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Local vs. Global Rule learning

Local Rule Discovery

= Find a rule that allows to make predictions for some examples
= Techniques:

» Association Rule Discovery

= Subgroup Discovery

Global Rule Learning
» Find a rule set with which we can make a prediction for all examples

= Techniques:
» Decision Tree Learning / Divide-And-Conquer
» Covering / Separate-And-Conquer
= Weighted Covering
» Classification by Association Rule Discovery
= Statistical Rule Learning

]
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Local Patterns and Covering

» Covering is a simple, proto-typical strategy for constructing a global theory
out of local patterns

function COVERING(Examples)

# initialize the classifier
GlobalClassifier «— ()
* What is the best

# loop until all examples are covered
local pattern?

while Examples = ()

# find the best local pattern
LocalPattern +— FINDBESTLOCALPATTERN(Examples)

# add the local pattern to the classifier
GlobalClassifier — GlobalClassifier U LocalPattern

# remove the covered examples
Examples «— Examples \ COVERED(LocalPattern,Examples)

return GlobalClassifier
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What is the Best Local Pattern?

» WWe have a global requirement...
= \We want a rule set that is as accurate as possible

= . that needs to be translated into local constraints.

— What local properties are good for achieving the global requirement?
= class probability close to 17?
= class probability different from prior probability?
= coverage of the pattern?
= size of the pattern?

» Typically decided by a single rule learning heuristic / rule evaluation metric
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What is measured by a
Rule Learning Heuristic?

» Rule learning heuristics focus on good discrimination between positive and
negative examples

= Consistency: Coverage:
= cover few negative examples cover many positive examples

* Commonly used heuristics

» information gain, m-Estimate, weighted relative accuracy / Kldbsgen measures,
correlation, ...

» Study of trade-off between consistency and coverage in many popular
rule learning heuristics (Janssen & Furnkranz, submitted to MLJ-08)
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What should be measured by a
Rule Learning Heuristics?
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= Discrimination

= How good are the positive examples separated from the negative examples?
= Completeness

» How many positive examples are covered?
= Gain

» How good is the rule in comparison to other rules (e.g., default rule, predecessor
rules)?

= Novelty
= How different is the rule from known or previously found rules?
= Utility
» How good / useful will be the local pattern in a team with other patterns?
= Bias
= How will the quality estimate change on new examples?
= Potential
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" e.g., Laplace / m-Estimate
— bias correction and coverage
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= algorithmically
= the covering loop makes sure that successive rules cover at least one
new examples

» can also be found, e.g., in many classification by association algorithms I@
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= Various concepts in association rule discovery
* e.g., prune a condition if it doing so does not change the support

" e.g., closed itemsets / rules
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Novelty

* Novelty is an important criterion for local pattern discovery by itself
= part of the classifical definition of Knowledge Discovery by Fayyad et al.
= however, difficult to formalize what is known

= |n the context of global pattern discovery, the covering loop can be used to
ensure that new patterns are found

= the knowledge of the past is implicitly handled by removing the examples that are
covered by known rules

= trade-off between novelty and other criteria can be realized by weighted
covering
» instead of entirely removing covered examples, only reduce their weight
= has also been used for local pattern discovery (e.g., Lavrac et al.)
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(Global) Utility

* The covering loop only takes care of the past (novelty)

» We also should consider how well the remaining examples will be covered by
future rules

* The future is tried to be captured by some heuiristics, in particular in
decision trees

= rule learning heuristics typically only consider the examples covered by the
current rule

= decision tree heuristics try to optimize all branches / rules simultaneously
» Foil's information gain heuristic vs. C4.5's information gain

» Ripper's optimization loop
» repeatedly try to re-learn a rule in the context of all other rules

» Pattern team selection heuristics
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Bias

» Various works on estimating the out-of-sample precision/confidence/etc. of
a local pattern

= statistical
= modeling the distribution of local patterns (Scheffer, IDAJ 05)

= correct optimistic evaluations
(Mozina et al. ECML-06)

» meta-learning

= trying to predict the performance of a rule
on an independent test set
(Janssen & Furnkranz, ICDM-07)

= pruning / evaluation on a separate pruning set
» |-REP (Furnkranz & Widmer 1994), Ripper (Cohen 1995) for classification rules
» recently also proposed for local pattern evaluation (Webb, MLJ 2008)
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Potential

= [f exhaustive search is not feasible, heuristic search might be an option

» Typically, heuristic search algorithms evaluate candidate patterns by their quality
according to some rule learning heuristic

» We need a clear formulation as a search problem
» do not evaluate the quality of the rule
» but how close it gets us to the goal (a high-quality rule)

= Approaches
= use bounds to bound the quality function

= optimistic pruning (Webb, Zimmermann et al.)
= assume that the best refinement of the rule will cover all positives and no negatives
= if not better — prune
» reinforcement learning to learn a function for the search problem

= preliminary (bad) results
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Conclusion

» Inducing good Rule-Based Classifiers is still a not very well understood
problem

» despite decades of research

» Various algorithms are known to perform well
= but their solutions are ad hoc and not very principled

» Typical rule learning heuristics address (too) many problems at once

» maybe trying to understand each of them separately is a first step for
understanding their interplay
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