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Abstract. The usual data mining setting uses the full amount of data to
derive patterns for different purposes. Taking cues from machine learn-
ing techniques, we explore ways to divide the data into subsets, mine
patterns on them and use post-processing techniques for acquiring the
result set. Using the patterns as features for a classification task to eval-
uate their quality, we compare the different subset compositions, and
selection techniques. The two main results – that small independent sets
are better suited than large amounts of data, and that uninformed selec-
tion techniques perform well – can to a certain degree be explained by
quantitative characteristics of the derived pattern sets.

1 Introduction

When it comes to patterns to be used for classification, especially of complex
data, class-correlating patterns are usually a good choice. By removing the in-
fluence of ad-hoc parameters such as frequency and confidence thresholds, found
patterns can be expected not to fall prey to spurious phenomena in the data. No
matter what the choice of patterns however, over-fitting effects are impossible to
avoid and resulting patterns will of course influence the classifier. This becomes
even more problematic if the amount of patterns is large, pairs and combinations
of patterns reinforce each other’s bias, or the classifier used to build the global
model has limited safe-guards against over-fitting.

In a different work [2], we evaluated the effect of reducing redundancy be-
tween patterns on the accuracy of classifiers using those particular features.
While we could show that reducing redundancy – in some cases rather strongly
– did in fact improve accuracy, we adhered to what could be referred to as the
standard data mining setting in that the underlying database was used as a whole
for deriving the patterns we then filtered. Contrasting with this, the machine
learning literature knows different techniques using parts of the labeled data
for verification purposes of found patterns/built classifiers, such as re-sampling,
validation sets, bootstrap sampling, and others.

We take a page out of the playbook of ML, first mining several sets of correlat-
ing patterns, and then using different criteria to create final result sets from these
which are used as features for learning an SVM classifier. SVMs have inherent



capabilities for feature selection, and as a max-margin classifier more robustness
regarding over-fitting effects, making them a good choice for evaluating feature
quality.

The paper is structured as follows: In the next section, we explain the basic
mechanisms for mining patterns, creating subsets of the data for mining and
re-mining purposes, and lay out several selection methods for deriving the final
result set. In Section 3, we report on the experimental evaluation of the proposed
methods before concluding in Section 4.

2 Mining and Merging Correlating Patterns

The data we focus on in our evaluation is molecular data in the form of undirected
graphs:

Definition 1 Graphs An undirected, labeled graph G(V, E, λ, Σ) consists of a
finite set V of vertices, a set E ⊆ {{u, v}|u, v ∈ V, u 6= v} of edges, an alphabet Σ
and a labeling function λ : (V ∪ E) → Σ. We denote the language of all possible
graphs with LG.

Our choice of pattern on graph-structured data are sequences, motivated by
the observation that sequences are essentially as useful as features as are trees
or graphs [3], while at the same time being far easier to mine.

Definition 2 Sequences A sequence is a graph where no vertex has more than
two edges (i.e. no branches), and has one more vertex than edges, ∀v ∈ V :
∣

∣{{v, u}|u ∈ V}
∣

∣ ≤ 2 and |E| + 1 = |V| . We denote the language of all possible
sequences with LS.

Given these languages, we define a predicate match : LG×LG 7→ {true, false},
and based on this define the notion of generality:

match(g, s) = ∃g′ subgraph of s with g′ isomorphic to g

Definition 3 Given two patterns pg, ps ∈ LG, pg is said to be more general
than or equal to ps, denoted by pg � ps, iff match(pg, ps). If pg � ps holds but
not ps � pg, pg is said to be more general than ps, denoted pg ≺ ps.

Given a set of instances Dm = {di|di ∈ LG}, each being labeled with one of
the class labels {pos, neg}, we can use a correlation measure σ(p,Dm), such as
χ2, to mine the top-k patterns on Dm, i.e. the k sequences p having the largest
correlation with the class, according to σ [6]. Furthermore, to avoid redundancy
in the resulting solution set, one typically employs patterns that are free:

Definition 4 Freeness Given a data set Dm, a pattern p is said to be free iff
∄p′, p′ ≺ p : σ(p′,Dm) = σ(p,Dm).



The solutions to the mining task can be conveniently modeled using

T hk(Dm) = {p | free(p,Dm), p among the k-best patterns w.r.t. σ(p,Dm)}

As said before, this is the standard data mining setting, which we will use as
a base-line technique. We compare the quantitative results (composition of the
pattern sets) and qualitative results (predictive accuracies of the SVM) of the
post-mining methods and the base-line. Different methods for selecting the final
pattern set are described in the following sections.

2.1 Using a validation set

The most basic approach consist of using a certain fraction q of the total data
D as the actual mining set Dm, with size q · |D|. The rest would be used as a
validation set Dvalidate, of size (1− q) · |D|. This approach also means that there
is need for two k -values, km, kvalidate, with km > kvalidate. After termination of
the mining process on Dm, the km patterns returned by the miner are evaluated
on Dvalidate and re-ranked, according to the σ-score achieved on this validation
set. From those the kvalidate best scoring patterns are returned to the user. This
intuitively explains the second condition since for km = kvalidate the validation
scores (and re-ranking) have no effect on the selection of patterns. An alternative
would lie in only returning patterns that proved to be significant (according to
some p-value) on the validation set.

This technique is related to the use of validation sets by approaches such as
Ripper [4] which use them to get a more realistic estimate of classification rules.

There are of course several interesting questions w.r.t. this approach. For
instance regarding the proportion of training and validation data, and how to
best determine it. Additionally, it would be worth investigating how the two k
parameters relate, i.e. How much larger than kvalidate does km have to be for the
composition of the top-kvalidate to stabilize? We plan to have a look into those
topics in the further course of our work. Our focus in this paper is on a second
technique that for now we find to be more intriguing.

2.2 Aggregating subset results

The second approach is somewhat connected to sub-sampling techniques such
as Bagging [1] for alleviating over-fitting effects in classifier learning. In this
technique, subsets Di

m of D are created, and the top km patterns mined from
them. The union of all such result sets Φall =

⋃

i T hkm
(Di

m) has the property
|Φall| ≥ km. All patterns p ∈ Φall are then re-evaluated according to some
aggregation metric, and a subset (e.g. the top-km patterns) returned to the user.

There are two main decisions that influence the result of this approach,
namely the choice of subsets and the aggregation metric used. The size of the
final set to be returned is obviously also important but has less effect than the
afore-mentioned two choices, we believe.



Composition of subsets The main difference between the two alternatives
of forming subsets of D lies in whether there is overlap among subsets used
or not. The straightest-forward approach consists of segmenting D into f folds

Fi, ∀0 ≤ i, j ≤ f, i 6= j : Fi ∩ Fj = ∅. We define D̂i
m = Fi and D

i

m =
⋃

j 6=i Fj . In
both cases all instances in the data have an effect on the final result with the
same weight (in contrast to random subsampling).

In the first case, Di
m = D̂i

m, the smaller amount of data used should lead
to a faster mining operation, and the non-overlap would likely lead to a larger
amount of patterns in |Φall|, each more finely tuned to the particular fold. This
might be an advantage in that patterns are mined that would be excluded when
mining on larger amounts of data – but maybe their exclusion happened for
good reason.

In the second case, Di
m = D

i

m, the effect that each instance is involved in
several mining operations will likely lead to the mining of less, and more stable,
patterns. Depending on the number of folds however, and therefore the size of

D
i

m, the resulting set of patterns might not be much different from a mining
operation on the full D.

Aggregation metrics The goal of any aggregation metric used lies in ranking
the patterns in Φall by using information from all subsets Di

m mined on. To this
end, the simplest metric would take the following form:

mcount (p) = |{i : p ∈ T hkm
(Di

m)}|

Basically mcount counts for each pattern p in how many of the Dm it was
found among the top-km. The patterns are then ranked in decreasing order
according to mcount . This measure does only check whether a pattern was mined
at all, however, not what its particular rank was in the respective result sets.
Hence, another metric, mrank would consist of the following:

rank(p,D) =

{

1 + km − inf{k | p ∈ T hk(D)} if p ∈ T hkm
(D)

0 otherwise

mrank (p) =
1

f

∑

i

rank(p,Di
m)

Again, all patterns in Φall would be re-ranked in decreasing order according
to the metric.

A final metric, mσ would take the form:

mσ(p) = σ(p,
⋃

i

Di
m)

calculating the score for each pattern according to σ on the entire data set.



Selection criteria Due to the fact that |Φall| ≥ km, one can simply return the
top-km after the re-ranking via one of the metrics m(p). Thus, given a value km,
a metric m, and a set of subsets M = {Di

m}, our goal is to select

ϕkm
(M, m) ⊆ Φall

such that the pi ∈ ϕkm
(M, m) are the km highest ranked pattern in Φall accord-

ing to the measure m.

Additionally, this framework does allow for a second k-value (k′
m), similar to

the one of the validation set approach which is used to define the size of the final
result set. In this case Φall =

⋃

i T hkm
(Di

m) but ϕk′

m
(M, m) ⊆ Φall is now such

that the pi ∈ ϕk′

m
(M, m) are the k′

m highest ranked pattern in Φall according
to the measure m.

Finally, the fact that the metrics assign new values to each pattern also means
that other criteria can be used. One such criterion could be to use mcount(p) ≥ v,
meaning that a pattern has to be supported by at least v subsets to be selected.
This is also a direction we intend to explore in future work.

3 Experimental Evaluation

For the experimental evaluation, we arbitrarily picked 8 data sets from the NCI-
60 data set collection [7] (cf. Table 1), and mine sequential patterns on them.
To balance the against the bias introduced by the partially overlapping NCI-60
sets, we additionally used a molecular data set where the set target variable is
mutagenicity of compounds [5]. km was set to 10, 25, 50, 75, 100, giving a reason-
able range of values across which to compare. f took the values 3, 5, 7, allowing
for D̂m settings of different size and size difference to the Dm settings. Since
this is preliminary work, we set k′

m = km, and evaluated only k-best selection
techniques, not threshold-based ones.

instances
Name positive negative total % pos

CCRF CEM 2217 1263 3480 0,637%
COLO 205 1943 1702 3645 0,533%

786 0 1832 1674 3506 0,522%
CAKI 1 1865 1715 3580 0,520%
A498 1782 1698 3480 0,512%

A549 ATCC 1901 1833 3734 0,509%
ACHN 1795 1736 3531 0,508%
BT 549 1399 1379 2778 0,503%

Mutagenicity 2401 1936 4337 0,554%
Table 1. Properties of the 8 NCI Datasets and the Mutagenicity Dataset used, sorted
by size of positive fraction



Two baseline techniques were also evaluated for comparison against: on the
one hand the standard setting where the complete D is used for mining, which
we identified as the standard data mining setting before. On the other hand we
used a post-processing baseline where the selection method consists of picking
k′

m patterns at random from Φall with uniform probability. Since this method
does not use any information on the quality of individual patterns, nor their
relationship with each other, we use it as a baseline to see whether the better
informed methods enjoy an advantage.

To get a robust accuracy estimate, a 10-fold cross-validation was performed.
All folds – both for accuracy and post-mining purposes – were stratified. As
explained above, an SVM classifier was used for accuracy estimates. SVMs pos-
sess certain inherent feature selection capabilities, giving features that do not
add relevant information small weights. In addition, an SVM attempts to find
a separating hyperplane with a maximal margin to both classes, allowing it to
find decision surfaces that should generalize better on unseen data than ones
from classifiers that are lacking a regularization mechanism. Both of these char-
acteristics make an SVM a good choice for evaluating the quality of a feature
set. A potential argument against using an SVM is of course interpretability.
However, the use of relatively large set of patterns in combination with the kind
of techniques needed for other classifiers to achieve competitive accuracies to an
SVM, e.g. Boosting, make interpreting such models difficult anyway. The SVM’s
C parameter was tuned via a 5-fold cross-validation on the training data, with
potential values 2i, i ∈ [−2, 14].

3.1 Quantitative results

In a first step, we report quantitative characteristics of Φall in Tables 2, 3, 4,
and 5. Given that the results for the NCI-60 data sets are similar, we picked one
at random and report on its characteristics. To this end we list |Φall|/km for the
two alternatives regarding construction of the Dm, the minimum and maximum
mcount for patterns in Φall, the minimum and maximum mrank for patterns in
Φall, and overlap = |ϕkm

(M, mσ)∩T hkm
(
⋃

M)|. What we would expect is the
following:

– |Φ
all,D̂m

|/km ≫ |Φall,Dm
|/km – Smaller Dm can be expected to lead to a

larger variety of patterns
– minp∈Φall

mcount(p) > 1 – Any correlating patterns can be expected to ap-
pear in more than one result list

– maxp∈Φall
mcount(p) ≈ f – The best correlating patterns can be expected to

generalize over most Dm

– minp∈Φall
mrank (p) > 1/f – Any correlating patterns can be expected to

appear in more than one result list
– maxp∈Φall

mrank (p) ≈ km – The best correlating patterns can be expected
to generalize over most Dm, appearing with a high ranking

– overlapDm
≥ overlap

D̂m
– Larger Dm lead to results more similar to the

standard setting



f Overlap |Φall|/km max
p∈Φall

mcount(p) max
p∈Φall

mrank(p) min
p∈Φall

mrank(p)

k = 10

3 0,7 ± 0,949 2,000 ± 0,200 3 ± 0,000 7,800 ± 1,033 0,333 ± 0,000

5 0 ± 0,000 3,260 ± 0,302 4,2 ± 0,632 6,260 ± 0,766 0,200 ± 0,000

7 0 ± 0,000 4,630 ± 0,434 4,7 ± 0,483 4,814 ± 0,919 0,143 ± 0,000

k = 25

3 0,3 ± 0,483 2,136 ± 0,163 3 ± 0,000 22,800 ± 1,033 0,333 ± 0,000

5 0 ± 0,000 3,428 ± 0,204 4,8 ± 0,422 19,420 ± 1,459 0,200 ± 0,000

7 0 ± 0,000 4,668 ± 0,305 5,8 ± 0,632 15,614 ± 1,355 0,143 ± 0,000

k = 50

3 0,2 ± 0,632 2,114 ± 0,131 3 ± 0,000 47,800 ± 1,033 0,333 ± 0,000

5 0 ± 0,000 3,290 ± 0,208 5 ± 0,000 43,820 ± 2,165 0,200 ± 0,000

7 0 ± 0,000 4,454 ± 0,367 6,6 ± 0,699 36,700 ± 2,203 0,143 ± 0,000

k = 75

3 0,3 ± 0,949 2,056 ± 0,123 3 ± 0,000 72,800 ± 1,033 0,367 ± 0,105

5 0 ± 0,000 3,167 ± 0,171 5 ± 0,000 68,760 ± 2,299 0,200 ± 0,000

7 0 ± 0,000 4,389 ± 0,283 6,7 ± 0,675 60,171 ± 4,035 0,143 ± 0,000

k = 100

3 2,2 ± 4,662 2,018 ± 0,128 3 ± 0,000 97,800 ± 1,033 0,333 ± 0,000

5 0 ± 0,000 3,114 ± 0,171 5 ± 0,000 93,760 ± 2,299 0,200 ± 0,000

7 0 ± 0,000 4,321 ± 0,234 6,8 ± 0,422 84,071 ± 5,767 0,143 ± 0,000

Table 2. Quantitative characteristics for pattern sets mined on D̂i
m (NCI)

f Overlap |Φall|/km max
p∈Φall

mcount(p) max
p∈Φall

mrank(p) min
p∈Φall

mrank(p)

k = 10

3 5,6 ± 1,506 1,440 ± 0,150 3 ± 0,000 9,033 ± 0,508 0,367 ± 0,105

5 5,7 ± 1,252 1,430 ± 0,125 5 ± 0,000 9,420 ± 0,416 0,260 ± 0,135

7 6 ± 1,764 1,400 ± 0,176 7 ± 0,000 9,500 ± 0,318 0,157 ± 0,045

k = 25

3 8,4 ± 3,098 1,644 ± 0,125 3 ± 0,000 24,033 ± 0,508 0,333 ± 0,000

5 8,5 ± 2,014 1,660 ± 0,080 5 ± 0,000 24,420 ± 0,416 0,220 ± 0,063

7 7,9 ± 2,885 1,684 ± 0,115 7 ± 0,000 24,500 ± 0,318 0,157 ± 0,045

k = 50

3 16,7 ± 4,715 1,648 ± 0,088 3 ± 0,000 49,033 ± 0,508 0,333 ± 0,000

5 18,4 ± 3,373 1,632 ± 0,067 5 ± 0,000 49,420 ± 0,416 0,200 ± 0,000

7 21,1 ± 3,315 1,578 ± 0,066 7 ± 0,000 49,500 ± 0,318 0,171 ± 0,090

k = 75

3 29,2 ± 6,356 1,599 ± 0,082 3 ± 0,000 74,033 ± 0,508 0,433 ± 0,161

5 34,1 ± 5,131 1,545 ± 0,068 5 ± 0,000 74,420 ± 0,416 0,280 ± 0,103

7 36,6 ± 5,522 1,512 ± 0,073 7 ± 0,000 74,500 ± 0,318 0,157 ± 0,045

k = 100

3 45,7 ± 7,484 1,535 ± 0,067 3 ± 0,000 99,033 ± 0,508 0,333 ± 0,000

5 52,1 ± 6,367 1,480 ± 0,064 5 ± 0,000 99,420 ± 0,416 0,320 ± 0,140

7 54,4 ± 8,208 1,456 ± 0,082 7 ± 0,000 99,500 ± 0,318 0,157 ± 0,045

Table 3. Quantitative characteristics for pattern sets mined on D
i

m (NCI)



As the result tables show, most of our expectations hold for the NCI data,
with the only serious exceptions being our assumptions about the “worst” pat-
terns – which usually do not appear in more than one T hk(D). This indicates
that even when using correlation measures, different data sets quickly lead to
differing (and incidentally less interpretable) mining results.

f Overlap |Φall|/km max
p∈Φall

mcount(p) max
p∈Φall

mrank(p) min
p∈Φall

mrank(p)

k = 10

3 0,5 ± 0,972 2,34 ± 0,255 2,6 ± 0,516 6,467 ± 1,772 2,600 ± 0,211

5 0,3 ± 0,675 3,56 ± 0,414 3,6 ± 0,699 5,100 ± 0,682 1,880 ± 0,103

7 0,0 ± 0,000 4,92 ± 0,432 4,1 ± 0,994 4,329 ± 1,035 1,571 ± 0,151

k = 25

3 2,0 ± 1,700 2,124 ± 0,160 2,9 ± 0,316 19,767 ± 3,611 5,433 ± 0,738

5 1,0 ± 1,054 3,184 ± 0,318 4,4 ± 0,699 16,86 ± 2,409 4,580 ± 0,175

7 0,7 ± 1,252 3,824 ± 0,366 5,4 ± 0,516 13,171 ± 3,077 3,629 ± 0,518

k = 50

3 6,1 ± 4,677 2,118 ± 0,132 3,0 ± 0,000 43,933 ± 5,648 9,633 ± 0,597

5 2,9 ± 2,025 2,804 ± 0,202 4,9 ± 0,316 35,280 ± 6,153 7,400 ± 0,490

7 2,0 ± 2,582 2,824 ± 0,283 5,7 ± 0,675 21,671 ± 5,279 4,457 ± 0,908

k = 75

3 12,5 ± 6,835 2,07467 ± 0,115 3,0 ± 0,000 67,600 ± 5,760 13,800 ± 1,565

5 8,6 ± 5,758 2,212 ± 0,155 4,9 ± 0,3162 43,460 ± 6,872 7,380 ± 1,069

7 9,3 ± 6,651 1,956 ± 0,228 5,7 ± 0,675 22,586 ± 5,522 3,129 ± 0,977

k = 100

3 16,7 ± 8,883 1,963 ± 0,161 3,0 ± 0,000 87,400 ± 9,597 16,767 ± 3,236

5 18,5 ± 6,721 1,707 ± 0,121 4,9 ± 0,316 44,640 ± 7,168 5,260 ± 0,938

7 22,5 ± 8,708 1,467 ± 0,171 5,7 ± 0,675 22,586 ± 5,522 1,900 ± 0,788

Table 4. Quantitative characteristics for pattern sets mined on D̂i
m (Mutagenicity)

On the mutagenicity data, the results look somewhat different however. On
the one hand are the overlap results not as extreme – there is quite a bit overlap
even for the D̂m settings, while the overlap for Dm settings is smaller than on
the NCI data. On the other hand do the subsets have a stronger effect on the
ranking of patterns – “best” patterns are less often in all top-k than for the NCI
data, and do not always come out ranked highest, while there are patterns that
are only in one result list but relatively highly ranked, and “worst” patterns that
can be found in several result lists. Generally, it can be observed that splitting
the data into subsets leads to larger churn among patterns found.

3.2 Qualitative results

After having seen the quantitative characteristics of the different pattern sets
the probably more interesting question is which of the proposed mining- and
post-mining techniques select patterns which are useful in representing data



f Overlap |Φall|/km max
p∈Φall

mcount(p) max
p∈Φall

mrank (p) min
p∈Φall

mrank(p)

k = 10

3 1,3 ± 1,567 1,710 ± 0,338 2,6 ± 0,516 6,467 ± 1,772 2,600 ± 0,211

5 1,3 ± 1,703 1,750 ± 0,375 3,6 ± 0,699 5,100 ± 0,682 1,880 ± 0,103

7 1,3 ± 1,567 1,740 ± 0,386 4,1 ± 0,994 4,329 ± 1,035 1,571 ± 0,151

k = 25

3 3,7 ± 2,110 1,464 ± 0,128 2,9 ± 0,316 19,767 ± 3,611 5,433 ± 0,738

5 3,6 ± 1,955 1,416 ± 0,112 4,4 ± 0,699 16,860 ± 2,409 4,580 ± 0,175

7 4,0 ± 2,000 1,364 ± 0,111 5,4 ± 0,516 13,171 ± 3,077 3,629 ± 0,518

k = 50

3 11,3 ± 3,466 1,542 ± 0,093 3,0 ± 0,000 43,933 ± 5,648 9,633 ± 0,597

5 11,7 ± 3,561 1,506 ± 0,106 4,9 ± 0,316 35,280 ± 6,153 7,400 ± 0,490

7 12,9 ± 3,755 1,494 ± 0,120 5,7 ± 0,675 21,671 ± 5,279 4,457 ± 0,908

k = 75

3 22,6 ± 3,950 1,564 ± 0,095 3,0 ± 0,000 67,600 ± 5,760 13,80 ± 1,565

5 24,3 ± 4,111 1,508 ± 0,126 4,9 ± 0,316 43,460 ± 6,872 7,380 ± 1,069

7 25,8 ± 4,492 1,503 ± 0,096 5,7 ± 0,675 22,586 ± 5,522 3,129 ± 0,977

k = 100

3 34,8 ± 7,554 1,569 ± 0,090 3,0 ± 0,000 87,400 ± 9,597 16,767 ± 3,236

5 38,7 ± 6,378 1,516 ± 0,132 4,9 ± 0,316 44,640 ± 7,168 5,260 ± 0,938

7 39,1 ± 7,593 1,514 ± 0,141 5,7 ± 0,675 22,586 ± 5,522 1,900 ± 0,788

Table 5. Quantitative characteristics for pattern sets mined on D
i

m (Mutagenicity)

for classification purposes. As mentioned above, we used an SVM and 10-fold
cross-validation to estimate the quality of pattern sets. Due to the fact that
differences in accuracy were almost never significant, we omit the actual accu-
racy estimates here. Instead we report how the different methods (each time
a combination of Dm composition and selection technique) compare giving a
fixed km = 10, 25, 50, 75, 100 and f = 3, 5, 7 (Tables 6,7,8, and 9, 10, 11, re-
spectively). Note that the tables for the NCI data show the aggregated wins for
each approach, with more detailed tables reporting pair-wise comparisons in the
appendix.

Each number denotes how often a particular technique has performed better
than any other technique on any data set. Since 8 NCI data sets were used,
giving a technique maximally 8 wins against any single other technique, and 9
techniques were evaluated, any given approach can have a maximum of 64 wins
in Tables 6, 7, 8. Bold values denote the best-performing technique for a given
km, while a circle (◦) shows for which amount of patterns a given technique
performed best.

The first, somewhat surprising insight, is that using large, overlapping Dm

does not lead to good pattern selection. Dm settings never perform best for a
given km and usually perform better if only relatively few patterns are selected,
suggesting that resampling does too little to counteract bias. Given that re-



k = 10 k = 25 k = 50 k = 75 k = 100

D̂m, chi 10 7 10 13 18 ◦

D̂m, random 38 39 44 43 52 ◦

D̂m, rank 49 ◦ 42 39 48 31

D̂m, top 42 52 ◦ 49 38 33

Dm, chi 18 ◦ 18 ◦ 10 8 14

Dm, random 25 48 ◦ 44 41 32

Dm, rank 36 23 42 ◦ 32 29

Dm, top 41 ◦ 39 25 38 25

baseline 29 20 25 27 54 ◦

Table 6. Accuracy wins for different km-values (f = 3)

k = 10 k = 25 k = 50 k = 75 k = 100

D̂m, chi 9 2 14 16 22 ◦

D̂m, random 52 54 50 59 ◦ 47

D̂m, rank 52 49 52 51 59 ◦

D̂m, top 51 ◦ 42 46 43 36

Dm, chi 14 28 ◦ 19 8 4

Dm, random 32 43 ◦ 34 36 28

Dm, rank 28 17 26 32 34 ◦

Dm, top 22 29 ◦ 28 22 21

baseline 28 24 19 21 37 ◦

Table 7. Accuracy wins for different km-values (f = 5)

k = 10 k = 25 k = 50 k = 75 k = 100

D̂m, chi 8 6 15 24 29 ◦

D̂m, random 43 49 54 56 ◦ 50

D̂m, rank 42 54 ◦ 52 50 50

D̂m, top 46 ◦ 41 37 37 32

Dm, chi 22 ◦ 19 11 8 5

Dm, random 19 46 ◦ 43 34 37

Dm, rank 38 ◦ 29 33 26 32

Dm, top 32 ◦ 25 22 28 18

baseline 38 ◦ 19 21 25 35

Table 8. Accuracy wins for different km-values (f = 7)



sampling forms the basis for, e.g., Bagging techniques, we did not expect this
outcome.

What can also be noticed is that the standard approach – using all training
data for mining – produces suboptimal pattern sets. Only once this baseline
approach is best, for f = 3, meaning relatively large folds where the informed
selection techniques such as count and rank do not enjoy a large advantage. And
even there it is closely followed by the random pattern selection - essentially the
most uninformed one. Which in turn means that an unwritten paradigm of data
mining – that using large amounts of data to the fullest will produce meaningful
patterns – turns out to be questionable in this case.

The random technique is in fact the big winner of the entire comparison
on the NCI data, given its näıve selection method. Although the reduction of
redundancy using this technique is entirely by chance, it performs well in 4 of
15 settings, tying rank twice, which wins 5 times, with count after it at 3 wins.
So the information which patterns generalize well over different subsets does not
give a strong advantage in our case study.

In the case of the mutagenicity data set, the maximum number of wins pos-
sible is of course eight, given that nine techniques are compared pairwise on a
single data set. There is for each value-combination of f and km always one ap-
proach that reaches this maximum, and again it’s the random, rank and count
techniques on the D̂m setting that share the honor, with the exception being the
rank approach for km = 10 that performs best in the Dm setting. Again, there
are 15 combinations of f , and km-value and the rank approach does best in six of
these, followed by the random technique with five, and count with four settings.
These results are consistent with the results seen on the NCI data, suggesting
that this is be a phenomenon that might not be restricted to a particular data
set.

4 Conclusions

In this work, we investigated ways of using data sets for data mining with the
goal of producing good features for classification of complex data. Two main
insights arise from the experimental evaluation: 1) size does matter! Just not
in the way usually assumed. Neither the standard data mining setting which
uses large data sets to smooth over-fitting effects by pure size, nor re-sampling
techniques that produce overlapping mining sets with the goal of uncovering the
true underlying phenomena proved to be the most effective use of data. The
best way we observed to use the data consisted of splitting it up into small,
independent data subsets instead. 2) the actual selection matters far less than
could be expected. Given a large enough variety of patterns, picking patterns
at random proved to be a rather effective technique, as proved the average rank
selector, which in effect picks patterns that were highly ranked at least once,
even if in other subsets they were not.

As we have outlined in preceding sections already, this is preliminary work
and there are several other techniques which we plan to evaluate. Potentially



k = 10 k = 25 k = 50 k = 75 k = 100

D̂m, chi 1 1 1 1 1

D̂m, random 5 8◦ 8◦ 8◦ 5

D̂m, rank 3 6 5 5 8◦

D̂m, top 6 5 4 7◦ 7◦

Dm, chi 2 2 2 2 2

Dm, random 4 4 7◦ 6 6

Dm, rank 8◦ 7 6 4 4

Dm, top 7◦ 3 3 3 3

baseline 0 0 0 0 0

Table 9. Accuracy wins for different km-values (f = 3)

k = 10 k = 25 k = 50 k = 75 k = 100

D̂m, chi 1 1 1 1 1

D̂m, random 3 3 5 5 8◦

D̂m, rank 5 5 7 8◦ 7

D̂m, top 8◦ 8◦ 8◦ 7 5

Dm, chi 2 2 2 2 2

Dm, random 6◦ 4 3 6◦ 6◦

Dm, rank 7◦ 7◦ 6 4 3

Dm, top 4 6◦ 4 3 4

baseline 0 0 0 0 0

Table 10. Accuracy wins for different km-values (f = 5)

k = 10 k = 25 k = 50 k = 75 k = 100

D̂m, chi 1 1 1 1 1

D̂m, random 2 3 6 7 8◦

D̂m, rank 8◦ 8◦ 8◦ 6 7

D̂m, top 7 7 7 8◦ 5

Dm, chi 3 2 2 2 2

Dm, random 5 5 5 5 6◦

Dm, rank 6◦ 6◦ 3 4 3

Dm, top 4 4 4 3 4

baseline 0 0 0 0 0

Table 11. Accuracy wins for different km-values (f = 7)



most significant is the fact that our preliminary results show that the one defining
characteristic that qualifies a pattern set as a good feature set for classification is
non-redundancy. Given the effectiveness of using independent subsets, a viable
strategy should be to split up the initial data set into subsets according to
pattern-effects, and re-iterate the mining process – effectively using the same
effect that decision trees employ.
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baseline 7 6 3 5 2 2 3 1 29

chi, D̂m 1 3 1 1 1 1 1 1 10

chi, Dm 2 5 2 3 1 2 1 2 18

random, D̂m 5 7 6 6 3 5 3 3 38

random, Dm 3 7 5 2 1 3 1 3 25

rank, D̂m 6 7 7 5 7 5 6 6 49

rank, Dm 6 7 6 3 5 3 3 3 36

top, D̂m 5 7 7 5 7 2 5 4 42

top, Dm 7 7 6 5 5 2 5 4 41

Table 12. Wins for k = 10 on 3 subfolds

k=10, sf=5 ba
se

lin
e

ch
i,
D̂

m

ch
i,
D

m

ra
nd

om
,
D̂

m

ra
nd

om
,
D

m

ra
nk

,
D̂

m

ra
nk

,
D

m

to
p,

D̂
m

to
p,

D
m

Σ

baseline 7 6 1 4 0 4 0 6 28

chi, D̂m 1 3 1 1 1 1 0 1 9

chi, Dm 2 5 0 1 1 2 1 2 14

random, D̂m 7 7 8 7 4 7 5 7 52

random, Dm 4 7 7 1 2 4 2 5 32

rank, D̂m 8 7 7 4 6 8 4 8 52

rank, Dm 4 7 6 1 4 0 1 5 28

top, D̂m 8 8 7 3 6 4 7 8 51

top, Dm 2 7 6 1 3 0 3 0 22

Table 13. Wins for k = 10 on 5 subfolds
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baseline 7 6 3 6 4 4 2 6 38

chi, D̂m 1 2 0 1 1 1 1 1 8

chi, Dm 2 6 1 5 1 2 2 3 22

random, D̂m 5 8 7 7 4 4 4 4 43

random, Dm 2 7 3 1 1 2 1 2 19

rank, D̂m 4 7 7 4 7 4 4 5 42

rank, Dm 4 7 6 4 6 4 2 5 38

top, D̂m 6 7 6 4 7 4 6 6 46

top, Dm 2 7 5 4 6 3 3 2 32

Table 14. Wins for k = 10 on 7 subfolds
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baseline 6 4 1 2 1 4 0 2 20

chi, D̂m 2 2 0 1 0 1 0 1 7

chi, Dm 4 6 2 1 1 2 0 2 18

random, D̂m 7 8 6 2 4 5 4 3 39

random, Dm 6 7 7 6 5 7 4 6 48

rank, D̂m 7 8 7 4 3 7 2 4 42

rank, Dm 4 7 6 3 1 1 0 1 23

top, D̂m 8 8 8 4 4 6 8 6 52

top, Dm 6 7 6 5 2 4 7 2 39

Table 15. Wins for k = 25 on 3 subfolds
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baseline 8 4 1 1 1 4 2 3 24

chi, D̂m 0 0 1 0 0 1 0 0 2

chi, Dm 4 8 1 1 2 6 2 4 28

random, D̂m 7 7 7 6 5 8 7 7 54

random, Dm 7 8 7 2 3 7 4 5 43

rank, D̂m 7 8 6 3 5 8 5 7 49

rank, Dm 4 7 2 0 1 0 1 2 17

top, D̂m 6 8 6 1 4 3 7 7 42

top, Dm 5 8 4 1 3 1 6 1 29

Table 16. Wins for k = 25 on 5 subfolds
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baseline 7 5 1 1 0 2 1 2 19

chi, D̂m 1 1 0 1 0 1 1 1 6

chi, Dm 3 7 1 1 0 2 2 3 19

random, D̂m 7 8 7 4 5 6 5 7 49

random, Dm 7 7 7 4 3 6 6 6 46

rank, D̂m 8 8 8 3 5 8 6 8 54

rank, Dm 6 7 6 2 2 0 1 5 29

top, D̂m 7 7 6 3 2 2 7 7 41

top, Dm 6 7 5 1 2 0 3 1 25

Table 17. Wins for k = 25 on 7 subfolds



k=50, sf=3 ba
se

lin
e

ch
i,
D̂

m

ch
i,
D

m

ra
nd

om
,
D̂

m

ra
nd

om
,
D

m

ra
nk

,
D̂

m

ra
nk

,
D

m

to
p,

D̂
m

to
p,

D
m

Σ

baseline 7 6 2 2 1 1 2 4 25

chi, D̂m 1 4 0 1 1 1 1 1 10

chi, Dm 2 4 1 0 0 0 1 2 10

random, D̂m 6 8 7 4 5 4 3 7 44

random, Dm 6 7 8 4 5 5 3 6 44

rank, D̂m 7 7 8 3 3 3 2 6 39

rank, Dm 7 7 8 4 3 5 2 6 42

top, D̂m 6 7 7 5 5 6 6 7 49

top, Dm 4 7 6 1 2 2 2 1 25

Table 18. Wins for k = 50 on 3 subfolds
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baseline 5 5 1 2 0 3 1 2 19

chi, D̂m 3 4 0 2 1 1 1 2 14

chi, Dm 3 4 1 2 1 3 2 3 19

random, D̂m 7 8 7 7 3 7 4 7 50

random, Dm 6 6 6 1 1 6 3 5 34

rank, D̂m 8 7 7 5 7 8 3 7 52

rank, Dm 5 7 5 1 2 0 1 5 26

top, D̂m 7 7 6 4 5 5 7 5 46

top, Dm 6 6 5 1 3 1 3 3 28

Table 19. Wins for k = 50 on 5 subfolds
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baseline 5 7 0 2 0 1 3 3 21

chi, D̂m 3 5 0 1 1 1 2 2 15

chi, Dm 1 3 1 1 0 1 2 2 11

random, D̂m 8 8 7 6 5 7 5 8 54

random, Dm 6 7 7 2 4 6 5 6 43

rank, D̂m 8 7 8 3 4 7 7 8 52

rank, Dm 7 7 7 1 2 1 2 6 33

top, D̂m 5 6 6 3 3 1 6 7 37

top, Dm 5 6 6 0 2 0 2 1 22

Table 20. Wins for k = 50 on 7 subfolds
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baseline 6 7 2 3 2 3 2 2 27

chi, D̂m 2 5 1 1 1 1 1 1 13

chi, Dm 1 3 0 1 0 1 1 1 8

random, D̂m 6 7 8 4 2 6 5 5 43

random, Dm 5 7 7 4 4 5 4 5 41

rank, D̂m 6 7 8 6 4 6 5 6 48

rank, Dm 5 7 7 2 3 2 3 3 32

top, D̂m 6 7 7 3 4 3 5 3 38

top, Dm 6 7 7 3 3 2 5 5 38

Table 21. Wins for k = 75 on 3 subfolds
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baseline 5 7 0 1 0 3 2 3 21

chi, D̂m 3 4 0 2 1 2 1 3 16

chi, Dm 1 4 0 0 0 1 1 1 8

random, D̂m 8 8 8 8 6 7 6 8 59

random, Dm 7 6 8 0 3 3 3 6 36

rank, D̂m 8 7 8 2 5 7 6 8 51

rank, Dm 5 6 7 1 5 1 1 6 32

top, D̂m 6 7 7 2 5 2 7 7 43

top, Dm 5 5 7 0 2 0 2 1 22

Table 22. Wins for k = 75 on 5 subfolds
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baseline 5 7 0 3 1 3 2 4 25

chi, D̂m 3 5 2 4 2 3 2 3 24

chi, Dm 1 3 0 0 0 1 2 1 8

random, D̂m 8 6 8 7 6 8 5 8 56

random, Dm 5 4 8 1 2 5 4 5 34

rank, D̂m 7 6 8 2 6 7 7 7 50

rank, Dm 5 5 7 0 3 1 2 3 26

top, D̂m 6 6 6 3 4 1 6 5 37

top, Dm 4 5 7 0 3 1 5 3 28

Table 23. Wins for k = 75 on 7 subfolds
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baseline 7 7 4 7 6 8 7 8 54

chi, D̂m 1 6 2 2 2 2 1 2 18

chi, Dm 1 2 0 2 2 2 2 3 14

random, D̂m 4 6 8 7 7 7 6 7 52

random, Dm 1 6 6 1 4 4 4 6 32

rank, D̂m 2 6 6 1 4 4 3 5 31

rank, Dm 0 6 6 1 4 4 4 4 29

top, D̂m 1 7 6 2 4 5 4 4 33

top, Dm 0 6 5 1 2 3 4 4 25

Table 24. Wins for k = 100 on 3 subfolds
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baseline 6 8 2 6 0 4 4 7 37

chi, D̂m 2 6 2 3 2 2 2 3 22

chi, Dm 0 2 0 0 0 1 0 1 4

random, D̂m 6 6 8 7 2 5 6 7 47

random, Dm 2 5 8 1 1 3 4 4 28

rank, D̂m 8 6 8 6 7 8 8 8 59

rank, Dm 4 6 7 3 5 0 3 6 34

top, D̂m 4 6 8 2 4 0 5 7 36

top, Dm 1 5 7 1 4 0 2 1 21

Table 25. Wins for k = 100 on 5 subfolds
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baseline 5 7 2 4 3 4 4 6 35

chi, D̂m 3 8 1 3 2 3 4 5 29

chi, Dm 1 0 0 1 0 1 1 1 5

random, D̂m 6 7 8 7 3 6 6 7 50

random, Dm 4 5 7 1 1 6 6 7 37

rank, D̂m 5 6 8 5 7 7 5 7 50

rank, Dm 4 5 7 2 2 1 3 8 32

top, D̂m 4 4 7 2 2 3 5 5 32

top, Dm 2 3 7 1 1 1 0 3 18

Table 26. Wins for k = 100 on 7 subfolds


