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Motivation

• Decision rule is a simple logical pattern in the form:

”if condition then decision”.

• A simple classifier voting for some class when the condition
is satisfied and abstaining from vote otherwise.

• Example:

if duration >= 36
and savings status ≥ 1000
and employment 6= unemployed
and purpose = furniture/equipment,
then risk level is low

• Main advantage of decision rules is their simplicity and
human-interpretable form handling interactions between
attributes.



Motivation

• The most popular rule induction algorithms are based on
sequential covering: AQ, CN2, Ripper.

• Forward stagewise additive modeling or boosting that
treats rules as base classifiers in the ensemble can be seen
as a generalization of sequential covering.

• Algorithms such as RuleFit, SLIPPER, LRI or MLRules follow
boosting approach and are quite similar with the difference in
the chosen loss function and minimization technique.

• We investigated a general rule ensemble algorithm using
variety of loss functions and minimization techniques, and
taking into account other issues, such as regularization by
shrinking and sampling.



Main Contribution

• We showed theoretically and confirmed empirically that the
choice of minimization technique implicitly controls the rule
coverage – one of techniques (constant-step minimization)
is characterized by the parameter that directly influences the
rule coverage.

• It follows from a large experiment that the choice of loss
function and minimization technique does not significantly
improves the accuracy.

• Proper regularization specific for decision rules has significant
impact on the accuracy.



Rule Ensembles and LeGo

• Local patterns such as rules can be combined into the global
model by boosting.

• In general, the construction of patterns should be guided by a
global criterion, and only in specific domains one can
consider such phases as single rule generation, rule selection
and global model construction as independent.

• Local pattern should be a sort of knowledge extracted from
the data by which we are capable of giving accurate
predictions – therefore, patterns should be discovered having
prediction accuracy in mind being globally defined criterion.

• One can consider a trade-off between interpretability and
accuracy of such patterns.



Classification Problem

• The aim is to predict an unknown value of an attribute
y ∈ {−1, 1} of an object using known joint values of other
attributes x = (x1, x2, . . . , xn) ∈ X .

• The task is to learn a function f(x) that predicts accurately
the value of y by using a training set {yi,xi}N1 .

• The accuracy of function f is measured in terms of the risk:

R(f) = E[L(y, f(x))],

where loss function L(y, f(x)) is a penalty for predicting
f(x) if the actual class label is y, and the expectation is over
joint distribution P (y,x).



Decision Rule

• Decision rule can be treated as function returning constant
response α ∈ R in some axis-parallel (rectangular) region S
in attribute space X and zero outside S.

• Value of sgn(α) indicates decision (class) and |α| expresses
the confidence of predicting the class.

• Function Φ(x) indicates whether an object x satisfies the
condition part of the rule: Φ(x) = 1, if x ∈ S, otherwise
Φ(x) = 0.

• Decision rule can be written as:

r(x) = αΦ(x).



Ensemble of Decision Rules

• Ensemble of decision rules is a linear combination of M
decision rules:

fM (x) = α0 +
M∑
m=1

αmΦm(x),

where α0 is a constant value, which can be interpreted as a
default rule, covering the whole attribute space X .

• Construction of an optimal combination of rules minimizing
the risk on training set:

f∗M (x) = arg min
fM

N∑
i=1

L(yi, α0 +
M∑
m=1

αmΦm(x))

is a hard optimization problem.



Learning an Ensemble of Decision Rules (ENDER)

• One starts with the default rule:

α0 = arg min
α

N∑
i=1

L(yi, α).

• In each subsequent iteration m, one generates a rule:

rm(x) = arg min
Φ,α

N∑
i=1

L(yi, fm−1(xi) + αΦ(xi)),

where fm−1(x) is a classification function after m− 1
iterations.

Since the exact solution of this problem is still
computationally hard, it is proceeded in two steps.



Step 1: Constructing Condition Part of the Rule

• Find Φm as a greedy solution of the problem:

Φm = arg min
Φ
Lm(Φ) ' arg min

Φ

N∑
i=1

L(yi, fm−1(xi)+αΦ(xi)).

• Four minimization techniques are considered:
• Simultaneous minimization is applied to loss functions for

which a closed-form solution for αm can be given.
• Gradient descent is applied to any differentiable loss function

and relies on approximating L(yi, fm−1(xi) + αΦ(xi)) up to
the first order.

• Gradient boosting minimizes the squared-error between rule
outputs and the negative gradient of any differentiable loss
function.

• Constant-step minimization restricts α ∈ {−β, β}, with β
being a fixed parameter.



Step 1: Constructing Condition Part of the Rule

• Greedy procedure for finding Φm works in the way resembling
generation of decision trees – an algorithm constructs only
one path from the root to the leaf.

• This procedure ends if Lm(Φ) cannot be decreased – there is
a trade-off between covered and uncovered examples.

• Contrary to the generation of decision trees, a minimal value
of Lm(Φ) is a natural stop criterion.

• Rules do adapt to the problem; no additional stop criteria are
needed.



Step 2: Computing Rule Response

• Find αm, the solution to the following line-search problem
with Φm found in the previous step:

αm = arg min
α

N∑
i=1

L(yi, fm−1(xi) + αΦm(xi)).

• Depending on the loss function, analytical or approximate
solution exists.



Loss Functions

• Three loss functions are considered: exponential, logit and
sigmoid loss being margin-sensitive surrogates of 0-1 loss.
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Rule Response and Loss Functions

• For the exponential loss, a closed-form solution for αm exists
(simultaneous minimization can be performed in case of this
function).

• For the logit loss there is no analytical solution for optimal
rule response αm and the solution is obtained by single
Newton-Raphson step.

• Because of non-convexity of the sigmoid loss, αm is chosen to
be a small constant step along the direction of the negative
gradient (constant-step minimization tailored for this loss
function).



Minimization Techniques and Rule Coverage

• Denote examples correctly classified by the rule by

R+ = {i : yiαΦ(xi) > 0}.

• Denote examples misclassified by the rule by

R− = {i : yiαΦ(xi) < 0}.

• Let w(m)
i be weights of training examples in m-th iteration:

w
(m)
i = −∂L(yifm−1(xi))

∂(yifm−1(xi))
.

In the case of the exponential loss, w(m)
i is exactly a value of

loss for xi after m− 1 iterations.



Minimization Techniques and Rule Coverage

• Simultaneous minimization

Lm(Φ) = −
√∑
i∈R+

w
(m)
i +

√∑
i∈R−

w
(m)
i .

• Gradient descent

Lm(Φ) = −
∑
i∈R+

w
(m)
i +

∑
i∈R−

w
(m)
i .

• Gradient boosting

Lm(Φ) =
−
∑
i∈R+

w
(m)
i +

∑
i∈R− w

(m)
i√∑N

i=1 Φ(xi)
.

• Gradient descent produces the most general rules.



Minimization Techniques and Rule Coverage

• Gradient descent can be defined alternatively by:

Lm(Φ) =
∑
i∈R−

w
(m)
i +

1
2

∑
Φ(xi)=0

w
(m)
i .

• Constant-step minimization (exponential loss) generalizes gradient
descent:

Lm(Φ) =
∑
i∈R−

w
(m)
i + `

∑
Φ(xi)=0

w
(m)
i ,

where

` =
1− e−β

eβ − e−β
∈ [0, 0.5), β = log

1− `
`

.

• Increasing ` (or decreasing β) results in more general rules
(β → 0 corresponds to gradient descent).



Minimization Techniques and Rule Coverage

• Constant-step minimization for any twice-differentiable loss:

Lm(Φ) =
∑
i∈R−

w
(m)
i +

1
2

∑
Φ(xi)=0

(
w

(m)
i − βv(m)

i

)
where

v
(m)
i =

1
2
∂2L(yifm−1(xi) + yiγ)
∂(yifm−1(xi) + yiγ)2

, for some γ ∈ [0, β].

• For convex loss functions increasing β decreases the penalty for
abstaining from classification.

• For sigmoid loss, as β increases, uncovered correctly classified
examples (yifm−1(xi) > 0) are penalized less, while the penalty for
uncovered misclassified examples (yifm−1(xi) < 0) increases.



Rule Coverage (artificial data)
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Performance

• Decision rule has the form of n-dimensional rectangle with
VC dimension equal to 2n (VC dimension does not depend
on the number of cuts).

• Theoretical results (Schapire et al. 1998) suggest that an
ensemble of base classifiers with low VC dimension and high
prediction confidence (margin) on the dataset generalizes
well, regardless of the size of the ensemble.

• Sigmoid loss has tighter upper bound of the
misclassification error than bound obtained for general
ensemble (Mason et at. 1999), but minimization of this loss
does not result in a booster (Duffy and Helmbold, 2000).

• Minimization of the exponential and logit loss on training set
can be treated as estimation of conditional probabilities,
while the sigmoid loss being a continuous approximation of
0-1 loss estimates the dominant class.



Performance

• Regularization of the classifier usually improves performance.

• The rule is shrinked (multiplied) by the amount ν ∈ (0, 1]
towards rules already present in the ensemble – for small ν,
such an approach gives similar results as penalized learning
problem with L1 regularization over all possible decision
rules (Efron et al. 2004).

• Procedure for finding Φm works on a subsample of original
data, drawn without replacement – such an approach
produces more diversified and less correlated rules, and also
decreases computing time.

• Value of αm is calculated on all training examples – this
usually decreases |αm| and plays the role of regularization.

• These three elements (shrinking, sampling, and calculating
αm on the entire training set) constitute a competitive
technique to pruning.



Unregularized vs. Regularized Solution (artificial data)
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Unregularized vs. Regularized Solution (artificial data)

ENDER Unregularized Regularized
Test error [%] Time [s] Test error [%] Time [s]

Sm-Exp 20.877±0.255 4.625 17.940±0.229 1.969
CS-Exp β = 0.1 19.513±0.286 8.063 18.300±0.235 5.399
CS-Exp β = 0.2 20.320±0.234 5.296 18.110±0.212 4.735
CS-Exp β = 0.5 23.040±0.306 3.703 18.240±0.239 2.890
CS-Exp β = 1.0 33.203±0.687 3.047 20.683±0.267 1.813
GD-Exp β = 0.0 20.333±0.290 15.515 18.670±0.282 6.062
GB-Exp 20.993±0.240 5.937 18.573±0.227 3.063



Unregularized vs. Regularized Solution (artificial data)
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Unregularized vs. Regularized Solution (artificial data)
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Best Classifiers (artificial data)
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Shrinkage and Sampling
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Computing Rule Response on All Training Examples
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Related Works

• SLIPPER (Cohen and Singer, 1999)
• Uses AdaBoost scheme with confidence-rated predictions

(simultaneous minimization with the exponential loss).
• Performs pruning by dividing training set into ”growing” and

”pruning” part.

• LRI (Weiss and Indurkhya, 2000)
• Generates rules in the form of DNF formulas.
• Uses specific re-weighting scheme based on cumulative error

that corresponds to minimization of the polynomial loss by
gradient descent technique.

• MLRules (Dembczyński et al., 2008)
• Derived from the maximum likelihood principle (corresponds to

minimization of logit loss by gradient descent).
• Natural generalization to multi-class problems.



Related Works

• RuleFit (Friedman and Popescu, 2005)
• First tree ensemble is learned and then rules are produced from

the generated trees.
• Rule ensemble is then fitted with L1 regularization.

• Ensemble of Decision Trees
• Natural stop criterion for building single rules; no additional

parameters needed.
• Each rule is built optimally with respect to previously

generated rules.
• Rules can discover regions that are hardly obtained by trees.

• Sequential covering
• Using 0-1 loss in the boosting framework corresponds to

sequential covering – loss decreases down to 0 for all correctly
covered examples what resembles removing such objects from
training set.



Computational Experiment

• Comparison with SLIPPER, LRI and RuleFit on 20 binary
problems taken from UCI Repository:

• SLIPPER: 500 iterations, rest of parameters default.
• LRI: 200 rules per class, 2 disjunctions of length 5 per rule,

features frozen after 50 rounds.
• RuleFit: 500 trees, average tree size 4, rule-linear mode.
• ENDER: the best four classifiers from the artificial data

experiment, 500 rules.

• Experiment settings:
• Accuracy estimated using 10-fold cross-validation.
• Following Demšar (2006), Friedman test based on average

ranks is applied.



Results

Dataset CS-Log SM-Exp CS-Exp CS-Sigm SLIPPER LRI RuleFit
haberman 26.8(4.5) 25.5(1.0) 26.2(3.0) 25.8(2.0) 26.8(4.5) 27.5(7.0) 27.2(6.0)
breast-c 28.3(5.0) 27.9(3.0) 27.2(1.0) 27.3(2.0) 27.9(4.0) 29.3(6.0) 29.7(7.0)
diabetes 24.5(2.0) 24.6(3.5) 24.6(3.5) 23.6(1.0) 25.4(6.0) 25.4(5.0) 26.2(7.0)
credit-g 23.3(2.0) 23.5(3.0) 22.8(1.0) 24.2(5.0) 27.7(7.0) 23.9(4.0) 25.9(6.0)
credit-a 13.5(4.5) 13.5(4.5) 12.3(2.0) 13.8(6.0) 17.0(7.0) 12.2(1.0) 13.2(3.0)
ionosphere 6.3(3.0) 6.0(2.0) 5.7(1.0) 6.5(4.5) 6.5(4.5) 6.8(6.0) 8.5(7.0)
colic 15.0(5.0) 14.7(3.5) 14.4(2.0) 12.8(1.0) 15.1(6.0) 16.1(7.0) 14.7(3.5)
hepatitis 19.5(7.0) 18.2(4.0) 18.8(5.0) 16.2(1.0) 16.7(2.0) 18.0(3.0) 19.4(6.0)
sonar 16.8(5.0) 15.4(3.0) 16.4(4.0) 14.5(1.0) 26.4(7.0) 14.9(2.0) 19.7(6.0)
heart-statlog 16.7(1.0) 17.0(2.0) 17.4(3.5) 17.4(3.5) 23.3(7.0) 19.6(6.0) 18.5(5.0)
liver-disorders 26.4(4.0) 25.8(3.0) 24.9(1.0) 24.9(2.0) 30.7(7.0) 26.6(5.0) 30.7(6.0)
vote 3.2(1.0) 3.4(2.5) 3.4(2.5) 4.6(5.0) 5.0(6.0) 3.9(4.0) 5.1(7.0)
heart-c-2 16.9(4.0) 15.5(3.0) 15.2(1.0) 15.5(2.0) 19.5(7.0) 18.5(5.0) 18.9(6.0)
heart-h-2 17.0(1.0) 17.6(3.0) 17.3(2.0) 19.3(6.0) 20.0(7.0) 18.3(4.0) 18.3(5.0)
breast-w 3.9(4.5) 3.9(4.5) 3.6(3.0) 3.1(1.0) 4.3(7.0) 3.3(2.0) 4.1(6.0)
sick 1.5(1.0) 1.6(3.0) 1.8(4.0) 6.1(7.0) 1.6(2.0) 1.8(5.0) 1.9(6.0)
tic-tac-toe 0.9(1.0) 4.2(3.0) 8.1(5.0) 19.0(7.0) 2.4(2.0) 12.2(6.0) 5.3(4.0)
spambase 5.2(4.0) 4.6(2.0) 4.6(1.0) 5.2(5.0) 5.9(7.0) 4.9(3.0) 5.9(6.0)
cylinder-bands 21.9(6.0) 18.7(3.0) 19.4(4.0) 15.4(1.0) 21.7(5.0) 16.5(2.0) 38.1(7.0)
kr-vs-kp 0.9(2.0) 0.9(3.0) 1.0(4.0) 3.5(7.0) 0.6(1.0) 3.1(6.0) 2.9(5.0)
avg. rank 3.38 2.98 2.68 3.5 5.3 4.45 5.73



Results

• Friedman test states that classifiers are not equally good.

• Post-hoc analysis: calculating the critical difference (CD)
according to the Nemenyi statistics.

• CD = 2.015; algorithms with difference in average ranks
more than 2.015 are significantly different.
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Summary

• ENDER – a general framework for rule induction based on
boosting with strong prediction power maintaining
interpretability.

• Rule coverage can be implicitly controlled by minimization
technique.

• Loss function and minimization technique does not
significantly influences the accuracy.

• Proper regularization improves results significantly.

• Rule ensemble interpretation – still to do . . .


