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Abstract. In this paper, we propose CPHC, a semi-supervised classification 
algorithm that uses a pattern-based cluster hierarchy as a direct means for 
classification. All training and test instances are first clustered together using an 
instance-driven pattern-based hierarchical clustering algorithm that allows each 
instance to "vote" for its representative size-2 patterns in a way that balances 
local pattern significance and global pattern interestingness. These patterns 
form initial clusters and the rest of the cluster hierarchy is obtained by 
following a unique iterative cluster refinement process that exploits local 
information. The resulting cluster hierarchy is then used directly to classify test 
instances, eliminating the need to train a classifier on an enhanced training set. 
For each test instance, we first use the hierarchical structure to identify nodes 
that contain the test instance, and then use the labels of co-existing training 
instances, weighing them proportionately to their pattern lengths, to obtain the 
most likely class label(s) for the test instance. In addition, CPHC increases the 
chances of classifying isolated test instances by inducing a type of feature 
transitivity. Results of experiments performed on 19 standard text and machine 
learning datasets show that CPHC outperforms a number of existing 
classification algorithms even with sparse (as low as 1%) training data.  

Keywords: Semi-supervised classification, pattern-based hierarchical 
clustering, transductive learning, interestingness measures. 

1   Introduction 

Traditional inductive classifiers are trained on instances (Section 1.1) in the training 
set to produce a classification model (or knowledge base). This model is later used to 
classify previously unseen test instances. Considering that these classifiers may not 
fully exploit the distribution of test instances in the context of the whole dataset (i.e., 
by building the classification model only from the training instances, while ignoring 
test instances altogether), a number of recent approaches [14, 23, 34] adopted a semi-
supervised model for classification. These approaches first apply an unsupervised, flat 
clustering algorithm (i.e., k-means clustering) to cluster all (i.e., training and test) 
instances in the dataset, and then use the resulting clustering solution to add additional 
instances to the training set. A classifier is then trained on the enhanced training set. 

However, the quality of clustering achieved by traditional flat clustering algorithms 
(i.e., k-means clustering) relies heavily on the desired number of clusters (i.e., the 



value of k), which must be known in advance. Unfortunately, setting a good value for 
k can be non-trivial and no successful methods exist to automatically determine this 
value for a new, previously unseen dataset. Therefore, flat clustering algorithms 
require the user to provide the appropriate number of clusters. This approach, 
however, may be problematic because users with different backgrounds and varying 
levels of domain expertise may provide different values for k. Consequently, a 
clustering solution obtained by one user may not satisfy the needs of other users. This 
also means that an inappropriate value for k may adversely impact the quality of 
classification achieved by existing semi-supervised classification algorithms [14, 23, 
34].  

In an attempt to avoid these problems, hierarchical clustering is widely used as a 
practical alternative to flat clustering. Nodes in a hierarchical clustering solution are 
organized in a general to specific fashion, and users have the option to analyze data at 
various levels of abstraction by expanding and collapsing these nodes. Most 
importantly, hierarchical clustering algorithms do not require the number of clusters 
to be known in advance. The most successful hierarchical clustering algorithms 
include agglomerative algorithms such as UPGMA [35] and partitioning based 
algorithms such as bisecting k-means [35]. Additionally, a number of pattern-based 
hierarchical clustering algorithms have achieved success on a variety of datasets [3, 
10, 18, 31, 33]. 

Traditional agglomerative and partitioning-based hierarchical clustering algorithms 
merge exactly two nodes at each step, which may result in a "mechanical looking" 
hierarchy that may not resemble hierarchies produced by human experts. In addition, 
these algorithms do not automatically generate cluster labels, and do not support soft 
clustering. In contrast, pattern-based hierarchical clustering algorithms allow each 
node in the cluster hierarchy to have a variable number of child nodes, which may in 
general be closer to a real-life setting. Pattern-based hierarchical clustering algorithms 
also automatically generate cluster labels (i.e., the set of binary attributes defining 
each cluster), and more easily support soft clustering (i.e., a technique that assigns 
instances to one or more clusters). 

Considering these advantages, we propose CPHC (i.e., Classification by Pattern-
based Hierarchical Clustering), a novel semi-supervised classification algorithm that 
uses a pattern-based cluster hierarchy as a direct means for classification. Unlike 
existing semi-supervised classification algorithms, CPHC directly uses the resulting 
cluster hierarchy to classify test instances and hence eliminates the extra training step. 

The remainder of this section briefly introduces the notations used in this paper, 
discusses the motivation for instance-driven pattern-based hierarchical clustering, 
discusses the significance of pattern lengths in these hierarchies and also provides a 
brief overview of the CPHC algorithm. Section 2 summarizes existing work that is 
related to this research. Section 3 provides details on various steps in our 
classification process. Section 4 compares the performance of CPHC against state-of-
the-art machine-learning and data-mining-based classification algorithms. Finally, we 
conclude and discuss ideas for future work in Section 5. 



1.1   Notations and Definitions 

Let D be a dataset, I = {i1, i2, i3, …, in} be the complete set of distinct items (i.e., 
binary attributes) in D, and C = {c1, c2, c3, …, cm} be the complete set of distinct class 
labels. An instance X is denoted as a triple <id, L, Y> such that id is an identifier that 
uniquely identifies X, CL ⊆ represents the set of class labels associated with X (L=Φ 
if X represents a test instance), and IY ⊆ represents the set of items in X. A pattern P 
= {p1, p2, p3, …, pn} is a subset of I. The set of data that contains P is denoted as 
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1.2   An Alternative to Global Pattern-based Hierarchical Clustering  

Most of the existing pattern-based hierarchical clustering algorithms [3, 10, 18, 31, 
33] follow a similar framework. These algorithms first mine a set of globally 
significant patterns (e.g., frequent itemsets [3, 10], closed frequent itemsets [33], high 
h-confidence itemsets [31], or closed interesting itemsets [18]), and then use these 
patterns to build a cluster hierarchy. Each pattern defines a cluster and instances are 
assigned to clusters if they contain the pattern. Various heuristics are applied to prune 
clusters and reduce or avoid overlap among clusters. We identified four major 
problems with existing pattern-based hierarchical clustering algorithms.  

First, these algorithms use a global user-defined threshold (e.g., minimum support 
or minimum h-confidence) to prune an exponentially large search space, and to obtain 
the final set of globally significant patterns used for clustering. Similar to the problem 
of setting the value of k in flat clustering, setting a suitable value for this threshold can 
be non-trivial. An inappropriate threshold value may result in too many or too few 
patterns, with no coverage guarantees (i.e., some instances might not contain any 
globally significant pattern).  

Second, global pattern-mining algorithms (i.e., APRIORI [2], CLOSET+ [29], 
Closed Interesting Itemset mining [18]) used by the existing pattern-based clustering 
algorithms [3, 10, 18, 31, 33] only consider the presence or absence of patterns in 
instances, and ignore within-instance pattern significance. This may be inappropriate 
for real-life text and web datasets, where instances may contain a feature (i.e., an 
item) more than once, and these locally frequent features may better represent the 
main topic of the instance as compared to other, locally infrequent features.  

Third, existing pattern-based clustering algorithms [14, 23, 34] tightly couple the 
sizes of cluster labels with the node heights in the initial cluster hierarchy. In these 
approaches, the first level in the cluster hierarchy contains all size-1 patterns, the 
second level contains all size-2 patterns, and so on. This tight coupling is merely a 
consequence of the way global patterns are discovered (i.e., by first discovering size-1 
patterns, which are used to form size-2 candidates etc.), and does not necessarily 
reflect a real-life setting. Users would surely appreciate more descriptive cluster 
labels (i.e., labels that reflect the cluster structure of the dataset with all appropriate 
patterns, regardless of their corresponding node heights). 



Finally, many of the existing pattern-based hierarchical clustering algorithms apply 
artificial constraints on soft clustering. Some of these algorithms [18, 33] require the 
user to provide the number of clusters for each instance, and always select the 
maximum number of clusters whenever possible for each instance. Similarly, some of 
these algorithms [18, 33] only assign instances to their most specific pattern clusters. 

In an attempt to address these issues, the authors have recently proposed IDHC 
[19], an instance-driven approach to pattern-based hierarchical clustering, which we 
review here. Instead of following the usual framework (i.e., first mining globally 
significant patterns and then using these patterns to build the cluster hierarchy), IDHC 
allows each instance to select a variable number of representative size-2 patterns in a 
way that ensures an effective balance between local and global pattern significance.  
The local (i.e., within instance) frequencies of the two items in a size-2 pattern are 
averaged together to obtain the local pattern significance, and a contingency table-
based interestingness measure [12, 27] is used to obtain the global pattern 
significance. These local and global significance scores are then multiplied to obtain 
the overall pattern significance score with respect to the current instance. The patterns 
are sorted with respect to their significance scores, and the instance selects a subset of 
these patterns, the number of which is dynamically determined using a standard 
deviation based scheme. This scheme selects up to maxK patterns with significance 
scores that are greater than or equal to "min_std_dev" standard deviations from the 
mean, where maxK and min_std_dev are user definable parameters. Since there is no 
global pattern mining step, a global threshold is not needed. Furthermore, the total 
number of size-2 patterns is guaranteed to be linear in the total number of instances in 
the dataset, and all instances are guaranteed to be covered.  

Once size-2 patterns are selected for all instances, each unique size-2 pattern forms 
a top level cluster in the hierarchy, and instances are associated with all the pattern 
clusters that they had selected, while maintaining instance-to-cluster pointers. These 
initial clusters are then refined to obtain the rest of the cluster hierarchy by following 
a novel iterative instance-driven process that simultaneously grows patterns and 
clusters, and also inherently avoids combinatorial explosion.  

In each iteration, this process utilizes instance-to-cluster pointers to prune duplicate 
clusters in a purely local way (i.e., by only comparing cluster pairs that co-exist in an 
instance’s list of cluster pointers). The labels of identified duplicates are merged and 
assigned to the retained cluster. Clusters are refined in a similar fashion by first 
identifying non-atomic cluster pairs (i.e., clusters that contain at least two instances) 
from each instance’s list of cluster pointers, and then using these pairs to generate 
clusters for the next level. The newly generated clusters contain instances that are 
common to the originating cluster pair, and are assigned labels that represent the 
union of labels of both clusters in the originating cluster pair. The instance-to-cluster 
relationships are reestablished, and the refinement iteratively continues until all 
clusters are refined. Finally, since pattern-based cluster hierarchies may contain a 
large number of top level nodes, bisecting k-means (with I2 criterion function [35]) is 
applied to merge these nodes. 

This process produces more descriptive cluster labels than previous approaches, 
without tightly coupling node label sizes with node heights in the initial cluster 
hierarchy. In addition, this process does not force instances to their longest pattern 
clusters and allows each instance to exist at multiple levels in cluster the hierarchy. 



See Figure 3 for an example. Results in [19] show that IDHC outperforms existing 
agglomerative, partitioning-based, and pattern-based hierarchical clustering 
algorithms both in terms of FScore and entropy [35]. 

1.3   The Significance of Pattern Lengths in Pattern-based Cluster Hierarchies 

The two most common metrics used to evaluate the quality of cluster hierarchies are 
entropy and FScore. As noted in [35], entropy considers the distribution of instances 
in all nodes of the tree whereas FScore only considers one (best) node for each ground 
truth class, and ignores the quality of all other nodes. This means that a cluster 
hierarchy with better (i.e., lower) entropy is expected to have a higher percentage of 
nodes that contain most instances that belong to the same ground truth class. We 
performed further experiments to analyze the class-label distributions over nodes with 
varying pattern-lengths. 
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Fig. 1. Average entropies of nodes with respect to their pattern sizes on anneal, adult, sports 
and classic datasets. Note that pattern size = 1 represent "logical" nodes obtained by applying 
bisecting k-means to merge top-level nodes in the initial cluster hierarchy, as discussed in 
Section 1.2. Least-squares regression confirmed that the relationship is essentially linear.  

Intuitively, since the IDHC algorithm (Section 1.2) only assigns instances to nodes 
(i.e., clusters) that represent their statistically selected patterns, we expected nodes 
with longer patterns to have lower entropies. To validate our intuition, we applied the 
IDHC algorithm to cluster two common machine learning datasets and two common 
text datasets. We calculated the resulting individual node entropies, and grouped 
together nodes that represented the same pattern sizes. We report average entropies of 
each group in semi-log format in Figure 1. We observe that average node entropies 



decreased (i.e., improved) monotonically and nearly linearly with increasing pattern-
sizes on all four datasets, confirming our intuition. 

1.4   CPHC: A Novel Classification Algorithm 

Motivated by this observation, we now propose in this paper CPHC (i.e., 
Classification by Pattern-based Hierarchical Clustering), a novel semi-supervised 
classification algorithm that uses pattern-lengths as a way of establishing cluster (i.e., 
node) weights. CPHC first applies an unsupervised instance-driven pattern-based 
hierarchical clustering algorithm (i.e., IDHC, Section 1.2) to the whole dataset to 
produce a cluster hierarchy. Unlike existing semi-supervised classification algorithms 
[14, 23, 34], CPHC directly uses the resulting cluster hierarchy to classify test 
instances and hence eliminates the extra training step. To classify a test instance, 
CPHC first uses the hierarchical structure to identify nodes that contain the test 
instance, and then uses the labels of co-existing training instances, weighing them by 
node pattern-lengths (i.e., by multiplying the node pattern-interestingness value with 
the pattern-length) to obtain class label(s) for the test instance. This allows CPHC to 
classify unlabeled test instances without making any assumptions about their 
distribution in the dataset. 

With results of experiments performed on 19 standard datasets, we show in Section 
4 that CPHC outperforms a number of existing classification algorithms such as 
FindSim, Naïve Bayes, BayesNets, Trees, ARC-BC, FOIL and CPAR, and achieves 
classification accuracies that are comparable to (or better than) SVM and Harmony. 
Most importantly, CPHC was effective even with sparse (as low as 1%) training data. 

The main contributions include: 1) A novel semi-supervised classification 
algorithm that uses a unified pattern-based cluster hierarchy as a direct means for 
classification, 2) A novel feature selection method that ensures that all training and 
test instances are covered by the selected features, 3) Elimination of the need to train 
any classifier on the enhanced training set and 4) Utilization of pattern-lengths to 
determine cluster (i.e., node) weights. 

2   Related Work 

Our work relates to existing rule and pattern-based classification algorithms, with 
several important differences. Rule-induction-based classifiers like FOIL [22], 
RIPPER [7], CPAR [32] and C4.5 [21] use heuristics such as Gini Index and 
Information Gain (or Information Gain variants), to identify the best literal by which 
to grow the current rule [30]. Many of them follow the sequential covering paradigm. 
In contrast, association rule-based classifiers such as CBA [17], CAEP [8], CMAR 
[16], ARC-BC [1], and DeEPs [15] first mine a large set of association rules that 
satisfy user-defined support and confidence thresholds, and then extract the final set 
of classification rules by following a database covering technique. With Harmony 
[30], Wang and Karypis proposed an instance-centric approach to mine classification 
rules. Harmony builds the classification model by directly mining some user-defined 



number of highest-confidence rules for each training instance that satisfy minimum 
support. Furthermore, Harmony simultaneously mines rules for all classes. 

Our work also relates to a number of recently proposed approaches that use 
clustering as a way of enhancing the training set. We mention only a few of those 
approaches here. Raskutti et al. [23] used unlabeled data that is not part of the test set 
to improve the performance of text classification. This is achieved by clustering 
labeled and unlabeled instances together, and extracting new features from these 
clusters to enhance the classification model. In another approach, Zeng et al. [34] first 
clustered training and test sets together. The resulting clustering solution is then used 
to obtain labels for some of the unlabeled test instances, and the newly labeled 
instances are added to the training set. The extended training set is finally used to 
train a classifier. In a similar approach [14], Kyriakopoulou and Kalamboukis first 
clustered training and test sets together. The dataset is then augmented with meta 
features extracted from the resulting clusters, and a classifier is trained on the 
expanded dataset. In addition, a number of approaches like [20, 25] used clustering as 
a way of improving the feature selection for classification. These semi-supervised 
classification algorithms are similar to transductive learning [28] in that transductive 
learning also allows the structure of the test set to play a role in classification.  

Our CPHC algorithm is similar to existing pattern-based classification algorithms 
in that we also use patterns. But unlike these algorithms, we do not attempt to 
construct a classification model from the training set. Our approach also differs from 
existing semi-supervised classification algorithms in that we do not use clustering as a 
way of enhancing the training set. Instead, we directly utilize a cluster hierarchy to 
classify test instances and therefore, avoid the extra step of training a classifier after 
clustering. In addition, existing approaches do not use pattern lengths as a way of 
establishing cluster weights. 
 
Step 1: Select features (Section 3.1) 
Input:  training instances trn1..trnn 
 test instances tst1..tstm 
       Select features as explained in Section 3.1 
Output: trn'1..trn'n, and tst'1..tst'm with reduced features  
Step 2: Obtain a cluster hierarchy of training and test instances (Section 3.2) 
Input:  training instances trn'1..trn'n 
 test instances tst'1..tst'm 
       Apply the IDHC algorithm (Section 1.2) on (trn'1..trn'n U tst'1..tst'm) 
Output: cluster hierarchy h 
Step 3: Classify test instances (Section 3.3) 
Input:  cluster hierarchy h 
 test instances tst1..tstm 
       For each test instance tsti,  
  Traverse h from root to leaves, identify set S of clusters that contain tsti  
  Use clusters in S, and lengths of associated patterns as their weights to compute 
  class scores (i.e., by multiplying the node pattern-interestingness value with the 
  pattern-length) 
  Assign the label of top-scoring class (or classes for multi-label problems) to tsti 
Output: predicted labels of test instances tst1..tstm 

Fig. 2. The CPHC Algorithm. 



3   The CPHC Algorithm 

In this Section, we explain various steps involved in the CPHC algorithm. Figure 2 
summarizes these steps, and subsections 3.1-3.3 provide details on each step.  

3.1   Step 1: Noise Elimination and Feature Selection 

Studies [11, 24] show that reducing the dimensionality of the feature space may 
significantly improve the effectiveness and scalability of traditional classification 
algorithms, especially on high-dimensional datasets. Furthermore, dimensionality 
reduction tends to reduce overfitting [24]. Pattern-based classification algorithms 
equally benefit from dimensionality reduction, as both the quality and the number of 
discovered patterns directly depends on the number of initial items. 

Typically, features are selected by first sorting all available features in terms of 
their significance, and then selecting top-j, or top-j-percent features (with a caveat that 
selecting a suitable value for j is not straightforward). A recent study [11] evaluated 
various measures to calculate feature significance and concluded that Information 
Gain, Chi-Square and Bi-normal Separation worked equally well on a number of 
datasets, with no statistically significant difference. Considering the comparatively 
high computational cost of common feature selection methods, a recent hidden-web 
classification algorithm [13] adopted an efficient, two-phase approach. In its first 
phase, Zipf's law was applied as an inexpensive heuristic dimensionality reduction 
technique to eliminate too frequent and too rare features. In its second phase, a more 
expensive method was applied to select the final set of features. 

Unfortunately, none of these approaches guarantee coverage (i.e., that each 
instance in the corpus is represented by the selected features). Furthermore, the 
optimal number (or percentage) of features (i.e., the value of j) needed to achieve 
good classification results remains unclear. The literature [24] is inconclusive on n: 
some studies suggest that the number of selected features should be same as the 
number of training examples, and others suggest that feature selection may make 
matters worse, especially when the number of available features is small. 

Since CPHC first produces a cluster hierarchy of the whole dataset, using a 
supervised feature selection method (i.e., Information Gain) alone may leave some 
test instances unrepresented in the cluster hierarchy. That is some test instances 
entirely consist of features that do not exist in any training instance. Traditional 
classification algorithms may not be able to classify such test instances at all. CPHC 
however, improves the chances of classifying such test instances by inducing a type 
of feature transitivity: as long as these isolated test instances share some features with 
more common test instances that overlap the training set, they have a chance of being 
clustered together in a "logical" node (see Section 3.3 for details). 

Considering these issues, we adopt a heuristic feature selection method that is 
efficient, and ensures that the final set of selected features covers all training and test 
instances. Furthermore, using the number of training instances, and the number of 
available features, our method automatically estimates the number of features used for 
classification (i.e., the value of j). Our method consists of the following four steps: 



Step 1.1 (calculate j): 
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where n = number of training instances, and f = total number of available features. 
This empirically derived formula ensures a reasonable base amount for low 
dimensional datasets, while moderately growing this number for high dimensional 
datasets. 

Step 1.2 (select globally significant features): Heuristically select globally most 
useful features by first applying Zipf's law to select features that are neither too 
frequent, nor too infrequent (as these features are considered to be less significant). In 
other words, select features that exist in less than max_supp, and more than min_supp 
percent instances (where min_supp and are max_supp are user defined parameters). 
Further refine these features by first sorting them in decreasing order of their 
Information Gain values (computed using labeled training instances only), and then 
adding the resulting top-j features to set S (i.e., the set of "selected" features). 

Step 1.3 (ensure local coverage of training instances): For each instance X in the 
training set represented as triple <id, L, Y> (Section 1.1), check if |Y ∩ S| ≥ t (where t 
is user defined). If the condition is not met, sort all features in the current instance in 
the decreasing order of their (TF * Information Gain), where TF = local term 
frequency count in the instance. This "balances" the local significance (i.e., TF) and 
the global significance (i.e., Information Gain). Finally, add the resulting top (t - |Y ∩ 
S|) features to set S. 

Step 1.4 (ensure local coverage of test instances): For each instance X in the test 
set represented as triple <id, L, Y>, check if |Y ∩ S| ≥ t. If the condition is not met, sort 
all features in the current instance in the decreasing order of their Term Frequency 
values. Finally, add the resulting top (t - |Y ∩ S|) features to set S. 

3.2   Step 2: Hierarchical Clustering of Training and Test Instances 

Once we have the features selected, we apply the IDHC algorithm (Section 1.2) on 
the whole dataset to obtain a cluster hierarchy. The IDHC algorithm computes 
interestingness values for selecting size-2 patterns for instances. However, in the 
original algorithm these values are not stored, since cluster refinement was done 
solely using instance-to-cluster pointers. But here, we need to use these values to 
calculate class scores for test instances (Section 3.3), so we modified the IDHC 
algorithm to track these values. In addition, we obtain interestingness values for 
patterns longer than size-2 by averaging the interestingness values of patterns merged 
during cluster refinement (Section 1.2). We also use the same process in a bottom-up 
fashion to obtain interestingness values for "logical" nodes (i.e., clusters) generated 
by merging the top-level nodes.  

3.3   Step 3: Classifying Test Instances 

We use the following four-step process to classify test instances: 



Step 3.1: Given a test instance t, and hierarchy h, first initialize scores for all 
classes. Next, traverse h from root to leaves, identifying the set S of nodes that contain 
t. 

Step 3.2: For each node e in S, compute w such that: 
w = node-pattern-length * node-interestingness 

This weight is based on the relationship presented in Figure 1. 
Step 3.3: For each class c represented by at least one training instance in e 

(considering all instances in the node as well as instances in all child nodes, as usual), 
add x to the score of c such that: 

e
ec

wx
 in instances training

 in   label  withinstances training =
×=  

Step 3.4: For single-label classification problems, select the label of the class with 
the highest score. For multi-label problems, select multiple classes using the 
"weighted dominant factor-based" scheme in Section V(C-3) of [30], except replacing 
all uses of confidence with the selected interestingness measure. 

 

Fig. 3. A pattern-based cluster hierarchy obtained by applying the IDHC algorithm. The dotted 
nodes are "logical" nodes obtained by applying bisecting k-means to merge the top-level nodes 
in the initial cluster hierarchy. 

 
Since traditional inductive classifiers only use features in training instances to 

obtain the classification model, these algorithms may not be able to classify test 
instances that entirely consist of features that do not exist in any training instance, 
even if these isolated test instances share some features with more common test 
instances that overlap the training set. CPHC improves the chances of classifying such 
test instances by inducing a type of feature transitivity: as long as these isolated test 
instances share some features with more common test instances that overlap the 



training set, they have a chance of being clustered together in a "logical" node (i.e., 
node obtained by merging top-level nodes in the initial cluster hierarchy; Section 1.2). 
As a result, the "logical" node may contribute towards score calculation. 

Example: Figure 3 presents a pattern-based cluster hierarchy obtained by applying 
the IDHC algorithm (Section 1.2). Let us assume that T3 and T5 are test instances that 
share some features (i.e. feature "X"), and the remaining instances are training 
instances. Let us also assume that T5 is an "isolated" test instance, i.e., T5 does not 
share any features with the training set. Since T5 shares some features with T3 (i.e., a 
test instance that overlaps with the training set), T3 and T5 are clustered together in 
the logical node formed by merging the node with pattern "X, Y", and a logical node 
that contains T3. This structure allows the parent of node with pattern "X, Y" to 
predict class labels for T5. 

4   Experimental Results 

We conduced an extensive experimental study, and evaluated the performance of 
CPHC on 19 datasets with varying characteristics. These datasets included both 
standard text datasets, and discretized versions of numerical datasets from the UCI 
machine learning dataset collection. For each dataset, we compared the classification 
results obtained by CPHC against existing classification algorithms. In order to ensure 
a fair comparison, we obtained data from the same resources, and used the same 
evaluation metrics as used by the existing classifiers. We do not report the details of 
the datasets used in our experiments here and refer the reader to [4, 5, 6]. 

4.1   Classification Performance 

Experiments in [18, 19] indicate that Added Value, Chi-Square, Yule's Q, Mutual 
Information, Certainty Factor and Conviction outperform other interestingness 
measures [12, 27] in both global and instance-driven pattern-based hierarchical 
clustering contexts. Since CPHC is also based on pattern-based hierarchical 
clustering, we limited our experiments to these six measures. See [12, 27] for 
computational details of these measures. 

To set values for the parameters for the CPHC algorithm in a principled way, we 
randomly selected a dataset, and tried a number of values for each parameter. The 
values that resulted in best results on the randomly selected dataset were blindly used 
across all datasets. Considering that text and UCI datasets are inherently different, we 
selected one text dataset (i.e., sports) and one UCI dataset (i.e., auto) for the 
parameter setting purpose. This resulted in selecting Chi-Square as the interestingness 
measure for all text datasets, and Added Value as the interestingness measure for all 
UCI datasets. In addition, we obtained min_std_dev = 1.5, and maxK = 11. Finally, we 
fixed t = 10 on all datasets (Section 3.1), and fixed min_supp to 2 on all small UCI 
datasets, and to 40 on all other datasets. Section 4.3 discusses further improvements 
that may be realized by tuning min_std_dev and measure for individual datasets. 

Additionally, all results reported here used the 10-fold cross validation scheme 
(with averages of all 10 experiments reported, as usual), except on Reuters-21578 



dataset, where we used the ModApte split [4] to ensure an apples-to-apples 
comparison with results reported by existing studies. 

4.1.1   Reuters- 21578 (ModApte) text dataset. Reuters-21578 is the most-
commonly used benchmark dataset to evaluate the performance of multi-class, multi-
label classification algorithms. Existing studies given in [9, 30] used the precision-
recall breakeven points on the ten largest categories, as the main performance criteria. 
We calculated these breakeven points in a way similar to [30], i.e., by changing the 
dominant factor, and keeping a fixed "score differentia factor" (i.e., 0.6). As 
mentioned above, we fixed the interestingness measure to Chi-Square and 
min_std_dev to 1.5. 

Table 1 presents the results of this experiment. The results for Find-Sim, Naïve 
Bayes, Bayes-Nets, Trees (i.e., Decision-Trees), and linear-SVM are obtained from 
[9], while the results for ARC-BC are obtained from [1]. Note that [30] also used the 
same results. Finally, the results for Harmony are obtained from Table VIII of [30]. 
Among the ten largest categories, CPHC achieved the best break-even performance 
on 3 categories (i.e., crude, interest and money-fx), and ranked second on another 2 
categories (i.e., acq and trade), with ranks 3-5 achieved on the remaining 4 categories. 
Most significantly, CPHC outperformed all existing classification algorithms in terms 
of micro-average performance, and also achieved a macro-average that is very close 
to SVM. Micro-average is calculated as the weighted (proportional to the class size) 
average of per-class precision-recall breakeven points, which results in an equal 
weight for each document, thus favoring the performance on common classes. In 
contrast, macro-average is obtained by first calculating the precision-recall breakpoint 
values for all classes, and then averaging the results. Therefore, macro-average 
equally weights all the classes, regardless of how many documents belong to a class. 

Table 1.  Breakeven performance on Reuters-21578. 

Category Harmony Find Sim Naïve 
Bayes 

Bayes Nets Trees SVM 
(linear)

ARC-BC CPHC 

acq 95.3 64.7 87.8 88.3 89.7 93.6 90.9 94.5 
corn 78.2 48.2 65.3 76.4 91.8 90.3 69.6 77.2 
crude 85.7 70.1 79.5 79.6 85.0 88.9 77.9 90.7 
earn 98.1 92.9 95.9 95.8 97.8 98.0 92.8 96.5 
grain 91.8 67.5 78.8 81.4 85.0 94.6 68.8 91.1 

interest 77.3 63.4 64.9 71.3 67.1 77.7 70.5 81.0 
money-fx 80.5 46.7 56.6 58.8 66.2 74.5 70.5 84.3 

ship 86.9 49.2 85.4 84.4 74.2 85.6 73.6 78.3 
trade 88.4 65.1 63.9 69.0 72.5 75.9 68.0 87.9 
wheat 62.8 68.9 69.7 82.7 92.5 91.8 84.8 83.6 

micro-avg 92.0 64.6 81.5 85.0 88.4 92.0 82.1 92.1 
macro-avg 84.5 63.7 74.8 78.8 82.2 87.1 76.7 86.5 



4.1.2   UCI datasets. UCI machine learning datasets are also commonly used to 
evaluate classification algorithms. We compared the performance of CPHC against 
existing algorithms on 13 small and 2 large UCI datasets. To ensure fairness, we used 
the same pre-discretized versions of these datasets as used in [30], obtained from [6]. 

Table 2.  Classification accuracies on 13 small UCI datasets. 

 FOIL CPAR SVM Harmony CPHC 
anneal 96.90 90.20 83.83 91.51 93.82 
auto 46.10 48.00 55.50 61.00 73.00 

breast 94.40 94.80 96.80 92.42 93.33 
glass 49.30 48.00 46.00 49.80 70.00 
heart 57.40 51.10 60.36 56.46 58.33 

hepatitus 77.50 76.50 81.83 83.16 83.33 
horsecolic 83.50 82.30 83.31 82.53 73.61 
ionoSphere 89.50 92.90 89.44 92.03 92.57 

iris 94.00 94.70 94.67 93.32 94.67 
pima 73.80 75.60 74.18 72.34 73.16 

tic-tac-toe 96.00 72.20 70.78 92.29 72.74 
wine 86.40 92.50 94.90 91.94 88.24 
zoo 96.00 96.00 86.00 93.00 97.00 

average 80.06 78.06 78.28 80.91 81.83 

Table 3.  Classification accuracies on 2 large UCI datasets. 

 FOIL CPAR SVM Harmony CPHC 
adult 82.50 76.70 84.16 81.90 84.95 

mushroom 99.50 98.80 99.67 99.94 99.98 
average 91.00 87.85 91.92 90.92 92.46 

 
Tables 2 and 3 present the results of this experiment. The results for FOIL, CPAR, 

SVM (i.e., rbf-kernel), and Harmony are obtained from tables XII and XV of [30], 
which also notes that C4.5, Ripper, and association-based algorithms did not perform 
as well on these datasets. CPHC outperformed all existing algorithms, with the 
highest average classification accuracies. 

Table 4.  Classification accuracy on the Sports dataset. SVM and Harmony used various values 
for C and minimum support. CPHC used various values for min_supp. 

Harmony (Min support) SVM (C) CPHC (min_supp) 
75 100 125 150 2.0 1.0 0.5 0.25 5 10 20 30 

94.2 94.9 94.3 94.1 95.79 95.79 95.76 95.72 96.40 96.24 96.12 95.98 



4.1.3   Sports text dataset. We also evaluated the classification accuracy of CPHC on 
the Sports text dataset (i.e., TREC, original source: San Jose Mercury News). The 
results of SVM and Harmony are obtained from [30], which used various parameter 
values to tune these algorithms. We follow a similar approach and used various values 
for min_supp, which is our noise elimination parameter used in the feature selection 
step (Section 3.1). The values for all other parameters were kept fixed. From Table 4, 
we observe that CPHC resulted in better classification accuracies than both of the 
existing algorithms. 
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Fig. 4. Classification accuracies on Classic and Re0 datasets with increasingly sparser training 
data. The non-linear scale is approximately logarithmic. 



4.2   Impact of the Percentage of Training Instances on Classification 
Performance 

To evaluate how CPHC reacts to a decreasing ratio of training instances to test 
instances, we performed a number of experiments on the Classic and Re0 datasets 
obtained from [5].  In each experiment, we randomly selected p% of the instances as 
the training set (see Figure 4 for the values of p used on each dataset), and the rest as 
test set. For each value of p, we executed CPHC ten times and report the average 
classification accuracies. For comparison, we executed Harmony (i.e., executables 
obtained from the authors of [30]) in a similar fashion and report the average 
accuracies in Figure 4. Note that Harmony uses a minimum support threshold which 
we fixed to 1% of the training instances in each execution. 

From Figure 4, we observe that the two algorithms yielded similar accuracies when 
a large percentage of the dataset was used as the training set. However, CPHC 
significantly outperformed Harmony as the size of the training set decreased. On 
Classic and Re0 datasets, the maximum difference in classification accuracy was as 
great as 53% and 31% respectively! It appears that CPHC's ability to classify 
"isolated" test instances, as discussed in Section 3.3, is responsible for this difference. 

4.3   Optional Parameter Tuning 

Table XVI of [30] presents the classification accuracies achieved on the 13 small UCI 
datasets by tuning SVM and Harmony using various parameter values. We follow a 
similar approach to demonstrate additional gains that might be realized by tuning our 
parameters. For this purpose, we varied min_std_dev between 0.9 and 2.0, in uniform 
intervals of 0.1, and used six different interestingness measures. 

Table 5.  Tuned accuracies on UCI datasets. 

 Harmony SVM CPHC min_std_dev Interestingness measure 
anneal 95.65  97.26 95.73 0.9 Certainty Factor 
auto 61.50 58.90 73.00 1.2 Added Value 

breast 96.14 95.09 94.06 1.3 YulesQ 
glass 49.80 50.53 75.71 1.0 YulesQ 
heart 58.40 57.46 62.00 1.3 Certainty Factor 

hepatitis 85.99 85.50 84.67 1.8 Added Value 
horsecolic 84.64 84.06 76.39 1.4 YulesQ 
ionosphere 93.45 89.43 92.29 1.5 Added Value 

iris 95.99 93.33 95.33 1.5 Mutual Information 
pima 73.79 71.06 75.92 1.0 Chi Square 

Tic-tac-toe 94.09 88.52 73.16 1.2 YulesQ 
wine 94.90 97.25 95.88 1.0 Chi Square 
zoo 96.00 97.00 98.00 1.1 Added Value 

average 83.1 81.95 84.01   
 

Table 5 presents the best classification accuracy achieved on each dataset, along 
with the corresponding parameter values. For comparison sake, we also include fully 



tuned Harmony and SVM accuracies as reported in [30]. We observe that CPHC 
achieved better accuracies on 5/13 datasets, and also resulted in the highest average 
classification accuracy across all 13 datasets. 

5   Conclusions and Future Work 

The semi-supervised approach first clusters both the training and test sets together 
into a single cluster hierarchy, and then uses this hierarchy as a direct means for 
classification; this eliminates the need to train a classifier on an enhanced training set. 
In addition, this approach uses a novel feature selection method that ensures that all 
training and test instances are covered by the selected features, uses parameters that 
are robust across datasets with varying characteristics, and also has the positive side 
effect of improving the chances of classifying isolated test instances on sparse 
training data by inducing a form of feature transitivity. Lastly, this approach is very 
robust on very sparse training data. 

In the future, we would like to compare CPHC against transductive learning 
algorithms, perform theoretical analysis to confirm our empirically observed 
relationship between entropy values and node pattern lengths, and extend CPHC to 
work in online scenarios by dynamically maintaining the cluster hierarchy as test 
instances arrives. 
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