:1), (D:6), (E:1), (G:4)	T1	15	0.52	2.42	1.95	(B, J) (J, L), (H, J)
T3	(B:2), (C:3), (D:1), (I:5), (K:2)	T2	10	0.77	2.38	2.14	(D, G), (A, D)
T4	(B:3), (C:1), (D:2), (E:4), (J:3), (K:3), (L:2)	T3	10	0.78	2.29	1.76	(C, I)
T5	(B:7), (C:2), (D:1), (H:3), (I:2)	T4	21	0.57	2.46	1.93	(E, J) (J, L)
T6	(A:1), (B:1), (C:1), (E:1), (J:3), (K:1)	TS	10	0.59	2.61	2.05	(B, H) (B, D)
T7	(B:9), (C:3), (F:4), (H:5), (J:1), (L:5)	T6	15	0.33	1.40	1.03	(E, J) (B, J) (J, K)
T8	(C:6), (D:2), (G:1), (I:1), (K:3)	T7	15	0.90	5.40	3.70	(B, L)
T9	(B:3), (D:2), (J:4), (K:1), (L:8)	T8	10	0.71	2.70	2.16	(C, G) (C, K)
T10	(A:4), (B:2), (D:7), (F:3), (I:6)	T9	10	0.85	5.72	3.79	(J, L) (B, L)
T11	(C:1), (E:1), (F:1), (G:2), (H:1), (I:4), (J:1)	T10	10	1.19	3.72	2.95	(D, I) (F, I)
(b) Global significance values of some size-2 patterns		T11	21	0.38	2.13	1.33	(G, I) (F, I) (C, I) (H, I)
using Adde	d Value (transformed to positive scale)						
Pattern AV	Pattern AV Pattern AV Pattern AV	1					
(B,D) 0.52	(B, K) 0.57 (E, J) 0.70 (J, K) 0.55						
(B, E) 0.38	(B, L) 0.77 (E, K) 0.54 (J, L) 0.95	1					
(B.D. 0.60	(D E) 0.38 (E L) 0.38 (K L) 0.54	1					

Cluster Refinement – an example

(d) Initial clusters with instance based duplicates identified in boxes; dotted arrows represent instance pointers

(f) Clusters expanded to next level

Instance-driven Hierarchical Clustering - advantages

- Number of initial patterns predictable
- Cluster refinement avoids global processing
- No coupling between node heights and patternlengths
 - More meaningful cluster labels
- More flexible soft clustering
 - Instances allowed to exist at multiple levels in the hierarchy
 - Instances not forced to their longest-pattern clusters
- Parameter values robust across datasets

Clustering Quality on Text Datasets

Dataset	FScores			Entropies		
	bi-k I 2	GPHC	Ours	bi-k I ₂	GPHC	Ours
reuters	0.835	0.851	0.846	0.075	0.155	0.005
classic	0.782	0.88	0.759	0.06	0.025	0.021
hitech	0.528	0.54	0.544	0.224	0.172	0.074
k1a	0.668	0.654	0.676	0.106	0.045	0.041
k1b	0.882	0.903	0.897	0.042	0.042	0.021
la12	0.741	0.661	0.748	0.12	0.062	0.038
mm	0.774	0.943	0.909	0.073	0.053	0.014
ohscal	0.601	0.53	0.554	0.198	0.237	0.081
re0	0.61	0.672	0.615	0.115	0.077	0.016
reviews	0.801	0.818	0.833	0.073	0.048	0.013
sports	0.882	0.886	0.87	0.03	0.016	0.005
tr11	0.795	0.519	0.79	0.107	0.141	0.038
tr12	0.689	0.604	0.769	0.133	0.161	0.037
tr23	0.667	0.487	0.679	0.136	0.042	0.038
tr31	0.837	0.584	0.84	0.041	0.114	0.013
wap	0.683	0.663	0.67	0.106	0.047	0.043
average	0.736	0.7	0.75	0.102	0.09	0.031

Outline

- Motivation
- Instance-driven Pattern Mining
- IDHC: A More Flexible Pattern-based Hierarchical Clustering Algorithm
- CPHC: Semi-supervised Classification by Pattern-based Hierarchical Clustering
- Conclusions

Existing Classifiers

- Inductive classifiers
 - Use instances in the training set to obtain a classification model
 - Use this classification model to determine class labels for test instances
 - Cons:
 - May not fully exploit the distribution of test instances in the context of the whole dataset
 - Poor classification performance when training data is sparse
- Semi-supervised classification algorithms
 - First (flat) cluster training and test sets together
 - Use the resulting clustering solution to enhance the training set
 - Cons:
 - Flat clustering requires the number of clusters to be known in advance
 - Extra step of training a classifier on the expanded training set

Pattern-based Cluster Hierarchies and Significance of Pattern Lengths

- Lower overall *Entropy* = a higher percentage of nodes that contain most instances that belong to the same ground truth class
- IDHC only assigns instances to their "selected" pattern clusters
 - Intuition: Nodes with longer patterns should have lower *Entropies*
- Experimented with 4 datasets to understand the class-label distributions over nodes with varying pattern-lengths

Average Node *Entropies* With Respect to Pattern Sizes

The CPHC Classification Algorithm

• Feature selection

- Use a supervised method for training instances
- Use an unsupervised method for test instances
- Ensure coverage

• Clustering

- Apply the instance-driven, pattern-based hierarchical clustering algorithm (IDHC) on all training and test instances
- Track interestingness values

Classification

- For each test instance t, traverse the hierarchy to identify the set
 S of clusters that contain t
- Use interestingness values of clusters in S, and pattern-lengths as weights to compute class scores for t

Improving The Chances of Classifying Isolated Test Instances

- Classification model produced by inductive classifiers limited to patterns in training instances
 - No way of classifying isolated test instances
- Improving the chances of classifying such test instances by inducing a type of transitivity
 - Isolated test instances may be clustered together in a "logical" node with test instances that overlap the training set
 - The "logical" node contributes towards score

Breakeven Performance on Top 10 Reuters 21578 Categories

Category	Harmony	Find Sim	Naïve	Bayes Nets	Trees	SVM	ARC-BC	Ours
			Bayes			(linear)		
acq	95.3	64.7	87.8	88.3	89.7	93.6	90.9	94.5
corn	78.2	48.2	65.3	76.4	91.8	90.3	69.6	77.2
crude	85.7	70.1	79.5	79.6	85	88.9	77.9	90.7
earn	98.1	92.9	95.9	95.8	97.8	98	92.8	96.5
grain	91.8	67.5	78.8	81.4	85	94.6	68.8	91.1
interest	77.3	63.4	64.9	71.3	67.1	77.7	70.5	81
money-fx	80.5	46.7	56.6	58.8	66.2	74.5	70.5	84.3
ship	86.9	49.2	85.4	84.4	74.2	85.6	73.6	78.3
trade	88.4	65.1	63.9	69	72.5	75.9	68	87.9
wheat	62.8	68.9	69.7	82.7	92.5	91.8	84.8	83.6
micro-avg	92	64.6	81.5	85	88.4	92	82.1	92.1
macro-avg	84.5	63.7	74.8	78.8	82.2	87.1	76.7	86.5

Classification Accuracies on 13 Small and 2 Large UCI Datasets

	FOIL	CPAR	SVM	Harmony	Ours
anneal	96.9	90.2	83.83	91.51	93.82
auto	46.1	48	55.5	61	73
breast	94.4	94.8	96.8	92.42	93.33
glass	49.3	48	46	49.8	70
heart	57.4	51.1	60.36	56.46	58.33
hepatitus	77.5	76.5	81.83	83.16	83.33
horsecolic	83.5	82.3	83.31	82.53	73.61
ionoSphere	89.5	92.9	89.44	92.03	92.57
iris	94	94.7	94.67	93.32	94.67
pima	73.8	75.6	74.18	72.34	73.16
tic-tac-toe	96	72.2	70.78	92.29	72.74
wine	86.4	92.5	94.9	91.94	88.24
Z00	96	96	86	93	97
average	80.06	78.06	78.28	80.91	81.83
	FOIL	CPAR	SVM	Harmony	Ours
adult	82.5	76.7	84.16	81.9	84.95
mushroom	99.5	98.8	99.67	99.94	99.98
average	91	87.85	91.92	90.92	92.46

Classification Accuracies on Sports with Various Parameter Values

Harmony (Min support)									
75	100 125 150								
94.2	94.9	94.3	.3 94.1						
	SVM (C)								
2	1	0.5	0.25						
95.79	95.79	95.76	95.72						
Ours (min_supp)									
5	10	20	30						
96.4	96.24	96.12	95.98						

Classification Accuracies on Classic and Re0 with Increasingly Sparser Training Data

Outline

- Motivation
- Instance-driven Pattern Mining
- IDHC: A More Flexible Pattern-based Hierarchical Clustering Algorithm
- CPHC: Semi-supervised Classification by Pattern-based Hierarchical Clustering
- Conclusions

Conclusions

- Pattern mining
 - Interestingness measures outperform frequency-based measures
 - Instance-driven pattern mining more stable than global pattern mining
 - Local thresholds more robust than global thresholds
- Pattern-based hierarchical clustering
 - Instance-driven approach more stable than global approach

Conclusions - continued

- Pattern-based hierarchical clustering
 - Use instance-to-cluster pointers to avoid global refinement
 - Tight coupling between node heights and pattern lengths unnecessary
- Classification
 - Relying on training data alone may result in suboptimal classification results, specially with sparse training data

Conclusions - continued

- Classification
 - Using a pattern-based cluster hierarchy as a direct mean for semi-supervised classification
 - No need to know the number of clusters in advance
 - No extra step of training on an expanded training set
 - Exploits pattern lengths
 - May improve classification of isolated test instances

Questions?