Structural Pruning of
Sum-Product Networks

Vereinfachen der Struktur von Sum-Product Networks
Bachelor thesis by Alexander Lind
Date of submission: February 21, 2021

1. Review: Eneldo Loza Mencia
2. Review: Moritz Kulessa
Darmstadt

TECHNISCHE
UNIVERSITAT
DARMSTADT

Computer Science
Department

Knowledge Engineering
Group

Erklarung zur Abschlussarbeit gemaf
§22 Abs. 7 APB TU Darmstadt

Hiermit versichere ich, Alexander Lind, die vorliegende Bachelorarbeit gemaél3
§22 Abs. 7 APB der TU Darmstadt ohne Hilfe Dritter und nur mit den angegebenen Quellen
und Hilfsmitteln angefertigt zu haben. Alle Stellen, die Quellen entnommen wurden, sind
als solche kenntlich gemacht worden. Diese Arbeit hat in gleicher oder dhnlicher Form
noch keiner Priifungsbehorde vorgelegen.

Mir ist bekannt, dass im Falle eines Plagiats (§38 Abs. 2 APB) ein Tauschungsversuch
vorliegt, der dazu fiihrt, dass die Arbeit mit 5,0 bewertet und damit ein Priifungsversuch
verbraucht wird. Abschlussarbeiten diirfen nur einmal wiederholt werden.

Bei einer Thesis des Fachbereichs Architektur entspricht die eingereichte elektronische
Fassung dem vorgestellten Modell und den vorgelegten Planen.

Darmstadt, 21. Februar 2021

Alexander Lind

Abstract

We developed a basic algorithm, demonstrated the feasibility of post-pruning large Sum-
Product Networks and improved their inference runtime. In particular, we show that
the number of parameters for a larger model strongly reduces while maintaining the log-
likelihood. Furthermore, the proposed pruning method merely operates on Sum-Product
Network structures and does not require additional data. Especially applications with
restricted memory requirements benefit from the lean structural representation of Sum-
Product Networks. Moreover, it is observed that industries transition to smaller devices
with limited computational resources. Our method merges highly correlating leaf nodes
to a single leaf node with minimal log-likelihood decrease. In this context, this thesis
evaluates two initial SPN structures created by the Learn-SPN algorithm on real-world data
sets utilizing benchmark evaluation metrics. Furthermore, we highlight the connection
between the initial SPN structures and post-pruned SPNs in relation to their model quality
and quantity. Finally, we present the limitations while also giving an outlook on promising
improvements to our approach.

Zusammenfassung

In dieser Arbeit wurde ein Algorithmus fiir das Kiirzen von Sum-Product Networks entwi-
ckelt und demonstriert, dass es moglich ist, grofsere Modelle nachtréaglich zu verkleinern
und somit deren Geschwindigkeit fiir die Entscheidungsfindung verbessert. Insbesondere
zeigen wir, dass sich die Parameteranzahl besonders bei grof3eren Modellen stark vermin-
dern lasst, wahrend die Log-Likelihood beibehalten bleibt. Das vorgeschlagene Verfahren
nutzt lediglich die Strukturen von Sum-Product Networks aus, sodass keine zuséatzlichen
Daten fiir das Kiirzen benotigt werden. Gleichzeitig haben simplere Strukturen einen wirt-
schaftliche Vorteile, da diese im Gegensatz zu anderen Wissensreprédsentationen, weniger
Speicherplatz benoétigen. Aulderdem zeigt sich, dass Industrieunternehmen zunehmend
kleinere Endgeréte entwickeln, wéhrend die Grof3e von Modellen zur Entscheidungsfin-
dung zunimmt. Die vorgestellte Methode kombiniert stark korrelierende Blattknoten zu
einem einzelnen Blattknoten zusammen wobei die Log-Likelihood geringfiigig abnimmt.
In diesem Kontext werden in dieser Bachelorarbeit zwei SPN-Strukturen, die durch den
Learn-SPN-Algorithmus erstellt wurden, mittels gédngiger Bewertungsmethoden anhand
praxisnaher Datensdtze evaluiert. Des Weiteren soll das Zusammenspiel zwischen den
genannten SPN-Strukturen und den gekiirzten Strukturen hinsichtlich ihrer Giite und
Quantitat hervorgehoben werden. Zum Abschluss préasentieren wir die Einschrankungen
sowie Vorschlage fiir erfolgversprechende Erweiterungen unseres Ansatzes.

Contents

1. Introduction

2. Background
2.1. Decision Trees.
22, Pruning
2.2.1. Pre-pruning
2.2.2. Post-pruning
2.3. Sum-Product Networks
2.3.1. Structure
2.3.2. Evaluation.
2.4. Structure Learning
2.4.1. Learn-SPN.
2.4.2. Learn-MSPN

3. Related Work

4. Pruning for Sum Product Networks

4.1. Sum Product-Network with alternating Structure
4.2. Simple Post-Pruning Algorithm for Sum-Product Networks

4.2.1. Merge similar Leaf Nodes . .
4.2.2. Integrate Merge Candidates .

4.3. Reduction in Parameter by merging similar leafnodes

5. Evaluation and Experiments
5.1. Evaluation Metrics
52. Datasets
53. Setupo

5.4. Influence of the Parameters on the Learned Structures

5.5. Evaluation of SPA-SPN
5.5.1. NLTCS dataset
5.5.2. MSNBCdataset
55.3. KDDdataset
5.5.4. Plantsdataset
5.5.5. Netflixdataset

6. Conclusion and Future Work

A. Appendix
A.1. Description of Figures

A.2. Initial structures with rdc decomposition

A.3. Pruned structures evaluated on CMLL

1"

13
13
14
15
16
17
18
19
19
20
21

23

26
27
29
31
33
36

38
38
39
41
42
45
46
49
53
55
57

60

65
65
65
66

List of Figures

2.1.
2.2.
2.3.
2.4,

4.1.
4.2.
4.3.
4.4.

5.1.

5.2,

5.3.

5.4.

5.5.

5.6.

5.7.

5.8.

5.9.

5.10.

5.11.

5.12.

5.13.

5.14.

5.15.

Sampledata e e
Decision tree modeling sampledata
Example of an alternating Sum Product-Network
The left side shows pseudo-code for the LearnSPN framework.

The right side shows the decomposition and conditioning steps for a data
MATIX. .« v v v v e

Sum Product-Network structure example
Sum Product-Network structure disjoint scope example
Sum Product-Network structure
A pruned Sum Product-Network structure

NLTCS initial SPN structures generated by Learn-MSPN and column pa-
rameter SettordC e e e
MSNBC initial SPN structures generated by Learn-MSPN and column
parameter set to rdC e e e e
NLTCS data set evaluated on avg. LL, pruned with SPA-SPN and rdc as the
initial parameter L. e e e e e
NLTCS data set evaluated on number of edges, pruned with SPA-SPN and
rdc as the initial parameter.
NLTCS data set evaluated on avg. LL, pruned with SPA-SPN and skips as
the initial parameter
NLTCS data set evaluated on avg. LL, pruned with SPA-SPN and skips as
the initial parameter e
MSNBC data set evaluated on avg. LL, pruned with SPA-SPN and rdc as
the initial parameter o
MSNBC data set evaluated on number of edges, pruned with SPA-SPN and
rdc as the initial parameter L. L oL,
MSNBC data set evaluated on avg. LL, pruned with SPA-SPN and skips as
the initial parameter
MSNBC data set evaluated on avg. LL, pruned with SPA-SPN and skips as
the initial parameter
KDD data set evaluated on avg. LL, pruned with SPA-SPN and rdc as the
initial parameter e e e e e e
KDD data set evaluated on number of edges, pruned with SPA-SPN and
rdc as the initial parameter L.,
KDD data set evaluated on avg. LL, pruned with SPA-SPN and skips as the
initial parameter
KDD data set evaluated on avg. LL, pruned with SPA-SPN and skips as the
initial parameter L L. e e e e e
plants data set evaluated on avg. LL, pruned with SPA-SPN and rdc as the
initial parameter e e

5.16.

5.17.

5.18.

5.19.

5.20.

5.21.

5.22.

Al

A2,

A3.

A4,

AS.

A.6.

A7.

A.8.

A9.

A.10.

A.11.

A.12.

A.13.

plants data set evaluated on number of edges, pruned with SPA-SPN and
rdc as the initial parameter L. L.
plants data set evaluated on avg. LL, pruned with SPA-SPN and skips as
the initial parameter oL
plants data set evaluated on avg. LL, pruned with SPA-SPN and skips as
the initial parameter
Netflix data set evaluated on avg. LL, pruned with SPA-SPN and rdc as the
initial parameter e e
Netflix data set evaluated on number of edges, pruned with SPA-SPN and
rdc as the initial parameter. 0.
Netflix data set evaluated on avg. LL, pruned with SPA-SPN and skips as
the initial parameter e
Netflix data set evaluated on avg. LL, pruned with SPA-SPN and skips as
the initial parameter o

KDD initial SPN structures generated by Learn-MSPN and column param-
etersettordc e e e e e
Plants initial SPN structures generated by Learn-MSPN and column pa-
rameter SettordC e e e e e e e e
Netflix initial SPN structures generated by Learn-MSPN and column pa-
rameter SettordC e e e e
NLTCS data set evaluated on CMLL-30, pruned with SPA-SPN and rdc as
the initial parameter e
NLTCS data set evaluated on CMLL-60, pruned with SPA-SPN and rdc as
the initial parameter
MSNBC data set evaluated on CMLL-30, pruned with SPA-SPN and rdc as
the initial parametero
MSNBC data set evaluated on CMLL-60, pruned with SPA-SPN and rdc as
the initial parameter e
KDD data set evaluated on CMLL-30, pruned with SPA-SPN and rdc as the
initial parameter e e e e
KDD data set evaluated on CMLL-60, pruned with SPA-SPN and rdc as the
initial parameter e e e e e
Netflix data set evaluated on CMLL-30, pruned with SPA-SPN and rdc as
the initial parameter Lo
Netflix data set evaluated on CMLL-60, pruned with SPA-SPN and rdc as
the initial parameter oo
plants data set evaluated on CMLL-30, pruned with SPA-SPN and rdc as
the initial parameter L oo oo
plants data set evaluated on CMLL-60, pruned with SPA-SPN and rdc as
the initial parameter

List of Tables

5.1. Statisticsof datasets o o oo
5.2. Table containing statistics of initial SPN structures generated with Learn-
MSPN and the column parameter set to skips

List of Algorithms

1. LearnSPN(D,V) o i e e e e e e
2. SPA-SPN(G, K,) « v o o e e e e e
3. mergeLeafs(Prm, £) - « o o i i e e e e e e e

Glossary

mis min instance slice. 22, 41-52, 54, 55, 58, 59, 65
rdc-threshold rdc-threshold. 22, 41-43, 45-47, 55
th threshold. 42, 45-49, 53-59

ACMN arithmetic circuit Markov networks. 23

avg. LL average Log-Likelihood. 38, 39, 43, 45-49, 52-56, 58, 59, 65
CMLL conditional marginal Log-Likelihood. 39

JSD Jensen-Shannon divergence. 31, 42, 45

KLD Kullback-Leibler divergence. 31

Learn-MSPN Learning Mixed Sum-Product Networks. 21, 22, 29, 41-45, 52, 57, 60, 65,
66

RDC randomized dependency coefficient. 21, 22

SPA-SPN Simple Post-Pruning Algorithm for Sum-Product Networks. 29, 31-33, 38, 39,
41, 42, 45, 47-52, 54-60

SPN Sum-Product Network. 11-13, 17-39, 41-60, 65, 66

TDIDT Top-Down Induction of Decision Trees. 15

10

1. Introduction

The principle of Occam’s Razor implies that if there are two competing theories, one should
focus on the simpler one. This concept often entails useful applications in the field of
computer science and represents the main idea behind a variety of essential algorithms
such as boosting, bagging, and pruning algorithms (Zhou, 2015; Patel and Upadhyay, 2012).
For example, pruning methods for decision trees commonly incorporate the idea of Occam’s
razor as a heuristic to determine a decision tree that gives a simpler explanation (Patel
and Upadhyay, 2012). Generally, pre-pruning methods induce an efficient and accurate
decision tree from a collection of examples. However, decision trees generated by these
methods often lead to overly complex models. Initial research by Quinlan (1987) focused
on pruning algorithms for decision trees in order to discover simpler models. In the same
way, previous research applied pruning to various tree-structured models, including graphs,
e.g., Markov Networks, Sum-Product Networks (SPNs), or Bayesian Networks (Pedersen
and Stork, 1996; Gogate, Webb, and Domingos, 2010).

The observed information in real-world problems is commonly limited and contains noise
introducing uncertainty in data. In fact, the noise in data results from the error in mea-
surement or subjective judgments. Generally, decision trees do not consider uncertainty in
the observed information for reasoning and decision making (Costa, Verwer, and Blockeel,
2013; Patel and Upadhyay, 2012). In contrast, Probabilistic Graphical Models (PGMs)
explain and reason uncertainty in data. PGMs utilize an intuitive representation of random
variables to represent the underlying distribution of the given observations. Moreover, the
graph-based representation of PGMs allows to model the interactions between an extensive
collection of random variables by using probability distributions. As a result, PGMs model
complex probabilistic models consisting of simple components to answer simple queries.
The interaction of variables modeled by PGMs allows them to infer missing values for a given
evident value by utilizing the joint probability. However, PGMs such as Bayesian Networks
and Markov Networks often use an approximation to represent the joint probability. This
approximation comes with an increased computational cost and can reach an exponential
level in the worst case (Gogate, Webb, and Domingos, 2010).

Poon and Domingos (2011) introduced Sum-Product Networks (SPNs), uniting the ideas of
deep learning and PGMs. An SPN’s structure attempts to represent a probability distribution
of a given data set compactly by sums and products of individual random variables. The
benefit of using SPNs is that the computation of the joint distribution is linear in time
depending on the size of its edges (Poon and Domingos, 2011). Initial research on SPNs
focused on learning the structure of an SPN for a given data set. The learned structures
showed increased accuracy and inference speed compared to PGMs (Gens and Domingos,
2013) and performed better than SPN structures designed by hand (Dennis and Ventura,
2012). Apart from this, SPNs incorporate structure learning methods by utilizing condition-
ing and decomposition steps to learn an SPN structure for a given data set. For example,
SPNs recreate speech from noisy frequencies by artificially extending the bandwidth of
signals (Lowd and Rooshenas, 2013). Nonetheless, the resulting Sum Product-Networks’

1

increased performance has the disadvantage of increased computational cost due to its
large size in parameters (Lowd and Rooshenas, 2013). As a result, post-processing methods
that remove redundancies in SPN structures while improving inference speed and memory
requirements are a promising research topic. For example, lower memory requirements
and faster inference enable real-time applications with low bandwidth and critical timing
requirements. It should be noted that people working in the field of artificial intelligence
have evolved a growing concern for the interpretability of machine learning models. As a
result, there is a lot of discussion about finding better solutions to interpret a vast set of
algorithms (Rudin, 2018). Consequently, removing redundant structures within an SPN
leads to simpler models that are easier to interpret by experts.

In this context, this thesis introduces a post-pruning method for Sum-Product Networks
(SPNs) aiming to reduce its number of parameters. Therefore, Chapter 2 gives a detailed
description of decision trees and SPNs. While focusing on pruning methods, the individual
models’ similarities and differences are outlined, such as giving a detailed introduction
into structure learning for SPNs. The Chapter 3 introduces the most important work for
pre-pruning methods for SPNs just as highlighting crucial methods to enable post-pruning.
Subsequently, the Chapter 4 revolves around the idea of post-pruning by finding similarities
and redundancies within SPNs. Especially, we assume that similar structures within an
SPN can be merged while the introduced performance loss is insignificant. In addition
to this, we show a method for retaining a valid SPN structure such that the properties of
a fast computation hold. To demonstrate the benefits of post-pruning SPNs, Chapter 5
compiles the most important results and steps to reproduce our findings. Moreover, the
approach is empirically evaluated on five different data sets, including binary variables, just
as utilizing various evaluation metrics. In order to prune an SPN, the Learn-MSPN (Molina,
Vergari, Mauro, et al., 2018) algorithm creates distinct initial structures. Finally, we discuss
the impact and limitations of using this approach and give an outlook for potential future
work.

12

2. Background

This chapter starts with the general structure of decision trees limiting to the domain of
classification, introduced in Section 2.1. The pruning Section 2.2 gives a general explana-
tion of its approach and objectives. Furthermore, it outlines the differences in pre- and
post-pruning methods in Subsections 2.2.1 and 2.2.2. The following Section 2.3 gives a
comprehensive introduction to Sum Product-Networks covering its structure, evaluation
and introducing structure learning. Additionally, the structure learning Sections 2.4, 2.4.1,
and 2.4.2 describe novel frameworks to induce SPNs from data. The sections also highlight
the relationships between pre-pruning methods for decision trees and structure learners
for SPNs. Finally, this chapter provides the fundamental tools to implement post-pruning
methods for decision trees to SPNs.

2.1. Decision Trees

A decision tree consists of edges, leaves, and nodes as well as a root node. The internal
nodes represent rules that test the condition of a feature for its value. The edges are labeled
by feature values and connect individual nodes, starting at the root node. Furthermore, the
branches of a node represented by the edges to its child nodes indicate a rule’s outcome.
In the end, a leaf node labels a class and represents the prediction associated with the
given input values. For example, Table 2.1 contains a collection of samples in each row.
The table columns represent three features { Weather, Temperature, Wind} and a class label
Hike. Whether a family should go outside for a hike can be assessed by individual values of
the features. The Weather can be Sunny, Cloudy, or Rainy, the Temperature can be Hot,
Cold, or Mild, and the Wind blows either Strong or Weak.

13

Figure 2.1.: Sample data

Features Class
Weather Temperature Wind Hike C' udy
Sunny Hot Strong Yes ‘ h
Cloudy Hot Weak Yes ‘ b ‘ b
Rainy Cold Weak No —

Sunny Mild Weak Yes "

Sunny Cold Weak Yes ‘ 6
Cloudy Mild Strong No

Cloudy Hot Weak Yes Figure 2.2.: This Figure shows a decision
Rainy Hot Weak Yes treethat predicts the sample data in Table
Rainy Mild Weak Yes 2.1whether afamily should go for a hike.
Rainy Mild Strong No

Sunny Mild Strong Yes

The decision tree in Figure 2.2 outlines the decision-making process about whether or
not a family should go on a hike together. It evaluates the input values in a top-down
fashion by checking the individual rules. For example, on a mild and rainy day, the wind is
blowing strong, which means that the decision tree takes the values Rainy, Mild, Strong.
The generation of the decision tree starts at the root node. The root node checks the
Weather feature’s value and propagates the remaining values (Mild, Strong) to its child
node through the edge with the value Rainy. The node with the Temperature feature
evaluates the value Mild and forwards the Strong value to the node with the label Wind.
Finally, branching the Strong value to the leaf node and its class predicts that a family
should not hike.

2.2. Pruning

Generally, pruning for decision trees aims to reduce the set of nodes, edges, and leaves in
the tree while maintaining its accuracy in classifying examples. Pruning divides into two
different categories, pre-, and post-pruning. Pre-pruning is applied during the construction
of trees, while post-pruning resizes an existing tree to reduce parameters. Pre-pruning
methods utilize a data set to generate the structure of a tree. It includes an early stopping
criterion that controls the expansion of a tree. A branch stops to extend as soon as the
decision tree only improves insignificantly.

Post-pruning operates on an existing tree and reduces the set of parameters while maintain-
ing its performance. It utilizes heuristics to decide whether the replacement, insertion, or
removal of a parameter is reasonable. Hence, post-pruning reduces the size of parameters
in a tree structure. Both approaches try to find a simpler solution to a model while retaining
its semantics and performance. Reducing the set of parameters offers faster computation
and lower memory requirements while evaluating an example. Previous research applied

14

the concept of pruning methods to various other types of machine learning methods, e.g.,
Neural Networks, Boltzmann networks, and hidden Markov models, as shown in Augasta
and Kathirvalavakumar (2011) and Pedersen and Stork (1996).

For example, there are 10'?" possibilities to play a chess game, which a structured, directed
tree can represent. The nodes model chess moves and the edges between the nodes
represent valid moves. As the players pick moves, both players look for the optimal moves
to win the chess game. Instead of evaluating all possible moves to win a game, heuristics can
reduce the search space and find an optimal strategy for winning. One particular approach
is introduced by Knuth and Moore (1975) called the alpha-beta pruning algorithm that
tries to calculate an optimal strategy for winning the game. The idea is to discard a chess
move strategy once it is proven to be inferior to alternative strategies. Thus, eliminating
unfavorable strategies leads to reduced search space. The following sub-sections explain
the approaches to obtain decision trees with a reduced set of parameters.

2.2.1. Pre-pruning

Pre-pruning algorithms limit the number of parameters during the construction of a decision
tree. A prominent framework to induce a decision tree by a set of examples is introduced
by Queyranne (1998). The Top-Down Induction of Decision Trees (TDIDT) algorithm is
a top-down approach and falls into the pre-pruning methods category. TDIDT follows
the divide and conquer paradigm by dividing the problem of generating a decision tree
into smaller analytical units until each subproblem can be solved directly. It starts at the
root node and inputs a data set consisting of variables and a collection of examples. The
general framework incorporates two crucial steps for generating the decision tree. First,
an attribute is selected to split the given data set by its attributes. The selected attribute
represents a rule and generates a branch from the node for all possible outcomes. Then,
the data instances are split based on the selected attribute outcomes, and each subset falls
into the respective branch. These two steps are repeated for each branch until all instances
have the same class.

The attribute selection is essential to growing simpler trees since it affects the attribute
splits in subsequent nodes. Thus, the attribute selection to choose the optimal attribute split
requires a measure of quality. Ideally, the selected attribute generates branches that split
data instances with mostly a single class. But it should be noted that finding an optimal
tree structure for a large number of values is challenging. For this reason, pre-pruning
methods incorporate heuristics to limit the generation of branches. The heuristic functions
as a test to measure the statistical significance between the attributes at a node. Its goal is
to find attributes that are significant to the associated classes. The following paragraphs
introduce various methods that select the appropriate attribute for a node.

ID3 developed by Queyranne (1998) is a top-down pre-pruning method. ID3 aims to select
an attribute split that partitions the data instances into separate sets with similar classes.
ID3 aims to select an attribute split that partitions the data instances into separate sets
with similar classes. First, all possible attribute splits for a node are obtained, yielding pairs
of subsets. A significance measure compares the individual subsets for each attribute split.
ID3 uses entropy to calculate the significance within individual subsets of data instances.

15

Entropy is the amount of information represented by a collection of examples. In case
that a collection of examples have the same class, the represented information is low. In
contrast, when a collection of examples have different classes, the obtained information is
high. Consequently, the objective is to split by attributes that minimize the entropy in each
subset of data instances. For this, ID3 compares the average entropy by the subset of data
instances from the resulting split with the original data instances’ entropy. After comparing
these values one receives the so-called information gain and the attribute split-step selects
the attribute which maximizes it. Intuitively, the Information Gain reveals how much more
classes a branch holds as opposed to its parent node. Furthermore, this algorithm splits
unrelated attributes in each node and therefore leads to simpler decision trees (Queyranne,
1998).

However, one common problem of incorporating early stopping criterion is known as the
horizon effect. The horizon effect terminates further induction of the tree too early, thereby
avoiding promising attribute splits. There exist various methods to select the attribute to
split. For example, exhaustive search, Gini coefficient, gain ratio, minimum description
length, and chi-squared values, e.g., Pessimistic Error Pruning (PEP) and minimum-error
pruning (Mansour, 1997; Frank, 2000).

2.2.2. Post-pruning

Post-pruning algorithms reduce the set of parameters for a given decision tree by inserting,
removing, or replacing nodes and edges. The post-pruning framework first creates a
tree that describes all possible attribute interactions. Then it tries to simplify the tree by
removing redundant and non-critical sections of the decision tree. The replacement of the
sub-tree that yields the best-estimated performance is selected to simplify the tree. This
process repeats until a replacement leads to an insignificant performance increase. There
exist two types of post-pruning methods called subtree replacement and subtree raising.
Both methods consider a part of the decision tree given by a subtree. Subtree replacement
selects a subtree and tries to replace it with a leaf node. Hence, this method declares a
class label as a generalization of the respective subtree. In contrast, subtree raising selects
a subtree and replaces it with the child node. The child node replaces the subtree, which
indicates that the internal nodes represent unnecessary attribute interactions that a smaller
set of variables can represent.

C4.5, introduced by Quinlan (1993), is a simple post-pruning algorithm for decision trees
that uses the subtree replacement method. It is a bottom-up algorithm and an extension of
the ID3 algorithm. Furthermore, C4.5 inputs an initial decision tree with every permutation
of attribute interactions. Note that the post-pruning method can input arbitrary decision
trees. The core idea of C4.5 is the assumption that a subset of examples from the given
training set is misclassified by the given decision tree. This assumption gives a confidence
interval as a pessimistic error rate that assists as a heuristic. Thus, a node replaces its
subtree if the respective subtree’s error estimate is lower than the node’s estimated error.
For a selected subtree, the error estimate is the weighted sum of error estimates in its
descendant nodes. Intuitively, the pessimistic error rate has no confidence in the initial
decision tree predictions since it estimates the error in the given data to be higher. A
prominent extension of C4.5 is the Reduced error pruning (REP) algorithm (Quinlan,

16

1987). It utilizes a validation set that is a subset of the training data and tries to improve
the decision tree’s performance. Given a decision tree that classifies all examples in the
training set as input parameters. REP replaces each node with a leaf node and chooses the
class as a replacement that leads to an overall performance improvement of the decision tree
(Elomaa and Kéaridinen, 2001). This process repeats until the decision tree’s performance
is decreasing according to evaluation on the validation data. The advantage of subtree
replacement methods is the low complexity since each node is evaluated at most once
(Elomaa and K&aridinen, 2001).

Typically, subtree replacement methods for post-pruning work in a bottom-up fashion to
replace a subtree by a single leaf node, e.g., Cost-Complexity Pruning (CCP), Critical Value
Pruning (CVP), and Minimum Error Pruning (MEP) (Breiman et al., 1984; Mansour, 1997;
Patel and Upadhyay, 2012, pg.66). The subtree raising methods for post-pruning are, for
example, Error-Based Pruning (EBP), based on PEP, which is explained in detail in Patel
and Upadhyay (2012).

2.3. Sum-Product Networks

SPNs are probabilistic graphical models first introduced by Poon and Domingos (2011)
and combine deep learning with graphical models. SPNs represent structured directed
acyclic graphs with sums and products as internal nodes connected by edges and leaf nodes
modeling probability distributions over random variables. Furthermore, the nodes are
connected by directed edges, and sum nodes connect weighted edges to their children’s
nodes. Like Bayesian and Markov Networks (Gogate, Webb, and Domingos, 2010), a SPN
is modeling and reasoning uncertainty aiming to solve the unsupervised task of density
estimation. SPNs model a compact representation of the distribution for a given data
set by learning an estimator of the joint probability distribution over a set of variables
(Gens and Domingos, 2013; Poon and Domingos, 2011). Compared to other probabilistic
graphical models, an SPN structure allows computing the exact inference efficiently (Poon
and Domingos, 2011). More precisely, the inference is the task of concluding the chance
over a set of random variables. As a result, the complexity of calculating the joint probability
is linear to the number of edges within a SPN (Poon and Domingos, 2011). Furthermore,
the joint probability distribution is sufficient to calculate other statistical queries, e.g., the
marginal and conditional probability. This allows SPNs to solve difficult tasks for various
domains, e.g., speech recognition (Nicolson and Paliwal, 2020), language modeling (Cheng
et al., 2014), or image classification (Sguerra and Cozman, 2016). For example, Poon and
Domingos (2011) showed that SPNs are capable of predicting missing values by imputing
missing pixels of an image. For example, SPNs complete tasks such as predicting missing
values, e.g., performing image completion by imputing missing pixels of an image, as shown
by Poon and Domingos (2011).

This chapter gives an introduction to Sum Product-Networks, focusing on the methods
to learn the structure of an SPN from data. The following Subsection 2.3.1 presents the
structure which gives a formal definition to Sum Product-Networks. Subsection 2.3.2
introduces the procedures for evaluating the probability of an SPN. Finally, the Subsections

17

2.4.1 and 2.4.2 introduce the framework to learn the structure of an SPN for a given data
set.

2.3.1. Structure

An SPN structure is defined by sum, product, and indicator nodes as the leaf nodes. The
leaf node of an SPN represents a random variable estimated by a probability function (Poon
and Domingos, 2011). Moreover, the random variable allows to model distributions over
different domains, e.g., continuous, categorical, or discrete variables. Additionally, a node’s
scope denotes the set of all random variables captured in all subsequent child nodes. As an
example, the Figure 2.3 shows an SPN structure given by a sum node s as the root node.
An SPN can be defined recursively:

¢ A tractable univariate distribution is an SPN
* A product of SPNs with disjoint scopes is an SPN

* A weighted sum of SPNs with the same scope is an SPN, provided all weights are
positive and sum to 1

Furthermore, this work adopts the definition by Poon and Domingos (2011) of valid SPNs.
An SPN is defined as decomposable if the set of scopes for all children nodes of a product
node are disjoint. An SPN is complete if all children nodes of a sum node have the same
scope. An SPN is valid if it is decomposable and complete, which is assumed for the SPNs

in this thesis.

o 25 025 025

“ “ @@@@ z

”)_o

. @
ICEeTTTeITTTT

Figure 2.3.: This Figure shows SPN with a sum node sy as the root node. Each node’s
character prefix represents a node’s type, either by p, s, or v representing product, sum, and
leaf nodes, respectively. The suffix distinguishes different nodes from the same type by
its scope. For leaf nodes, the suffix has two digits. The first digit indicates the scope of a
leaf node. The second digit identifies individual leaf nodes. For example, the parent node
of the leaf node v, with scope 0 is pg, and the parent node of the leaf node vy3 with scope
0 is ps. The leaf nodes vy and vp3 have the same scope, but their respective probability
distributions differ.

18

2.3.2. Evaluation

The leaf nodes of an SPN model probability distributions and its scope corresponds to
a random variable. For example, the leaf nodes vyy and wvp; in Figure 4.4 define the
same scope of 0 but differ in their probability distribution. Molina, Vergari, Mauro, et al.
(2018) utilizes frequency distributions in the case of discrete random variables as leaves.
Furthermore, the leaf nodes represent piecewise linear distributions to model continuous
random variables (Molina, Vergari, Mauro, et al., 2018). In this thesis, we limit the leaf
nodes of SPNs representing binary variables estimated with frequency distributions. To
calculate the probability for a given configuration of input variables, an SPN evaluates
the probability of its children nodes according to the operation given by its type. A leaf
node evaluates its probability distribution by calculating the chance for a given event
represented as an input value. Moreover, a sum node calculates the weighted sum of its
children nodes, representing a mixture of dependent distributions. Furthermore, a product
node evaluates the product of its children nodes, representing statistical independent
distributions. Finally, an SPN evaluates a given set of input values for each random variable
by evaluating the SPNs from the leaf nodes to the root node. The root node represents
the joint probability distribution of the given input values in its descendant nodes. In this
context, the joint probability is sufficient to calculate other statistical distributions, e.g.,
calculating the marginal distribution by imputing missing values. Thus, an SPN evaluates
a given partial configuration of input values by marginalization, and the sum of partial
configurations can compute the conditional probabilities. The marginal, conditional, and
joint probability distributions evaluate in linear time dependent on the size of the SPN
(Rooshenas and Lowd, 2014). Calculating the marginal and conditional probabilities
in graphical models like Bayesian and Markov networks is usually intractable for larger
treewidth (Paris, Sdnchez-Cauce, and Diez, 2020; Gogate, Webb, and Domingos, 2010).
Thus, SPNs have the advantage of a fast computation for inference tasks compared to other
graphical models. The SPN structure allows to model a more complex distribution over
many variables by utilizing a mixture of simpler distributions.

2.4. Structure Learning

The goal of structural learning for Sum-Product Networks is to find the optimal or near-
optimal graph of an SPN. It incorporates methods from parameter learning for Sum-Product
Networks, aiming to find the optimal parameters of an SPN for a given graph and data set
(Poon and Domingos, 2011). There exist various approaches to learn the structure of an
SPN, depicted in the chapter 3. In general, the structure of an SPN can be learned for a given
data set compactly. The first structure learner is introduced by Poon and Domingos (2011).
Its goal is to generate a valid SPN structure by utilizing a given data set. This algorithm
starts with a valid and generic architecture of an SPN. Each instance of the data set is
processed by running inference on it and updating the edges’ weights. Standard methods
to perform weight updates are Expectation Maximization or gradient descent (Dempster,
Laird, and Rubin, 1977). This process terminates until a predefined convergence criterion
is met. A common convergence criterion is to terminate weight updates if the improvement
in likelihood concerning a validation set is insignificant. The resulting SPN is post-pruned

19

by removing zero-weight edges of all sum nodes. However, the initial generic structure of
an SPN must be created by hand, which requires domain knowledge. There exist various
algorithms that can learn the structure and weights of an SPN directly for a given data set
introduced in the next subsections.

2.4.1. Learn-SPN

The first framework to learn the SPN structure for a given data set is introduced by Gens
and Domingos (2013). Given a training data set D and a set of variables V', LearnSPN
creates an SPN representing a distribution over V' learned from D. The algorithm inputs a
data matrix including rows and columns. The rows of the data matrix represent instances
of D, and each column represents a variable of V. Previous work commonly used the
LearnSPN framework, and various methods adapted the methods for splitting RVs and
instances into subsets. Splitting instances assigns each instance to its most probable cluster.
Each step of LearnSPN locally maximizes the posterior probability of the sub-SPN over the
instances and variables. For example, the Expectation Maximization algorithm (Dempster,
Laird, and Rubin, 1977) clusters data instances as shown in Gens and Domingos (2013).
By which variables to split can be chosen by using a mutual information criterion to detect
statistical dependence. Furthermore, a mutual information criterion measures the similarity
between distributions since similar distributions are statistically independent. For example,
Queyranne’s algorithm (Queyranne, 1998) finds variable splits of two subsets with minimum
empirical mutual information.

Algorithm 1: LearnSPN(D,V)

Data: set of instances D and set of variables V

Result: an SPN representing a distribution
over V learned from instances D

if |V| = 1 then ataset o,
return univariate distribution estimated Variables
from the variable’s values in D; §
else g
partition V into approximately ReCUISE evendonce Noindependence Reeurse
independent subsets V;; ®/ \‘@)

if success then
return [[, LearnSPN (D, Vj);
else
partition D into subsets of similar Variables 4 ,
: creal&lzvl!m-i\:-ariale Variables
instances D;; distribution

return) , |‘DDZ'|| LearnSPN (D;,V);

Instances
Instances

end
end

Figure 2.4.: The left side shows pseudo-code for the LearnSPN framework.
The right side shows the decomposition and conditioning steps for a data matrix.

20

The Figure 2.4 depicts the LearnSPN algorithm. Its goal is to grow a tree top-down by
splitting the input data matrix by variables and instances. The Figure 2.4 visualizes the
general framework of LearnSPN. The LearnSPN algorithm inputs a data matrix consisting
of data instances D as rows and variables V as columns. In each iteration, the data matrix
is either split among variables or data instances. Following, splitting a data matrix by
variables is referred to as the decomposition step, depicted on the illustration’s left side.
Splitting a data matrix by data instances is called the conditioning step, shown on the
illustration’s right side. The LearnSPN algorithm starts at the root node with an initial
data matrix. An independent statistical criterion determines whether to split the given
data matrix by instances or variables. The decomposition step splits the variables V' into a
sub-set of variables tested for statistical independence. Note that the decomposition step is
similar to the attribute split step for decision trees in the subsection 2.1, which tries to find
the optimal attribute to split by. For the decomposition step, a mutual information criterion
approximates the statistical independence between variables. The case of approximately
independent subsets of variables results in generating a product node. Thus, the product
node splits approximately independent variables. An edge connects the individual variable
subsets to the generated product node, and LearnSPN recurses on each subset. In contrast,
when the mutual information criterion is not satisfied, the conditioning step is initiated.
The conditioning step clusters the data instances into subsets with similar instances. This
case generates a sum node that connects each cluster by an edge, including a weight.
The proportion of instances falling into a cluster indicates the weight of the associated
edge. Hence, the sub-populations of a sum node represent dependent variables, and
each sub-population contains similar instances. Furthermore, LearnSPN recurses on each
sub-population of the sum node. In case that the data matrix contains a single variable
V, a leaf node is created. The leaf node represents a univariate distribution estimated
over the respective instances D. Following, creating a leaf node refers to the base case,
depicted in Figure 2.4, illustrated as the case of a single column. During the conditioning
and decomposition step, the LearnSPN framework recurses each subset of the data matrix.
Hence, the algorithm is guaranteed to terminate, which ultimately leads to the base case.

2.4.2. Learn-MSPN

Molina, Vergari, Mauro, et al. (2018) introduced a pre-pruning algorithm for learning
the structure of SPNs for hybrid domains. The Learning Mixed Sum-Product Networks
(Learn-MSPN) algorithm enhanced the LearnSPN framework by modeling multivariate
distributions over hybrid domains. Furthermore, Learn-MSPN automates selecting the
parametric form of the random variables. This automation makes it easier for its users
since they do not have to manually choose the distribution type. It can approximate any
distribution from a mix of statistical types, e.g., continuous, discrete, or categorical distribu-
tions. As a result, Learn-MSPN follows the same paradigm as the LearnSPN framework by
utilizing decomposition and conditioning steps, which lead to the base case. Moreover, the
decomposition step of Learn-MSPN incorporates the independence measure randomized
dependency coefficient (RDC), which applies to any statistical type of random variable. The
RDC tests the independence between a subset of variables, which creates a product node
when the variables are approximately independent. In contrast, if the sub-set of variables
are not approximately independent, the conditioning step is used. The conditioning step

21

compares the similarity between subsets of data instances. This step is challenging for
data instances with different statistical types. Hence, the conditioning step maps the data
instances into a feature space by utilizing the value of the RDC. Finally, a similarity measure
compares the mapped instances, e.g., K-Means, which splits the data matrix columns by a
sum node (Molina, Vergari, Mauro, et al., 2018). Molina, Vergari, Mauro, et al. (2018)
gives a detailed explanation for the decomposition and conditioning steps. In case that the
variables are not statistically independent and the data is univariate, the base case is used.
For the base case, frequency distributions or piecewise linear approximations estimate
the data instances. The Learn-MSPN algorithm introduces two parameters to control the
creation of a SPN by the min instance slice (mis) and rdc-threshold (rdc-threshold). The
rdc-threshold is incorporated during the decomposition step when comparing two subsets
of variables. It is zero if the variables are independent, whereas a higher rdc-threshold
indicates more correlations between them. Statistical independence between variables
for a given data set is rare. Thus the rdc-threshold can be used to loosen the constraint
of absolute independence. By loosening this constraint, the variables should be split by a
product node if the RDC value is smaller than the glsrdcth.

Therefore the next chapter introduces recent approaches for pre- and post-pruning SPNs,
which utilize statistical independence tests to split variables using product nodes.

22

3. Related Work

We discussed structure learning and pruning algorithms for decision trees in the chapter 2.
This chapter gives a historical introduction to structure learning and reducing redundancies
in SPNs with pruning algorithms. We will look at each category from bottom-up to top-
down approaches, pre- and post-pruning methods while focusing on the methods which
create statistical independence of random variables for SPNs. Post-Pruning methods for
SPNs are not well researched yet. Previously, research focused on learning its structure
from a given data set. Structure learning is necessary since creating an SPN structure by
hand requires domain knowledge, often not available. However, current structure learning
techniques create SPNs with numerous parameters that increase computational cost (Lowd
and Rooshenas, 2013). Thus, post-pruning methods are necessary to decrease the set of
parameters for a given SPN while maintaining its performance.

LearnSPN introduced a framework, which for a given SPN structure, generates a tree by split-
ting random variables or data instances as described in Section 2.4.1. In the following, the
decomposition step remains a crucial method for structure learners, which is implemented
and enhanced in several forms, e.g., as shown in Gens and Domingos (2013). However,
the authors found that splitting variables in two subsets with minimum empirical Mutual
Information (Queyranne, 1998) was too slow. Instead, a pairwise statistical independence
test aims to find appropriate variable splits. Moreover, using the statistical independence
test to split variables has no negative influence on the likelihood for the resulting sub-SPNs
(Paris, Sanchez-Cauce, and Diez, 2020). The following paragraphs introduce previous work
that gradually improved the top-down LearnSPN framework (Chow and Liu, 1968; Vergari,
Mauro, and Esposito, 2015; Breiman, 2001).

Rooshenas and Lowd (2014) criticizes that previous work captures variable interactions
indirectly through implicit latent variables. A latent variable models specific information
by inferring some information from the observed variables. For example, the probability
of winning a chess game given the current game state is a latent variable. The observed
factors of a chess game, such as the moves taken by each player and the possible future
moves each player can take, infer the probability of winning a chess game. Thus, a
latent variable depends on the context given by the observed variables. The authors
proposed a state-of-the-art architecture ID-SPN (Rooshenas and Lowd, 2014) top-down
algorithm to analyze dependencies between variables directly and indirectly. By adopting
the LearnSPN framework, ID-SPN utilizes arithmetic circuit Markov networks (ACMN)
nodes introduced by Rooshenas and Lowd (2013), which capture a mixture of distributions
(Paris, Sanchez-Cauce, and Diez, 2020). The multivariate distribution represented by an
ACMN node captures the dependencies between variables directly. Like the decomposition
and conditioning steps in LearnSPN, ID-SPN replaces ACMN nodes with either sum or
product nodes (Rooshenas and Lowd, 2013). In case that the likelihood with respect to a
validation set improves, the ACMN node replaces a sum node. Else, a product node splits
the sub set of variables. The decomposition step of ID-SPN captures dependencies between
variables indirectly.

23

Dennis and Ventura (2012) introduced a top-down structure learning algorithm BuildSPN.
BuildSPN adapts the structure learning framework’s variable decomposition step by focusing
on clustering subsets of variables instead of data instances. Initially, it builds a so-called
regional graph representing a sum node separating similar clusters of data instances. To
cluster data instances Dennis and Ventura (2012) used the K-Means algorithm. The scopes
within a subpopulation of a regional graph are partitioned recursively into sub-scopes.
Note that a scope represents a unique variable. Each sub-scope adds a region node to the
region graph, which can be seen as sum nodes. Hence region nodes split the sub-scopes by
data instances. For more information on expanding regional nodes, Dennis and Ventura
(2012) gives a more detailed explanation. The K-Means algorithm is used again to split
each region node’s variables by creating a partition node. A partition node represents a
product node that splits variables by similar variable clusters. Note that the variable clusters
are compared pairwise to variable clusters with an equal set of scopes. Highly correlating
variable cluster pairs are split by variables, thus introducing a latent variable. The latent
variable represents the interactions between the two variable clusters by their respective
distribution. Therefore, each latent variable reduces the set of parameters to represent a
similar distribution depicted by the regional graph. A partition node is inserted above the
regional node during the decomposition step, which splits the variables, including their
scope, from the remaining subpopulations. This approach utilizes partition nodes to split
variables by individual scopes, similar to the method used in this thesis. However, the initial
regional graph does not consider the dependencies when splitting the data by its instances.
Hence, this pre-pruning method eliminates dependencies in regional nodes as well. This
local elimination means that the conditioning step may separate highly dependent variables
among different regional nodes (Dennis and Ventura, 2012). Additionally, the SPN size and
the time to learn the structure can become exponentially large as the number of variables
of the data increases (Paris, Sanchez-Cauce, and Diez, 2020).

Peharz, Geiger, and Pernkopf (2013) introduced a bottom-up pre-pruning algorithm to
learn the structure of a SPN. The General Merge Learning framework starts with simple
models over small variable scopes and aims to grow larger, more complex over larger
variable scopes. This framework adopts the notation of Dennis and Ventura (2012) by
introducing region nodes, partition nodes, and regional graphs, which is explained in detail
in Peharz, Geiger, and Pernkopf (2013) and Dennis and Ventura (2012). Starting from
the bottom by the leaf nodes, the General Merge Learning framework introduces select
candidates to merge by variables. Its goal is to select advantageous merge candidates.
Consequently, a merging strategy that preserves a valid SPN structure is desired. K distinct
region nodes initially separate the merge candidates with the same scope. This separation
ensures that merge candidates are compared pairwise and have the same set of scopes.
Moreover, the merge candidates are select by a Bayesian-Dirichlet independence test by
utilizing a validation set to select winner variables (Peharz, Geiger, and Pernkopf, 2013).
Winner variables represent highly correlating merge candidates. A parent node is inserted
above the current region node when merging a set of merge candidates. As a result, the
parent node splits variables with higher correlation from the remaining merge candidates.
However, it is a greedy approach that only selects the best scoring likelihood among the
features to reduce the learned structure’s high complexity (Peharz, Geiger, and Pernkopf,
2013).

24

To date and our knowledge, Rahman and Gogate (2016) is the first and only post-pruning
algorithm that introduced the idea to merge similar sub-SPNs. This method is post-pruning
an initial SPN structure by merging similar sub-SPNs. For this, the LearnSPN framework
generates the initial SPN structure for a given data set. The algorithm searches for leaf nodes
with the same set of scopes by examining each node within a sub-SPNs. To clarify, each
sub-SPN with the same set of scope represents a merging candidate. Furthermore, a node
qualifies as a merging candidate if its respective sub-SPN constitutes the same structure as
the sub-SPNs of the remaining merge candidates. Moreover, pairs of sub-SPNs have the
same structure if the alignment of nodes and edges are identical. The distance between the
probability distributions of the merging candidates guides as a similarity criterion for the
respective sub-SPNs. In case that the sub-SPNs are similar, the merging step is initiated,
which unites both sub-SPNs in a bottom-up fashion. First, the data sets used to generate
the pairs of sub-SPNs merge. Then, a sub-SPN representing the pairs is generated by
adopting the same structure and learning the weights by minimizing the Log-Likelihood
utilizing the merged training set. As a consequence, the weights are chosen such that the
accuracy over the validation set improves. In the same way, merging the candidates aims
to replace redundancies of similar sub-SPNs. The steps on how the individual sub-SPNs are
merged into the initial SPN structure are explained in detail in Rahman and Gogate (2016).
However, this results in tree SPNs that have to be converted to graph SPNs again, which is
prone to infinite loops (Rahman and Gogate, 2016). When using bagging of tree SPNs and
graph SPNs, this algorithm outperforms other algorithms, e.g., ID-SPN (Rooshenas and
Lowd, 2014), for high dimensional data sets (Paris, Sanchez-Cauce, and Diez, 2020).

Despite the advantages and disadvantages of pre-pruning algorithms for decision trees,
previous research did not focus on investigating the benefits and pitfalls of post-pruning
algorithms for SPNs yet. For this reason, this thesis introduces a simple post-pruning
algorithm for valid SPN structures introduced in the next chapter.

25

4. Pruning for Sum Product Networks

Existing pruning methods for SPNs are primarily limited to pre-pruning methods (Paris,
Sanchez-Cauce, and Diez, 2020). Structure learners create SPNs that perform better than
SPN structures by hand (Dennis and Ventura, 2012). Additionally, the learned structures
have an increased accuracy and inference speed compared to various Graphical Models
(Gens and Domingos, 2013; Gogate, Webb, and Domingos, 2010; Ko et al., 2020). However,
the resulting SPNs have the disadvantage of increased computational cost due to the large
size in parameters (Lowd and Rooshenas, 2013). This work seeks to overcome this problem
by focusing on post-pruning methods for valid SPNs.

The work of Rahman and Gogate (2016) introduced the idea of merging similar sub-SPNs
for a given set of tree SPNs with identical structures. However, this post-pruning method
is restricted to tree SPNs and assumes an identical structure among a set of sub-SPNs.
Furthermore, tree SPNs have more parameters that need a translation to graph SPNs
(Rahman and Gogate, 2016). This translation creates the overhead of transferring the tree
SPNs to graph SPNs, which is computationally expensive (Rahman and Gogate, 2016; Paris,
Sanchez-Cauce, and Diez, 2020). To overcome the problem of restricting the initial SPN
to tree SPNs, we propose a simple bottom-up post-pruning method that directly applies
to valid SPNs. In opposition, this thesis proposes a post-pruning method that forgoes the
need for a validation set as a heuristic.

The proposed post-pruning algorithm’s main idea is to loosen the constraint of dependent
random variables represented by its respective leaf node by merging similar leaf nodes.
Structure learners incorporate various statistical independence tests during the variable
decomposition step (Molina, Vergari, Mauro, et al., 2018; Rooshenas and Lowd, 2014;
Dennis and Ventura, 2012). In case that a statistical independence test fails to discover
statistical dependence, the conditioning step is initiated. As a result, the leaf nodes estimated
by a data set remain dependent within a sub-SPN when generating a sum node. With
this in mind, loosening the constraint of statistical dependence among variables allows
separating the aforementioned leaf nodes. Consequently, approximately independent leaf
nodes can be merged by a single leaf node. As a consequence, similar leaf nodes become
obsolete through the merged node, which reduces the set of parameters in a sub-SPN. To
conclude, a sub-SPN can introduce a merged node as an independent variable. To clarify,
the merged node is split from its remaining scopes by creating a product node above its
parent node. Just as for post-pruning decision trees, the proposed approach is similar to
subtree raising introduced in the Subsection 2.2.2.

In this context, the chapter focuses on two problems introduced by merging leaf nodes. First,
addressing the problem of merging similar merge candidates with a similarity measure.
Second, proposing an approach to retain a valid SPN structure while merging a set of
potential merge candidates. The following sections divide into three parts to address these
issues. The first part revolves around introducing the initial SPN structure for which the
proposed algorithm’s invariant performs successfully. Secondly, the post-pruning algorithm

26

for a given SPN structure will be described in detail. And finally, analyzing the relation
between potential merge candidates and reducing the number of parameters to the proposed
algorithm.

4.1. Sum Product-Network with alternating Structure

Section 2.3 introduced valid SPNs consisting of product nodes, sum nodes including their
respective directed edges with weights, and univariate distributions represented by its leaf
nodes. This definition for valid SPNs is guaranteed in most cases when learning an SPN
structure for a given data set with the described pre-pruning methods in Section 2.4.1.
Whereas removing one of the conditions from a sub-SPN within a given SPN leads to an
invalid SPN structure.

®® O 6 6 ®

Figure 4.1.: This Figure shows the SPN

@ @ @ @ @

structure with sq as its root node. It con-
nects three product nodes, py, p1, and
po With the respective weights at their
edges. Each product node has two leaf
nodes with two different scopes, 0,1 as
its child nodes. The leaf nodes represent
binary distributions as the random vari-

Figure 4.2.: Removing the leaf node v
with scope 1 from the product node p,
with the parent weight of 0.5 leads to
an invalid SPN structure. The structure
is invalid since it contradicts the rule of
disjoint scopes in a product node’s child
nodes.

ables.

For example, the simple structured SPN depicted in Figure 4.1 shows a valid SPN structure.
In fact, removing one of the leaf nodes vy, v11, v12 With scope 1 from one of the product
nodes pg, p1, or po invalidates the SPN structure. This operation contradicts the rule of
disjoint scopes in the children nodes of a product node. The Figure 4.2 shows the SPN
structure when removing the leaf node with scope vy, from its parent node, the product
node po with the weight of 0.5 at its edge. This structure for an SPN is invalid since the sum
node sg has the scope {0, 1}, which means that the product node p, needs to incorporate
the same scope as its parent node sq. Particularly, the requirements for a valid SPN structure
have to be respected to incorporate post-pruning methods for SPNs. In the case of replacing

27

the parameters of an SPN, such as insertion or deletion of nodes, it is necessary to retain a
valid SPN structure.

With this in mind, the proposed post-pruning algorithm described in Section 4.2 requires
the following conditions for a given SPN:

* The children nodes of a sum node are either product nodes or leaf nodes.
* The children nodes of a product node are either sum nodes or leaf nodes.

This requirement assures that the same type of nodes does not occur in its descendant or
ascendant nodes. To clarify, this means that every layer in the SPN structure alternates
between sum and product nodes with indicator nodes at its leaves. Following, an SPN with
the above conditions for its structure refers to an SPN with an alternating structure or, in
short, alternating SPN. In conclusion, these assumptions lead to a successful invariant of
the proposed algorithm explained in Section 4.2.

Following, an alternating SPN is abbreviated as SPN and denoted as G. The following
paragraphs analyze all properties and regional information of an arbitrary leaf node v in
the last layers of a given SPN G. The parent node w, of a leaf node v can have two different
types. As a consequence, either the parent node w, is a product node or a sum node of v.

In case that the parent node w, is a product node, it follows that the product node p,, is its
parent node or, in contrast, w, refers as the root node of G.

e In case that w, is the root node, the SPN G is called a naive SPN. The naive SPN
consists of one product node, which splits all leaf nodes by its scopes. This type
of SPN is already minimal by the number of its parameters. Hence pruning is not
necessary for G.

* In case that w, is not a root node, it has a parent node p,,. By the definition of an
alternating SPN, the type of the parent node p,, is a sum node. The product node
w, splits the leaf nodes by the set of scopes given by its parent node p,,. Following,
we refer to this structure as a sub-SPN. This sub-SPN is a valid SPN according to
Section 2.3 when chosen as a root node. This case is the desired structure for the
invariant of the proposed post-pruning algorithm. The algorithm aims to replace
individual sub-SPNs with valid sub-SPNs with a reduced set of parameters and a
similar semantic.

When the parent node w, is a sum node it has either a parent node p,, or w, s the G’s root
node.

* In case that w, is the root node, the SPN G contains a single sum node, representing
the weighted sum of all leaf nodes with scope v. Hence, the sum node w, represents
a sum of leaf nodes with a unique scope. A single leaf node can represent the leaf
nodes within the sub-SPN since the leaf nodes’ underlying probability distributions
have the same set of parameters. The condition above allows merging a pair of leaf
nodes into a single distribution. One approach is to merge the leaf nodes’ underlying
distribution parameters by the weighted sum for the individual subpopulations’ edges
(Clemen and Winkler, 1999; Rahman and Gogate, 2016).

28

* In case that w, is not a root node, it has a parent node p,,. At first glance, this
structure seems unnecessary since the product node p,, already splits the scope of
v by the sum node w,. However, in this case, the sub-populations of the sum node
w, can be summarized by a single leaf node, as explained in the previous paragraph.
This summarization eliminates the sum node w, by replacing the sum over the sub-
populations by a single leaf node v, and v depicts the underlying distribution of w,.
Furthermore, this operation reduces the set of parameters of the SPN G.

This section introduced the alternating SPN structure for the proposed post-pruning al-
gorithm explained in the following sections. It should be noted that the internal nodes
can represent sum nodes while pruning. Due to the bottom-up approach, a product node
can be inserted between a leaf and sum node. Admittedly, the alternating structures are
required to be strict for the last layers within a SPN. Although, this work assumes SPN
structures generated with the Learn-MSPN algorithm introduced by Molina, Vergari, Mauro,
et al. (2018). Moreover, any valid SPN structure generated by the Learn-MSPN can be
transferred to an alternating SPN structure with the operations mentioned above.

4.2. Simple Post-Pruning Algorithm for Sum-Product Networks

This section proposes a simple post-pruning method for a given SPN called Simple Post-
Pruning Algorithm for Sum-Product Networks (SPA-SPN). For the remaining sections, the
SPN introduced in Section 4.1 is assumed. This chapter first explains the post-pruning
algorithm’s general scheme, then each step of the individual methods is explained in detail
in the following subsections. Finally, the last section analyzes the reduction in parameters
for the number of discovered merge candidates.

When pre-pruning methods utilize the decomposition step while learning an SPN structure,
the data matrix reduces as the SPN layers increase. As the layers increase and data instances
reduce, the number of samples in the data matrix vanishes. This reduction means that
leaf nodes estimated by a distribution use a smaller set of data instances (Rahman and
Gogate, 2016; Molina, Vergari, Mauro, et al., 2018; Paris, Sanchez-Cauce, and Diez, 2020).
Furthermore, the estimated distributions may represent a lousy approximation of the
observed data due to the limited amount of available data. Based on this assumption, this
results in SPNs modeling potentially independent variables as statistically dependent. Thus,
SPA-SPN’s main idea is to generalize over similar leaf nodes by loosening the constraint of
dependent leaf nodes. By loosening this constraint, similar leaf nodes can be generalized
by a single merged leaf node or as a set of similar merged leaf nodes. The merged leaf
node then depicts the combined probability distributions of the initial leaf nodes.

For a given SPN, SPA-SPN reduces its parameters by merging leaf nodes within a sub-SPN
with equal scopes. The algorithm works in a bottom-up fashion by starting at the leaf nodes
at the last layer of the SPN. 2 depicts the SPA-SPN framework, which inputs a scope k, a
threshold ¢ and an SPN denoted as G and output a pruned SPN G’.

The algorithm’s first step is to identify the possible merge candidates within the SPN G. The
acquireSubSpns method in 2 indicates this step. Due to the structure defined in Section
4.1, the leaf nodes with scope k belong to unique sub-SPNs. Moreover, a leaf node belongs

29

Algorithm 2: SPA-SPN(G, k, t)
Data: a valid SPN G, scope k and threshold ¢
Result: a valid SPN ¢’
initialize G’ as G;
Gs = acquireSubSpns(G');
for g € Gs do
C := leaf nodes in g with scope k;
M =mergeLeafs(C,t);
g = IntegrateMergeCandidates(g, M);
replace g with ¢’ in G;
Gs = acquireSubSpns(G');
end
return G’;

to the first sum node in its ascendant nodes, representing a sub-SPN. For example, the
leaf nodes v15 and vy3 in Figure 4.2 belong to the sub-SPN with the sum node s; as the
root node. Likewise, each sum node occurring in the last layers of the SPN represents a
sub-SPN. Due to the definition of an SPN, every sub-SPN remains a valid SPN structure.
Following Gs denotes the set of sub-SPNs that contain leaf nodes with equal scope k in its
descendant nodes. Due to the definition in section 4.1, the sub-populations of a sub-SPN
hold product nodes. Our definition SPNs implies that the children nodes of the product
nodes, as mentioned earlier, are leaf nodes. Note that each product node defines the same
set of scope as the sum node given by a sub-SPN. Furthermore, this indicates that the
individual leaf nodes of all product nodes within a sub-SPN define the same set of scope.
This regional information of unique sub-SPNs Gg allows SPA-SPN to merge leaf nodes
belonging to a unique sub-SPN g to a single leaf node.

Sub-sections 4.2.1 and 4.2.2 give a detailed explanation of merging and integrating the
leaf nodes within a sub-SPNs. The method acquireSubSpns collects the sub-SPNs Gg for a
given scope k. The SPN G searches for sub-SPNs Gg, including a given scope k through
breadth-first search. This method collects the sub-SPNs, representing the first sum node
in the ascendant nodes of the leaf nodes with scope k. These leaf nodes signify potential
merge candidates since the same set of parameters defines their respective distributions.
MergeLeafs inputs a threshold ¢ and the potential merge candidates as leaf nodes denoted
as C and returns the merged leaf nodes M. Section 4.2.1 explains this method in detail.
The threshold ¢ specifies the tendency of merging the given leaf nodes. A higher threshold
indicates to merge leaf nodes more dissimilar. In contrast, a lower threshold signifies to
merge leaf nodes more similar to each other.

IntegrateMergeCandidates inputs the resulting merge candidates M and the respective
sub-SPN denoted as g and output a sub-SPN ¢’. Section 4.2.2 gives a detailed explanation
of this method. The graph ¢’ incorporates the merge candidates M while maintaining a
valid SPN structure of the respective sub-SPN ¢’. Depending on the merged leaf nodes M,
¢ either splits the scope k by a product node from the initial sum node or incorporates a
sum node with a decreased size in parameters. The sub-SPN ¢’ replaces the initial sub-SPN
g within the SPN G. Finally, this process repeats for all sub-SPNs Gg, which yields the

30

pruned SPN ¢G'.

4.2.1. Merge similar Leaf Nodes

The statistical dependence gives insights into the similarity between two random variables
(Paris, Sdnchez-Cauce, and Diez, 2020; Rahman and Gogate, 2016). Statistical measures
estimate the statistical dependence between random variables. In literature, frequently
used statistical measures are divergence measures (Murphy, 2012, pg.57). For example,
a prominent divergence measure is the Kullback-Leibler divergence (KLD) (Joyce, 2011;
Rahman and Gogate, 2016). The KLD evaluates the statistical dependence of two arbitrary
distributions, P, and). Let P and @ be arbitrary distributions with parameters p; and ¢;
and ¢ € N with N representing the number of outcomes. The following equation defines
the Kullback-Leibler-Divergence given by:

N
KL(P(|Q) = pilog, % (4.1)

From an information-theoretic perspective, the KLD represents the average number of extra
bits needed to encode data from a distribution P instead of using) (Murphy, 2012, pg.57).

In contrast to divergence measures, a metric incorporates the distance between arbitrary
distributions. Divergence measures as the KLD are asymmetric. Hence divergence measures
cannot directly be incorporated as distances. The Jensen—Shannon divergence (JSD)
represents a symmetric version of the KLD (Lin, 1991; Murphy, 2012). For arbitrary
probability functions P and @, the JSD is defined by:

M=t
2 (4.2)

1 1
JSD(PIQ) = SKL(PM) + SKL(Q|M)

The JSD is a valid metric, according to Lin (1991). Its bound constraintson 0 < JSD(P|Q) <
1 and JSD(P||Q) = JSD(Q||P) denotes its symmetry. This definition of JSD is for uni-

variate distributions, and Nguyen and Vreeken (2015) extends it to the multivariate case.

The JSD provides insight into the similarity of two arbitrary probability distributions. The

smaller the distance between two probability distributions, the more similar they are. If the

value is 0, the parameters of the probability distributions are identical (Murphy, 2012). In

contrast, the higher the distance between two probability distributions, the more dissimilar

they are.

In the following, the similarity between two leaf nodes serves as an abbreviation for the
similarity of two probability distributions represented by their respective leaf nodes. On
the one hand, this work assumes that the insight given by a similarity distance between
two distributions is sufficient to reduce the set of parameters for a given SPN. In the same
way, the merged leaf node serves as an approximation for a set of highly similar leaf nodes.
On the other hand, we assume that a similarity measure’s introduced loss is insignificant
for the entire SPN. For this reason, SPA-SPN aims to identify leaf node candidates that
depict a similar distribution. For instance, the JSD allows identifying similar leaf nodes

31

from a set of merge candidates. To clarify, the more similar a pair of leaf nodes are, the
closer the similarity distance is to zero. In contrast, the more dissimilar two leaf nodes are,
the closer the similarity distance is to one. Therefore, the similarity distance determines
whether a single leaf node can represent a pair of leaf nodes or not. For instance, a pair of
leaf nodes merge in case that the similarity criterion is satisfied. As a consequence, the
leaf nodes unite by taking the mean of their probability distributions (Clemen and Winkler,
1999; Rahman and Gogate, 2016).

The leaf nodes vy; with scope k and the indexes i € S denote the possible merge candidates,
where S denotes the indexes of the leaf node within a sub-SPN. The children nodes of the
sub-SPN represent |S| = m as the potential merge candidates. SPA-SPN selects the most
similar leaf nodes from the potential merge candidates resulting in the merge candidates.
Moreover, the similarity matrix contains the permutation of all leaf nodes within a sub-SPN.
Furthermore, it evaluates the similarity between a set of leaf nodes. The similarity matrix
abbreviates as s : {(vgi,vi;)|(i,j) € S?} — {z|r € R: 0 < z < 1} which compares the
similarity between two arbitrary leaf nodes with scope k. It should be noted that the
similarity measure compares the underlying probability distributions represented by their
respective leaf node. The following similarity matrix can evaluate all permutations of
similar leaf nodes for a given scope k:

s(vro, ko) o+ S(Uk0> Vkm)
S{(vkj, vki)|(j, 1) € 87}) = : : (4.3)

$(Vkm,vk0) - S(Vkm, Vkm)

By utilizing this similarity matrix’s properties, a pair of leaf nodes can expose as merge
candidates. Since pruning aims to reduce the set of redundant parameters of a valid SPN,
merging two identical leaf nodes is not desired. Hence, ignoring the matrix’s trace is
appropriate since it measures the similarity between two identical leaf nodes. Due to the
chosen similarity measure’s symmetry, the lower triangular matrix is sufficient to choose
valid merging candidates. Moreover, this work assumes that merging two leaf nodes with
the lowest similarity distance is the best option since they represent the most similar leaf
nodes. Thus, the best candidates are chosen greedily by merging leaf nodes with minimum
similarity distance. To clarify, the Figure 3 depicts the framework to find merge candidates
utilizing a similarity matrix. The similarity matrix compares pairs of leaf nodes utilizing the
equation 4.2. Then, the pair with the lowest distance is chosen as merge candidates. The
selected merge candidates result in a new leaf node representing the initial pair’s united
probability distributions by taking their mean. Removing the initial pair from the set of
potential merge candidates results to an updated set of candidates. As a consequence,
the set of potential merge candidates contains the merged leaf node. Furthermore, the
merged node represents the initial leaf nodes. Finally, this process repeats until either the
similarity matrix is single-valued or a prespecified stopping criterion is satisfied. In case
that the matrix is single-valued, there exist no merge candidates. In the same way, this
work chooses a threshold ¢ to obtain an early stopping criterion. As a result, the threshold
gives an upper bound for the dissimilarity between leaf nodes concerning the similarity
measure. To summarize, the process of evaluating the similarity and merging is repeated
until either the possible merge candidates consist of a single value, e.g., |Px| = 1, or the
lower triangular matrix does not satisfy the similarity constraint given by a threshold ¢.

32

In conclusion, the Chapter 5 analyzes the impact of the threshold for the SPA-SPN post-
pruning method. The following Section 4.2.2 explains how to integrate the merged leaf
nodes into the sub-SPN.

Algorithm 3: mergeLeafs(Py,,, t)
Data: set of candidate Py,,, with scope k containing m leaf nodes and a threshold ¢
Result: a set of merged leaf nodes Py,
if |Pyy| = 1 then
| return Py,,;
else
Prs = {s(v,v")|v,v" € Pem};
if min(Pys) > t then

| return Py,,;
else
v,v" = argmin(Pys);
(vav/)epks

Unew = combination of v, v';
Pkm = {Unew} @) Pkm \ {’U, ’U/};
return mergeLeafs(Pim,t);
end
end

4.2.2. Integrate Merge Candidates

Subsection 4.2.1 introduced a method to merge leaf nodes by a similarity measure. This
subsection focuses on integrating the merge candidates M into the given sub-SPN. Hence,
assume a sub-SPN given by a sum node with n children nodes and m different scopes.
Furthermore, S denotes the set of indexes for the n sub-populations of the sum node g
and their respective scopes m. The indexes of the attributes of a leaf node denote as .A.
Additionally, the edges connect the n children nodes of the sum nodes with weights w;
where i € S and |S| = n holds. Consequently, each child node of the sum node is a product
node with vj; as child nodes, also the index j indicate the scope associated with the leaf
node given by j € N and j < m. It should be noted that the index i for a leaf node v;;
distinguishes individual leaf nodes with the same scope from each other since each node
represents different probability distributions. Moreover, the sub-populations containing
leaf nodes in its descendant nodes share a similar distribution for the attribute with the
index k denoted as Py. As a result, this equation holds v, ~ v, Vg € Py, r € Py. The
following equation describes the sub-SPN mentioned above by:

Z w; H Vj,i (44)
1€S jeEA

For simplicity, the following paragraphs assume the merged leaf nodes M contains a single
merged leaf node. In addition to this, the equation | M| = 1 holds, and the final paragraph
of this sub-section covers the case when | M| > 1.

33

First and foremost, we assume that the sum node’s sub-populations are product nodes
with child nodes v;; as leaf nodes. In this case, the node v, represents the combined
leaf node for the attribute with index k. For this reason, the equation v, € M holds.
Furthermore, P;, represents the indexes of the leaf nodes that are similar to the merged
leaf node. As a result, the equation vy, ~ v, ;Vr € Py holds. To clarify, the merged leaf
node vy, represents the leaf nodes v, ;, with scope k and r € P}, in case that the condition
|Px| = |S| holds. Subsequently, these assumptions lead to the following equation starting
from equation 4.4:

> L vi

€S jeA

=S wns IT w
i€S jeA\{k}

Unew Y Vki
— g Wi VUnew | | Vj,i

(IS jeA\{k}

= Unew 5 w; | | Vji

ieS jeA\{k}

(4.5)

Importantly, equation 4.5 shows that a leaf node v,.,, can be isolated from its respective
sum node. In fact, the probability distribution represented by the leaf node v;,.,, is similar
to the set of leaf nodes with the same scope k and indexes Pj. Similarly, removing the
leaf nodes with the same scope from their respective product nodes results in creating a
new product node above the sum node. Moreover, the product node separates the merged
leaf node vy, from the sum node and scopes A \ {k}. For example, Figure 4.4 shows the
isolation of the leaf node v,,.,, from its sub-SPN.

so@eaee®e
Figure 4.3.: A simple SPN structure with @ @ @ @

a sum node sy as the root node. The
sub-populations of sy are given by the
product nodes pg, pl and p2. Each prod-
uct node splits the set of scopes A with
leaf nodes.

Figure 4.4.: Pruned SPN where all leaf
nodes with scope 0 can be represented
as the leaf node v,,0.

In case that potential leaf nodes within a sub-SPN are merging candidates, the edge of the
sum node is removed. As a consequence, a new product node is set above it in order to

34

maintain a valid SPN structure.

Generally, not all leaf nodes with the same scope are similar when incorporating different
thresholds, as described in Subsection 4.2.1. As a result, a single leaf node cannot represent
the leaf nodes with indexes S. This assumption implies that similar leaf nodes with indexes
P do not solely include viable merge candidates. Hence, the indexes of the sub-populations
do not contain the merging candidates with S\ P;. Furthermore, the leaf nodes for the sub-
population indexes are dissimilar to the merge candidates, e.g. |Px| < |S| and |S \ Px| > 1.
Thus, v,ey is similar to a subset of leaf nodes with scope k& within a sub-SPN. However,
Unew can represent the leaf nodes that qualified as merge candidates. This assumption
consequently removes redundancies when integrating v,.,, into the sub-SPN with the
following equation:

> Tl

1€S jEA
- 3 wloe+ X owlw
1€S\ Py jeA 1€Py jeA
n
ey Z wiHUj,i“‘Unewai H Yy (4.6)
i€S\P, JEA i€Py jeA\(k} '
n
Sw=1
:w> Z wiHUj,i‘f‘(l_ Z wi)(vnewzwi H 1)]‘71')
i€S\P, jeA i€S\ Py, i€Pr jeA\{k}
=1 Wj
2N i [[uit - Y w)(vnew 3 (sx— ==] i)
i€S\P, jEA €S\ Py i€Pr, =Pk 7% jeA\{k}

For example, given a sub-SPN with 3 child nodes as product nodes, e.g., S := {0, 1,2} and
each product node has 2 leaf nodes with their respective scopes 0, 1, e.g., A := {0,1}. Now
assume that the leaf nodes vy and vg; are similar, e.g., Py := {0, 1}. Thus, the leaf node
Unew can represent the leaf nodes vy and vg1, since vgg ~ vo1. The following equation
incorporates the leaf node v;ey:

ST o
€S jeA
wWoVeV10 + W1V1V11 + W2V02V12

Vnew~(V90,v01)
- WOUnewV10 T W1VpewV11 + W2V02V12 4.7)

= Upew (WoV10 + W1V11) + W2V2V12

Z":O ”LUZ'ZI
= (1 — w2)Vpew(wovip + wivi1) + wavp2v12
> i—pwi=1 wo w1
= (1 —w2)Vpew(————v10 + —————v11) + Wavp2012
wo + w1 wo + w1

Clearly, this example did not reduce the number of parameters in the sub-SPN. The impli-
cation on parameters when integrating merge candidates into sub-SPNs is discussed in
Subsection 4.3.

Finally, the next paragraphs discuss the case when there exists more than one merge
candidate. Hence, the equation M| > 1 holds. In this case, different clusters of leaf nodes

35

in M are similar to each other. Each leaf node in M represents a similar node to a subset
of merge candidates with indexes Py. Hence, the index of leaf nodes similar to a leaf node
in M is defined as P, where z € M. Furthermore, the family of sets Pp := {P,|Vz € M}
describes the indexes for leaf nodes similar to a unique merged node z. Hence, the equation
z ~ v Vi € rVr € P,Vz € M holds. Note that the leaf nodes similar within M have
different indexes among all other leaf nodes in M. This equation ensures that individual
indexes of leaf nodes representing individual merge candidates which means they can be
represented by a individual sum node irrespective the remaining leaf nodes. Hence the
equation 2’ N 2" = (,Vz' € Pp\ 2”,Vz" € Pp\ 2’ holds for their indexes. The following
equation replaces individual leaf nodes within the sub-SPN by their respective leaf nodes

in M:
> wi][v
€S jeA
el Rp Z w; H v+ Z Z w; H Vji
ieS\Pp jEA 2EMIEP, jEA
diéw Z wiHUj’i+ZZZwi H (] (4.8)
i€S\Pp jEA zeM i€P, jeA\{k} '
Zgl Z w; H Vi + Z Z wi(z Z w; H vj,l-)
i€S\Pp jeA zeEMi€P, 1€P: jeA\{k}
S AP IRCIEDID WE SE Sl | I
i€S\Pp jEA zeMieP, icp, LuseP: s jeA\{k}

Section 4.3 analyzes the relationship between the number of merge candidates and the
decrease in parameters of individual sub-SPNs. Chapter 5 covers the empirical evaluation
of the methods introduced in this chapter.

4.3. Reduction in Parameter by merging similar leaf nodes

This section introduces the reduction in parameter size for a sub-SPN when merging similar
leaf nodes. Equations 4.5 and 4.6 suggests two cases of integrating the merge candidate,
e.g., |M| = 1 into the respective sub-SPN. The first case relates when all leaf nodes are
similar to each other, represented by a single leaf node. In contrast, the second case presents
a merge strategy when a part of the leaf nodes are similar. Both cases can reduce the set of
parameters for the given sub-SPN, thus reducing the size of parameters for the given SPN.
The following paragraphs cover the reduction of parameters of the sub-SPN for both cases.
In general, by merging |Pj| leaf nodes represented by one leaf node v;,..,, the leaf nodes,
and their respective edges can be removed from each product node. Thus, the number of
parameters for a given sub-SPN decrease by the number of leaf nodes and their respective
edges |Px| * 2. The edge of a product node represents an edge with a weight of 1. If a
single leaf node represents all leaf nodes within a sub-SPN, e.g., P, = S, the leaf node
generates independence by inserting a product node above the sub-SPN, which increases
the number of parameters. Hence, the product node mentioned above adds one parameter.

36

Splitting the leaf node v,,¢,, and the initial sum node with a product node adds two edges.
Finally, the leaf node v,,¢,, introduces one more parameter to the sub-SPN which increases
the total number of parameters by 4. Thus, the decrease in parameter by integrating the
merged leaf nodes can be described with |Py| * 2 — 4, which is linear by the number of
merged leaf nodes |S|.

If a leaf node v,,.,, can represent only a subset of the leaf nodes, the parameters’ decrease
differs from the above approach. Removing | Py | leaf nodes from the sub-SPN introduces a
new product node as the sub-SPNs child node. The product node splits the leaf node vy,eq,
from the remaining leaf nodes with indexes S \ P;. The product node, therefore, adds two
new edges to split the leaf nodes. Furthermore, each remaining leaf node with indexes
S\ Px needs to be separated by an additional sum node, which increases the number of
parameters. The number of parameters of the given sub-SPN increases in total by 4. Thus,
the decrease in parameter by integrating the merged leaf nodes can be described with
|Pi| * 2 — 4, which is linear by the number of merged leaf nodes |Py|. Finally, in case that
more than one merge candidate exists, e.g., |M| > 1 is discussed. Each merged leaf node
z € M represents the leaf nodes with indexes P, C Pp and all leaf nodes have different
indexes. Moreover, equation 4.8 merges each z by integrating the individual leaf nodes with
indexes P, as in the previous paragraph. Hence each merge reduces the same parameters
by |P.| x 2 — 4 for all merges, thus } 'p .p, |P| * 2 — 4 which is linear to the number of
merge candidates in M.

37

5. Evaluation and Experiments

This chapter covers the empirical evaluation of the post-pruning method presented in
Chapter 4. For this, the metrics introduced in Section 5.1 evaluate the SPA-SPN algorithm.
Five different benchmark data sets empirically evaluate the SPA-SPN, explained in detail
in Section 5.2. Section 5.4 presents two different baselines that constitute the initial SPN
structures. Furthermore, the Section 5.3 explains the steps to replicate the experiments
and the results. Finally, Section 5.5 shows and discusses the experimental results. Finally,
Section 6 highlights the most critical findings of this chapter and proposes future work
ideas.

5.1. Evaluation Metrics

This section proposes three evaluation metrics to compare the results with related work on
pruning algorithms for SPNs.

The model quantity metric utilizes the individual statistics of an SPN structure. This metric
compares two SPN structures by their statistics in parameters. The number of edges, leaf
nodes, sum nodes, and product nodes represents the individual statistics. Furthermore,
the change in parameters when pruning an initial SPN structure depicts the impact of
post-pruning methods. These statistics give valuable information for the general structure
of an SPN. For example, many product nodes indicate more variable splits suggesting that
an SPN depicts independent statistical variables. In contrast, a high amount of sum nodes
suggests that more variables are statistically dependent. Finally, the evaluation speed of
an SPN depends on the number of edges. Hence the change in parameters gives valuable
information about differences in inference speed when comparing SPNs.

A prominent evaluation metric for the model quality is the likelihood which inputs a test
data set 7" and a model G to evaluate. The likelihood of an SPN is calculated by observing
the given data concerning the model parameters of an SPN. Hence, the likelihood compares
unseen data points to the distribution estimated by an SPN. The log of the likelihood
introduces an efficient calculation of the likelihood for a given model. Furthermore, to
compare the log-likelihood for different domains, the log-likelihood is normalized by the
number of available test data. Hence, the average Log-Likelihood (avg. LL) is defined by:

£(719) = 7 los [6(1)

teT

= |;Zlogg(t)

teT

(5.1)

The goal of modeling an SPN distribution is to find parameters that describe the observed
data distribution well. Hence, the likelihood is a suited evaluation metric for this problem.

38

Maximizing the likelihood function’s value indicates that the model parameters estimate
data more likely to the observed data. Utilizing the avg. LL simplifies the calculation and
encourages the comparison of experiments with different test data. An SPNmodels the
probability for a given configuration. Hence its likelihood function is bound between 0 and
1. The log of the likelihoods will always be negative, and higher values indicate a model
that fits the data well. It is negative because the log of the likelihood constrains to the
interval (—oo, 0). In contrast, a log-likelihood value with smaller values indicates a model’s
parameters do not fit the data well. For example, the lim,_,qlog(z) = —oo and log(1) = 0.
To calculate the avg. LL, the probability distribution of an SPN evaluates each sample
t from the given test set 7. The log of the resulting values represents the intermediate
probability values called logits. Additionally, the logits’ sum represents log-likelihood.
Finally, normalizing the log-likelihood by the number of instances yields the avg. LL. It is
generally attempted to maximize a given model’s log-likelihood, but there is a considerable
trade-off between generalization and overfitting. This trade-off is a broadly discussed topic
among the machine learning community (Bartoldson et al., 2020). A given model should
generalize the observed data by giving reasonable estimates for unseen data. In contrast, a
model should not overfit and remember each evident sample while giving a wrong estimate
for unseen data.

Finally, introducing the conditional marginal Log-Likelihood (CMLL) as an evaluation
metric. In contrast to the likelihood, the marginal likelihood measures the likelihood of
data irrespective of other variables. For this, the test data set variables split 7'into a query
set () and an evidence set E. The following formula computes the CMLL:

CMLL(T|G) = > logG(tle) (5.2)

teT,ecF

The CMLL calculates the log of the likelihood for a subset of data given by the evident
data. Imputing the missing values in) by the sum over all possible events is called the
marginal probability. The marginal probability utilizes the joint probability of a given
evident sample and the remaining outcomes of events. Hence, the evaluation criterion is
called the conditional marginal log-likelihood CMLL. Calculating the marginal probability
of a model gives the probability of an event when ignoring other variables. Therefore,
calculating the CMLL of a given test set model depicts how well the model’s parameters
can be estimated when imputing missing data.

5.2. Datasets

This section introduces the data sets! which evaluate the SPA-SPN algorithm from section
4.2. For this evaluation, the five different real-world data sets NLTCS, msnbc, plants,
Netflix, and kdd are used. The data sets are mainly compiled by Haaren and Davis
(2012), Rooshenas and Lowd (2013), Lowd and Davis (2010), and Bekker et al. (2015).
Furthermore, Lowd and Davis (2010) post-processed the given data sets, mainly used to
evaluate pre-pruning SPN algorithms (Chow and Liu, 1968; Poon and Domingos, 2011;

'https://github.com/arranger1044/DEBD

39

Molina, Vergari, Mauro, et al., 2018; Rooshenas and Lowd, 2014; Rahman and Gogate,
2016; Peharz, Geiger, and Pernkopf, 2013). Table 5.1 depicts the statistics of the different
data sets in ascending order for the quantity in variables.

Karolien Geurts? donated the following data sets containing anonymized traffic accident
data (Geurts et al., 2003). The data originates from traffic accidents with injured or deadly
wounded casualties on a public road in Belgium. Accidents have been filled in a form
by police officers for the period from 1991 until 2000. Furthermore, the data contains
a rich context of information on the accident circumstances, the course of accidents, the
traffic conditions, the environmental conditions, the road conditions, the human conditions,
and the traffic data’s geographical conditions. The dataset contains 111 different boolean
variables, which are either true or false for the respective statement associated with the
variable. An explanation of the individual variables can be found in Geurts et al. (2003).

The KDD Cup 2000 clickstream prediction data was obtained from an online retailer,
consisting of web session data. It consists of 64 boolean variables where each variable
indicates whether a session visited a web page matching a particular category (Lowd
and Davis, 2010). A detailed description of the features can be found at the Washington

computer science COUI’SGS.

The MSNBC data set was initially obtained from the UCI machine learning repository
(Newman and Merz, 1998), and a compiled version is available at the kdd website*. The
MSNBC anonymous web data contains information about whether a user visited a top-level
MSNBC page® during a particular session for the entire day of 28th of September 1999.
Each sequence in the data set represents a user’s page view during a twenty-four hour
period where each event represents a user request for a page. The pages are categorized by

7 " ” » 2 "

“frontpage”, "news”, “tech”, ”local”, “opinion”, "on-air”, "misc”, "weather”, "health”, "living”,
“business”, “sports”, summary”, “bbs” (bulletin board service), "travel, "MSN-news” and
”"MSN-sports” (Lowd and Davis, 2010). Furthermore, the entries of the instances in the
data set contain boolean variables for each category visited. The variable for a category is
true if the user visited a particular page associated with the category during a session. The
average number of visits per user is 5.7, with a total number of 989818 users. Per category,
the number of URLs ranges from 10 to 5000 with 17 categories. A detailed description of

the categories can be found on the msnbc web page®.

The plants data set consists of various plant types and the associated location where they
are found can be found in Lowd and Davis (2010). Each variable in the data set represents
a location, which is 1 if found there else 0.

The Netflix data set®” is a random subset of the Netflix challenge 67 data and is compiled
initially by Lowd and Davis (2010). The data set’s instances represent user ratings, and
the variables represent the hundred most rated movies. A particular user rates a movie
represented by a boolean variable where 1 means it is rated and O means not rated.

2http://fimi.ua.ac.be/data/
3https://courses.cs.washington.edu/courses/csep546,/12sp/psetwww/ 1/kddOrganizerReport.pdf
*http://kdd.ics.uci.edu/databases/msnbc/msnbc.data.html

>https://www.msnbc.com

®https://web.archive.org/web/20090925184737/
"http://archive.ics.uci.edu/ml/datasets/Netflix+Prize

40

NLTCS® (The National Long Term Care Survey) data set contains long time samples of
disabled persons living in a community or institution above age 65 (Rooshenas and Lowd,
2014; Lowd and Davis, 2010). The dataset contains 16 binary variables of functional
disability measures: 6 activities of daily living and 10 instrumental activities of daily living,
pooled over 1982, 1984, 1989, and 1994 waves of the survey with 21574 data points.

Table 5.1.: Statistics of the individual data sets consisting of the number of training, test,
and validation instances, including the number of variables.

dataset no. of training in- no. of test in- no. of validation in- no. of variables
stances stances stances

nltcs 16181 3236 2157 16

msnbc 291326 58265 38843 17

kdd 180092 34955 19907 64

plants 17412 3482 2321 69

netflix 15000 3000 2000 100

5.3. Setup

This section covers the essential steps to evaluate the SPA-SPN algorithm from section 4.2
on the data sets introduced in section 5.2. The Learn-MSPN (Molina, Vergari, Mauro, et al.,
2018) algorithm generates the initial SPNs. Additionally, the spflow? library implements
the Learn-MSPN framework (Molina, Vergari, Stelzner, et al., 2019).

The Learn-MSPN algorithm introduces hyperparameters, which result in the initial SPN
structures. Post-pruning the initial SPN structures with various configurations of hyperpa-
rameters encourages analyzing the effects of post-pruning algorithms for SPNs. Hence, the
following paragraphs describe the hyperparameters and their configurations’ effects on the
initial SPN structures. Generally, the column parameter and mis values represent the hyper-
parameters for the Learn-MSPN framework. The column parameter defines the statistical
independence method to use during the decomposition step. Furthermore, the column
parameter in this work restricts to the skips and rdc methods. The skips parameter omits
the decomposition step and instead initiates the conditioning step. Thus, the generation of
the SPN structure solely depends on the mis parameter. The mis value creates a sum node
if the minimum number of instances is satisfied, splitting the data instances. Violating this
condition leads to a single product node that splits the given variables individually. The
rdc column parameter introduces the rdc-threshold parameter used during the decomposi-
tion step. Learn-MSPN uses the rdc method to identify statistical independence among
variables, explained in Section 2.4. Additionally, the rdc method utilizes the mis value
during its conditioning step. Furthermore, a higher mis value indicates that more instances

®https://www.niagads.org/datasets/ng0007
“https://github.com/SPFlow/SPFlow

1

are required to create a sum node. This constraint leads to more children nodes as more
instances are available to cluster the instances into subpopulations. In case that the number
of instances does not satisfy the condition of the mis value, a product node is created, which
splits the individual variables. A good rule of thumb is to use an rdc-threshold between 0.1
and 0.3 and 0.1 as the mis value.

The SPA-SPN algorithm has two parameters given by a threshold (th) and a scope. The
scope parameter identifies the leaf node to prune for a given SPN. The th indicates the
condition to merge similar leaf nodes. A similarity distance compares the similarity for a
pair of lea nodes. In the following experiments, the JSD, introduced in Section 4.2.1, serves
as a similarity measure. Two leaf nodes merge by combining the mean of their respective
probability distributions, which results in the distribution of the merged leaf node (Clemen
and Winkler, 1999). Finally, the SPA-SPN scope parameter selects the scope for which to
prune an SPN. It defines the available leaf nodes to use as possible merging candidates.
The sequence of pruning by different scopes is extensive since the permutations given by
the number variables. For simplicity, a given SPN is pruned for all scopes individually
in arbitrary order. For example, an SPN with 16 scopes O, ..., 15 is pruned in ascending
order of given scope 0 to 15 individually. This process is repeated for each scope until the
structure of an SPN does not change.

5.4. Influence of the Parameters on the Learned Structures

This section examines the influence of the column parameter for creating the SPNs structures
with the Learn-MSPN algorithm. Section 5.3 explains the configuration of methods for
generating the SPNs structures with different column parameters. The resulting SPNs
structures represent the initial SPNs for the SPA-SPN algorithm. The following paragraphs
discuss the initial structures generated with two different configurations. The paragraphs
discuss the general trends for all data sets on the example of the NLTCS and MSNBC data
set. First, discussing the effects of the rdc method and then the skips method. Generally,
the figures visualize the initial SPNs structures generated with the rdc method, e.g., Figure
5.1. In contrast, Table 5.2 depicts the statistics for the initial SPNs structures generated
with the skips method for all data sets. The appendix provides figures for the remaining
data sets in A.2 and A.1 gives a description on how to read figures by an example.

42

—#nodes ® #sumnodes ™ #productnodes ™ # leaf nodes # edges — avg. LL

-6.2
-6.4
-6.6
-6.8

-l
-
=
[

of parameters
=
o
o

IR R R R e I e R e e e I e e R R R
PPRrPriPrPrPrPrpRrRrPPrPdMNRMNIMNIMNRDNMNOMDDD LR ®®® L
OO0 0900000000000 O0000O00000O00000 0o
O 0O 0O 0 O R NWLRUWLOOOOORLRMNWS-RUODOOOORNW&RO
O P R K& — == == O P R OO === == O PR OO — == ==
2eree s2Eeree 2ekee

(rdc, mis)

Figure 5.1.: This figure represents the initial SPNs structures learned on the NLTCS data
set by the Learn-MSPN algorithm with the column parameter set to rdc.

This graph depicts the initial statistics of the SPNs learned with the column parameter set
to rde. The number of parameters decreases when the mis value increases and constant
rdc-threshold values. Additionally, the avg. LL decreases as the number of parameters
decrease. There exist one outlier for the avg. LL with an rdc-threshold value 0.01 and mis
value 0.0001. For this tuple, the avg. LL is -6.06 and 1392 nodes. Furthermore, the avg. LL
is significantly worse for SPNs with a higher share of sum nodes, e.g., the rdc-threshold and
mis tuples for (0.1,0.4), (0.1,0.5), (0.2,0.4), and (0.2,0.5). The number of leaf nodes has
the highest proportion in the number of nodes, followed by product nodes and sum nodes.
The number of edges has the most significant fraction in the number of parameters. The
number of edges holds the highest fraction because they connect each node within the SPNs.
Generally, the number of parameters is more extensive for lower rdc-threshold and mis
values. A lower rdc-threshold value restricts statistical independence between the variables.
Furthermore, restricting the statistical independence test leads to more dependent variables
since more conditioning steps initiate. Finally, initiating more conditioning steps leads to
a higher number of sum nodes. Thus, a lower rdc-threshold value minimizes the chance
to find statistical independence among variables leading to fewer product nodes. The mis
value indicates the minimum number of instances that must be present to create a sum node.
The conditioning step creates a leaf node when the number of instances contains fewer
items than the mis value. Hence, a higher mis value limits the frequency of conditioning
steps since the number of sum nodes decrease.

The NLTCS data set in Table 5.2 depicts the statistics for the SPNs structures generated by
the Learn-MSPN algorithm with the column parameter set to skips. For this configuration,
the increase of the mis value leads to an increase in avg. LL. Furthermore, the number of
edges decreases from 9923 to 523. In contrast, the SPNs generated with the rdc column
parameter show a higher proportion of edges than leaf nodes. This proportion difference
occurs when a single sum node serves as a naive SPNs to split the data instance by the
product nodes. In contrast to the rdc method, the skips method utilizes fewer parameters
to reach the avg. LL of -6.165.

43

—#nodes ® #sumnodes ™ #productnodes ™ # leaf nodes # edges — avg. LL

of parameters

Figure 5.2.: This figure represents the initial SPN structures learned on the MSNBC data
set by the Learn-MSPN algorithm with the column parameter set to rdc.

Figure 5.2 depicts the statistics for the initial SPNs learned with the rdc as a column
parameters. For this configuration, the statistics do not change significantly for different
configurations of mis values. Furthermore, an increasing mis value does not affect the
number of sum nodes, ranging from 1 to 3 sum nodes for all the SPNs. A higher proportion
of product nodes indicates that the decomposition step repeatedly discovers statistical
independence among variables. However, an increasing rdc value has an insignificant
impact on the SPN structure since a low rdc value is sufficient to split the variables.

In contrast, the SPN structure generated with the column parameter set to skips leads to
different results. For this configuration, an increasing mis value leads to an average LL
range from -6.339 and -6.556. Moreover, the available number of parameters for the SPNs
depicted in Table 5.2 is much higher for lower mis values than for the configuration used in
Figure 5.2.

44

Table 5.2.: The initial SPN structures generated with the Learn-MSPN and the column
parameter is set to skips. Each block consists of five different SPN structures with the
respective data set from the first column. On the vertical line’s right-hand side, each
structure’s associated quantity and quality measures referring to the SPN generated by
the mis value depicted in the second column.

data set mis ‘ avg. Il # nodes # sums # products # edges # leafes

nltecs 0.001 | -8.164 9924 991 2004 9923 6929
0.01 -6.12 2473 167 351 2472 1955
0.02 | -6.087 1229 70 155 1228 1004
0.03 | -6.092 977 54 123 976 800
0.06 | -6.128 524 22 57 523 445
msnbc 0.001 | -6.117 12335 1247 2542 12334 8546
0.01 | -6.109 2913 219 462 2912 2232
0.02 | -6.163 1743 120 257 1742 1366
0.03 | -6.202 1223 77 166 1222 980
0.06 | -6.286 531 25 56 530 450
kdd 0.001 | -2.387 33830 1298 2613 33829 29919
0.01 | -2.209 7871 180 369 7870 7322
0.02 | -2.203 4391 119 240 4390 4032
0.03 | -2.205 4331 119 239 4330 3973
0.06 | -2.264 2164 60 120 2163 1984
plants 0.001 | -15.548 44467 1535 3106 44466 39826
0.01 | -13.614 8939 188 402 8938 8349
0.02 | -14.127 5238 86 195 5237 4957
0.03 | -14.549 3510 38 96 3509 3376
0.06 | -15.491 1790 11 38 1789 1741
netflix 0.001 | -60.847 152105 1123 2679 152104 148303
0.01 | -56.803 13943 5 142 13942 13796
0.02 | -57.084 6970 1 69 6969 6900
0.03 | -57.251 5253 1 52 5252 5200
0.06 | -57.829 2627 1 26 2626 2600

5.5. Evaluation of SPA-SPN

Section 5.4 introduced the initial structure of the SPNs trained on the different data sets
with the Learn-MSPN algorithm. Each of the graphs in Figure 5.3 shows the relationship
between th, mis, and avg. LL for a fixed rdc-threshold value. The SPA-SPN algorithm
utilizes a threshold abbreviated as th to decide whether to merge a pair of leaf nodes by
a similarity measure. Furthermore, the similarity measure utilized is the JSD explained
in detail in Section 4.2.1. Section 5.2 introduced the data sets used to evaluate the given
SPNs structures. The initial SPNs structures are created with the Learn-MSPN algorithm
and its respective hyperparameters rdc-threshold and mis values with two different column
parameters, skips, and rdc. Additionally, a th value of 0 indicates that no merge candidates
are selected and refer to the initial SPNs structures. For example, Figure 5.3 with mis value
0.06, rdc-threshold value 0.1, and th value of O refer to the initial SPNs structure obtained
by the Learn-MSPN algorithm with column parameter set to rdc. The SPNs with a th value
of 0 refers to the initial SPNs structures introduced in Section 5.4. The evaluation metrics

45

from Section 5.1 relate to the figures in the following subsections. These figures show
heat maps with the individual metric as the color concerning the parameters th, mis, and
rdc-threshold. For example, a darker shade indicates a lower avg. LL value.

5.5.1. NLTCS data set

rde: 0.1 rdc: 0.2 rdc: 0.3

05 avg. LL
0.4
0.3
0.2 -6.5
0.1
£0.06 7
0.03
0.02
0.01 -75
0.001
0.0

© o o o o o oo o o e e
= RN W b, = N W g

T00°0
100
200
€00
900

T000
100
200
€00
900

T000

mis mis mis

Figure 5.3.: This Figure depicts the avg. LL concerning the hyperparameters. Learn-MSPN
generated the SPN structures for th 0 on the NLTCS data set and column parameter set to
rdc. The SPNs with th bigger than 0 relate to SPNs resulting from SPA-SPN.

rdc: 0.1 rdc: 0.2

0.5
0.4
0.3
0.2
0.1
£0.06
0.03
0.02
0.01
0.001
0.0

© o o o
N w0

rdc: 0.3

"

1499
586
229
89

Figure 5.4.: This Figure depicts the number of edges concerning the hyperparameters.
Learn-MSPN generated the SPN structures for th 0 on the NLTCS data set and column
parameter set to rdc. The SPNs with th bigger than 0 relate to SPNs resulting from
SPA-SPN.

°s o o0 ° o o
w b 0 =N W

T00'0
100
200
€00
900

o o o o o o o o o o
o o o o o o o o o o
2 = N o o S P M ® >

mis mis mis

Figure 5.3 shows the avg. LL, and Figure 5.4 depicts the number of edges concerning
the hyperparameters for the pruned initial structures with column parameter rde. Each
graph with a th value of 0 represents the avg. LL of the initial SPN structures ranging from
-6.1 to -7. Generally, the th value in the range from O to 0.4 has no significant impact
on the avg. LL of the resulting SPNs. For this configuration, a lighter transition in the
shade indicates the change in avg. LL for increasing th values. Furthermore, each graph
depicts this trend for different rdc-threshold. For the SPNs with an rdc-threshold of 0.1,

46

the number of edges decreases with an increasing th value. The linear transition of the
shades in Figure 5.4 and rdc-threshold of 0.1. This increase in the number of edges is
shown in 5.3, indicated by the linear transition in shades for increasing th values. This
increase indicates that the initial SPN structures depict the same performance as the pruned
SPNs while decreasing their parameters. For example, the configuration with rdc-threshold
value 0.1 and mis values in range 0.03 to 0.1 initially depicts an avg. LL of approximately
-6.1 with a th value of 0. For this configuration, the number of edges ranges from 900
to 400. The increasing th values ranging from 0.001 to 0.4 lead to SPNs with an avg. LL
of -6.2. Additionally, the number of edges decreases in the range from 400 to 100. In
contrast, the initial SPN structures with a small number of edges generally decrease rapidly
in avg. LL through pruning. For example, the rdc-threshold values 0.2 and 0.3 in Figure
5.4 depict this decrease in likelihood. Furthermore, these configurations show a slight
decrease in the number of edges represented by an abrupt change to a darker shade in
Figure 5.3. Generally, the SPA-SPN algorithm decreases the number of parameters for
SPNs with a higher initial number of edges which can be seen for smaller mis values and
increasing th. The diagonal shades from the bottom-left to the top-right corner in Figure
5.4 become darker for increasing hyperparameters for rdc-threshold 0.1. Additionally, for
these structures, the decrease in avg. LL is insignificant, which can be seen by the slight
change in the shade in Figure 5.3 for RDC 0.1. In contrast, initial SPN structures with
a small size in parameters lead to structures with a significantly worse performance in
likelihood. At the same time, the decrease in the number of edges is insignificant. The best
results for pruning are achieved for mis values between 0.01 and 0.06 because the change
in avg. LL is insignificant and the number of parameters decrease strongly.

47

05 avg. LL
04

0.3 -6.5
0.2 _7

0.1
£0.06

-75

0.03 -8
0.02 a5
0.01
0.001 -0
0.0 -95

0.001 0.01 0.02 0.03 006 01 02 03 04 05
mis

Figure 5.5.: This Figure depicts the avg. LL concerning the hyperparameters. Learn-MSPN
generated the SPN structures for th 0 on the NLTCS data set and column parameter set to
skips. The SPNs with th bigger than 0 relate to SPNs resulting from SPA-SPN.

RS

2742

757
209
57

Figure 5.6.: This Figure depicts the number of edges concerning the hyperparameters.
Learn-MSPN generated the SPN structures for th 0 on the NLTCS data set and column
parameter set to skips. The SPNs with th bigger than 0 relate to SPNs resulting from
SPA-SPN.

0.001 0.01 0.02 0.03 0.06 01 02 03 04 05
mis

Figure 5.5 shows the avg. LL, and Figure 5.6 depicts the number of edges concerning the
hyperparameters for the pruned SPN structures with column parameter skips. For this
configuration, the avg. LL of the initial SPN structures ranges from -6.08 to -8, represented
by the mis values with th 0. Furthermore, the number of initial edges ranges from 16 to
9922, shown in Figure 5.6, and a th value of 0. Generally, increasing mis and th values lead
to a decreasing avg. LL. The change in avg. LL is insignificant for initial SPN structures with
a higher number of parameters. For example, the mis values in the range from 0.001 to
0.06 depict initial SPN structures with a higher number of edges in the range from 600 to
9900 edges. Furthermore, the change in likelihood is insignificant for these configurations,
as shown in Figure 5.5 by a lighter transition in tone for increasing th values. The avg.
LL increases rapidly for SPN structures with mis value 0.001 and increasing th values.
This rapid increase means the SPA-SPN algorithm significantly improves the initial SPN
structure’s likelihood while reducing the number of edges. However, the avg. LL increases
abruptly for SPN structures with mis values above 0.06, shown by the abrupt change to

48

a darker shade in Figure 5.5. The change in avg. LL does not change significantly for
the mis values 0.01 and 0.02. Furthermore, a higher mis value leads to a significantly
worse likelihood and increasing th values. This case suggests that SPA-SPN does not retain
an SPN’s performance while the reduction in parameter size is insignificant. Generally,
SPA-SPN reduces the number of parameters shown in Figure 5.6 by the linear transition
to a darker shade. Furthermore, SPA-SPN retains or improves the avg. LL for initial SPN
structures with a larger parameter size. In contrast, SPA-SPN does not improve initial SPN
structures’ performance with a smaller parameter size.

5.5.2. MSNBC data set

rdc: 0.1 rde: 0.2 rdc: 0.3

05 avg. LL
0.4 -6.6
03

0.2

0.1
£0.06
0.03
0.02
0.01
0.001 —6.75
0.0
O o e 9 9 o
=N w s o = Now s o

oo 9o 9 o
Now oo =

T00°0
100
200
€00
900

T00°0
100
200
€00
900

T00°0
T00
€00
€00
900

mis mis mis

Figure 5.7.: This Figure depicts the avg. LL concerning the hyperparameters. Learn-MSPN
generated the SPN structures for th 0 on the MSNBC data set and column parameter set
to rdc. The SPNs with th bigger than 0 relate to SPNs resulting from SPA-SPN.

rde: 0.1 rde: 0.2

e o o 9o 9
=N oW r o,

T00°0
100
200
€00
900

T00°0
100
200
€00
900

mis mis

Figure 5.8.: This Figure depicts the number of edges concerning the hyperparameters.
Learn-MSPN generated the SPN structures for th 0 on the MSNBC data set and column
parameter set to rdc. The SPNs with th bigger than 0 relate to SPNs resulting from
SPA-SPN.

Figure 5.7 shows the average LL, and Figure 5.8 depicts the number of edges concerning
the hyperparameters for the SPNs. For this configuration, the average LL does not change

49

for lower th values. However, the number of edges decreases for lower th values, e.g.,
th values in the range from 0.0 to 0.1. This decrease indicates that SPA-SPN retains the
initial performance while reducing the number of parameters. The average LL decreases
with a maximum value of -0.15, shown in Figure 5.7, indicated by a darker shade for
an mis of 0.3. Furthermore, the number of edges decreases rapidly from 39 to 20 for
this configuration. This trend indicates that an SPN maintains a similar performance by
representing an SPN that has double its size in parameters. Generally, the Learn-MSPN
algorithm generates similar initial structures for the given mis and mis values. The number
of edges for these configurations is small compared to other data sets, e.g., the subsection
mentioned earlier for the NLTCS data set. Hence, the Learn-MSPN already generates
SPN structures representing independent leaf nodes. Furthermore, a smaller number of
edges indicates that the decomposition step of the MSPN algorithm initiates more often.
Additionally, the increase in mis values does not change the number of edges among
different SPN structures. The insignificant change in the number of edges indicates that
the decomposition step does not decrease the number of sum nodes when utilizing more
instances during the conditioning step.

50

05 avg. LL

-6.1
0.3

02
0.1
£0.06
0.03
0.02
0.01
0.001
0.0

-6.2

-6.3
-6.4
-6.5
-6.6
-6.7

Figure 5.9.: This Figure depicts the avg. LL concerning the hyperparameters. Learn-MSPN
generated the SPN structures for th 0 on the MSNBC data set and column parameter set
to skips. The SPNs with th bigger than 0 relate to SPNs resulting from SPA-SPN.

0.001 0.01 0.02 0.03 006 0.1 02 03 04 05

mis

os #Edges

3539

1015
291
83

Figure 5.10.: This Figure depicts the number of edges concerning the hyperparameters.
Learn-MSPN generated the SPN structures for th 0 on the MSNBC data set and column
parameter set to skips. The SPNs with th bigger than 0 relate to SPNs resulting from
SPA-SPN.

03
0.2
01
£0.08
0.03
0.02
0.01
0.001
0.0

0.001 0.01 0.02 0.03 0.06 0.1 0.2 03 04 05
mis

Figure 5.9 shows the average LL, and Figure 5.10 depicts the number of edges concerning
the hyperparameters for the SPNs. Generally, the number of edges decreases for increasing
th values shown by the linear transition to a darker shade in Figure 5.10. Furthermore, the
average LL decreases for initial SPN structures with mis values above 0.001. The decrease
in average LL is insignificant for SPNs with an initially higher number of edges, e.g., SPNs
with mis values range from 0.001 to 0.03. A lighter change in shade for increasing th
values in Figure 5.9 shows the aforementioned slight decrease in likelihood. However, the
likelihood decreases abruptly for initial SPNs with fewer edges. Furthermore, higher th
values and mis values above 0.2 depict the decrease mentioned above in likelihood for these
SPNs. Generally, SPA-SPN retains the performance of a given SPN structure for smaller
th values. For example, in Figure 5.9, the th values below 0.2 show a slight change in
likelihood for increasing th values. This slight decrease in performance means that SPA-SPN
maintains the performance while reducing the set of parameters. However, the number
of edges of the pruned SPNs is significantly higher than the SPNs generated with the rdc

51

column parameter. The number of edges for SPNs generated with rdc range from 50 to
22 edges. For the SPNs generated with the skips column parameter, the number of edges
indicates more complex models. For example, the SPNs generated by a mis value up to 0.03
show SPNs with an average LL range from -6.1 to -6.2, which show a better performance
than SPNs generated with column parameter rdc. However, the number of parameters
for these SPNs ranges from 12000 to 1000, shown in Figure 5.10. This indifference in
parameters indicates that Learn-MSPN with the column parameter rdc generates more
compact SPNs with a smaller size in parameters and a good average LL performance. The
SPA-SPN can reduce the number of parameters while maintaining a similar performance for
the configuration above. One explanation for the statement above is that Learn-MSPN finds
highly correlating variables during the decomposition step for the initial SPN structures.
This comparison suggests that SPA-SPN does not replace the decomposition step of the
Learn-MSPN algorithm by merging individual leaf nodes. However, SPA-SPN finds SPN
structures with a smaller or similar size in parameters and significantly better likelihoods
than Learn-MSPN for mis values between 0.3 and 0.5. For this configuration, the number
of edges range from 140 to 23 and achieves a avg. LL in range from -6.7 to -6.5. This
suggests that SPA-SPN creates SPN which are comparable or better relating Learn-MSPN
with column parameter rdc.

52

5.5.3. KDD data set

rdc: 0.1 rdc: 0.2 rdc: 0.3

05 avg. LL
0.4
0.3 -25
0.2
0.1 -3
£0.06
0.03 35
0.02
0.01 4
0.001 -
0.0
O 9 2 9 9 992 92090 oS 2 2 9 99 92 90 99 o 29 2 9 9 9 9 90 9o 0
e O ©o O o Fr N W &~ 0 e O © O © B N W &~ U e © © O o Fr N W & 0
o B N W o o B N W O o B N W O
=3 P P
mis mis mis

Figure 5.11.: This Figure depicts the avg. LL concerning the hyperparameters. Learn-MSPN
generated the SPN structures for th 0 on the KDD data set and column parameter set to
rdc. The SPNs with th bigger than 0 relate to SPNs resulting from SPA-SPN.

rdc: 0.1 rdc: 0.2 rdc: 0.3

o oo o
N W A~ O’

0.5
0.4
0.3
0.2
0.1

73t

517
274
145

Figure 5.12.: This Figure depicts the number of edges concerning the hyperparameters.
Learn-MSPN generated the SPN structures for th 0 on the KDD data set and column
parameter set to rdc. The SPNs with th bigger than 0 relate to SPNs resulting from
SPA-SPN.

)) . o o o o o o o o o
Qo =] w s @ BN W oR
=)

T000
€00
900

o
=}
=]
=

mis mis mis

o o ©
o o o
S B N
=

Figure 5.11 shows the avg. LL and Figure 5.12 depict the number of edges concerning the
hyperparameters for the SPNs. Generally, the avg. LL change is insignificant for increasing
th values. The avg. LL decreases at maximum by -1.5, reached at the highest th value of 0.5.
This decrease indicates that merging more dissimilar leaf nodes results in SPNs with worse
performance. However, the decrease in the number of edges is insignificant for increasing
th values. This decrease is shown in Figure 5.12 since the transitions to a darker color are
hardly present for increasing th values. Furthermore, this indicates that the initial SPN
structures separate highly dependent variables. One explanation for the above statement is
that a higher th value does not merge more dissimilar leaf nodes because a lower th value
captured all possible merging candidates.

53

0.5 avg. LL
0.4 -22
0.3

0.2 -2.25

0.1
£0.06
0.03

0.0200 8

0.01

0.001
0.0
0.001 0.01 0.02 0.03 0.06 01 02 03 04 05
mis

Figure 5.13.: This Figure depicts the avg. LL concerning the hyperparameters. Learn-MSPN
generated the SPN structures for th 0 on the KDD data set and column parameter set to
skips. The SPNs with th bigger than 0 relate to SPNs resulting from SPA-SPN.

os s

19162

10854
6148
3483

Figure 5.14.: This Figure depicts the number of edges concerning the hyperparameters.
Learn-MSPN generated the SPN structures for th 0 on the KDD data set and column
parameter set to skips. The SPNs with th bigger than 0 relate to SPNs resulting from
SPA-SPN.

0.3
0.2
0.1
£0.06
0.03
0.02
0.01
0.001
0.0

0.001 0.01 0.02 0.03 0.06 01 02 03 04 05
mis

Figure 5.13 shows the avg. LL and Figure 5.14 depict the number of edges concerning
the hyperparameters for the SPNs. Generally, the decrease in avg. LL is insignificant for
increasing th values. This decrease leads to a lighter change in the shade in Figure 5.14.
Additionally, the SPNs depict a better performance in likelihood than SPNs generated
with the column parameter set to rdc. However, the decrease in the number of edges is
insignificant for increasing th values and all mis values except 0.01. For the mis value 0.01,
the initial SPN structure is 1.5 times bigger than the pruned structure with a th value of 0.5.
This decrease in parameters indicates that initial SPN structures generated with column
parameter skips model highly dependent variables. Hence, an increasing th value does
not change the number of parameters of the resulting SPNs. This suggests that SPA-SPN
reduces the size in parameters for larger SPN structures while improving its likelihood.
However, SPA-SPN does not find independencies for smaller SPN structures and fails to
simplify these structures.

54

5.5.4. Plants data set

rde: 0.1 rdc: 0.2

0.5
0.4
0.3
0.2
0.1
£0.06
0.03
0.02
0.01
0.001
0.0

=}
i

avg. LL
-14

o o o o
N oW os

o
i

o o o ©
Now s

T00°0
T0°0
200
€00
900

T000

T00°0
T0°0
200
€00
900

mis mis mis

Figure 5.15.: This Figure depicts the avg. LL concerning the hyperparameters. Learn-MSPN
generated the SPN structures for th 0 on the plants data set and column parameter set to
rdc. The SPNs with th bigger than 0 relate to SPNs resulting from SPA-SPN.

rdc: 0.1 rdc: 0.2 rdc: 0.3

0.5 # Edges
0.4 0954
03
02 13424
0.1
£0.06 4400
003 1442
0.02
001 472
0.001
0.0

o o =]
[(5 =

e o0 o0 o e o0 0 o e 0 0L o
N oW o, N w R Now oo

T000
100
200
€00
900

T000
T00
<00
€00
900

T000
100
200
€00
900

mis mis mis

Figure 5.16.: This Figure depicts the number of edges concerning the hyperparameters.
Learn-MSPN generated the SPN structures for th 0 on the plants data set and column
parameter set to rdc. The SPNs with th bigger than 0 relate to SPNs resulting from
SPA-SPN.

Figure 5.11 shows the avg. LL, and Figure 5.12 depicts the number of edges with the
hyperparameters for the SPNs. The transparent areas in the figures indicate missing
data points. Generally, the avg. LL decreases significantly with increasing th values by a
maximum of -10. However, the number of edges decreases for all configurations, which
can be seen in Figure 5.18 by a lighter change in shade for increasing th values. The initial
SPNs structures have up to 3 times more edges than the SPNs pruned with SPA-SPN, e.g.,
the mis value 0.03 for rdc-threshold 0.1 and th 0.5. Furthermore, the decrease in avg. LL is
insignificant for smaller th values. This slight decrease indicates that SPA-SPN maintains
the performance while reducing the set of parameters of a given SPNs.

55

05 avg. LL

-15
0.3

02
0.1
£0.06
0.03
0.02
0.01
0.001
0.0

0.001 0.01 0.02 003 006 01 02 03 04 05
mis

Figure 5.17.: This Figure depicts the avg. LL concerning the hyperparameters. Learn-MSPN

generated the SPN structures for th 0 on the plants data set and column parameter set to
skips. The SPNs with th bigger than 0 relate to SPNs resulting from SPA-SPN.

05 # Ed&;es
0.4 4466
0.3
0.2 13081
0.1
3848
£0.06
0.03 1132
0.02
0.01
0.001
0.0

0.001 0.01 0.02 0.03 006 0.1 02 03 04 05

Figure 5.18.: This Figure depicts the number of edges concerning the hyperparameters.
Learn-MSPN generated the SPN structures for th 0 on the plants data set and column
parameter set to skips. The SPNs with th bigger than 0 relate to SPNs resulting from
SPA-SPN.

Figure 5.13 shows the avg. LL, and Figure 5.14 depicts the number of edges concerning
the hyperparameters for the SPNs. Generally, the avg. LL decreases significantly for higher
th values. Figure 5.17 shows the change in likelihood by the abrupt change in shade, e.g.,
th values above 0.2. In contrast, the avg. LL is similar to the initial SPNs structures for
lower th values, e.g., th values below 0.3. Therefore, the SPA-SPN algorithm maintains
the initially depicted likelihood when merging more similar leaf nodes. Furthermore,
the number of edges decreases greatly for increasing th values. Figure 5.18 shows the
rapid decrease in parameters indicated by a linear transition in the shade for increasing
th values. The initial SPNs structures contain up to 3 times more edges than the pruned
SPNs for th values up to 0.2. Additionally, the avg. LL for smaller th values do not differ
from the initial structures generated with the column parameter set to rdc. However, the
number of edges is significantly higher for the resulting SPNs with the column parameter
set to skips. When post-pruning the initial structures with SPA-SPN, the avg. LL becomes
significantly worse than the SPNs shown in Figure 5.16. Generally, SPA-SPN reduces the

56

number of parameters of a given initial SPNs structure while maintaining its performance.
The Learn-MSPN with the column parameter rdc generated SPNs with highly correlating
variables. Utilizing the SPA-SPN algorithm for these structures results in more compact
SPNs that depict similar performances. Hence, SPA-SPN reduces the complexity for SPNs
that depict a good distribution of the data set and larger structures. In contrast, SPA-
SPN is not able to replace the decomposition methods used by this configuration. One
argument for the above statement is that SPNs generated with the skips parameter result
in SPNs with a significantly worse performance when utilizing SPA-SPN. Hence the given
configurations show a trade-off between complexity and performance that deviates strongly
with increasing th values.

5.5.5. Netflix data set

0.05 0.1 0.160.210.260.320.370.420.47 0.05 0.1 0.160.210.260.320.370.420.47 0.05 0.1 0.160.210.260.320.370.420.47

mis mis mis

Figure 5.19.: This Figure depicts the avg. LL concerning the hyperparameters. Learn-MSPN
generated the SPN structures for th 0 on the Netflix data set and column parameter set to
rdc. The SPNs with th bigger than 0 relate to SPNs resulting from SPA-SPN.

rdc: 0.1 rdc: 0.2 rdc: 0.3

R

1205
0 646
: 347
) 186

0.05 0.1 0.160.210.260.320.370.420.47 0.05 0.1 0.160.210.260.320.370.420.47 0.05 0.1 0.160.210.260.320.370.420.47

Figure 5.20.: This Figure depicts the number of edges concerning the hyperparameters.
Learn-MSPN generated the SPN structures for th 0 on the Netflix data set and column

parameter set to rdc. The SPNs with th bigger than 0 relate to SPNs resulting from
SPA-SPN.

57

Figure 5.19 shows the avg. LL, and Figure 5.20 depicts the number of edges concerning
the hyperparameters for the SPNs. Generally, the avg. LL becomes significantly worse
for increasing th values by a maximum of -6. The decrease in avg. LL does not change
significantly after a th value of 0.1. Furthermore, the number of edges does not change
significantly for th values above 0.1. As mentioned earlier, the conditions indicate that the
SPNs satisfy a minimal structure, and further post-pruning leads to performance issues.
Generating SPNs structures with smaller mis values below 0.05 lead to overly complicated
models that did not fit into memory. However, the results show that SPA-SPN maintains
the performance of SPNs with a larger number of variables while reducing their size in
parameters when utilizing smaller th values. For example, the th values 0.05 and 0.1 show
a lighter change in the shade in Figures 5.20 and 5.19.

th

mis

Figure 5.21.: This Figure depicts the avg. LL concerning the hyperparameters. Learn-MSPN
generated the SPN structures for th 0 on the Netflix data set and column parameter set to
skips. The SPNs with th bigger than 0 relate to SPNs resulting from SPA-SPN.

th

mis

Figure 5.22.: This Figure depicts the number of edges concerning the hyperparameters.
Learn-MSPN generated the SPN structures for th 0 on the Netflix data set and column
parameter set to skips. The SPNs with th bigger than 0 relate to SPNs resulting from
SPA-SPN.

Due to the increased size in the Netflix data set variables, the generated SPNs structures
lead to overly complicated models. Furthermore, most of the models did not fit into

58

memory. Therefore, the following paragraph discusses SPNs generated utilizing a sub-set
of hyperparameters.

Figure 5.21 shows the avg. LL, and Figure 5.22 depicts the number of edges to the
hyperparameters for the SPNs. The avg. LL becomes significantly worse for increasing th
values. Additionally, the number of parameters does not decrease significantly for higher
th values. The change in avg. LL deviates strongly for a small increase in th values, e.g.,
by 0.1. Furthermore, the respective figures show an abrupt change to a darker shade.
Generally, SPA-SPN reduces the size in parameters immensly and creates up to 14 times
smaller SPN structures. However, reducing the number of edges results in substantial
performance losses. This loss can have two reasons: the small initial parameter size or a
higher number of variables of the given data set. The small size of the initial parameters
indicates that the given SPNs represent a minimal structure. This recurring pattern applies
to all data sets in the previous subsections. SPNs generated with higher mis values lead
to initial SPNs with a small number of parameters. For these configurations, the SPA-SPN
algorithm did not reduce the number of parameters significantly and did not maintain
the initial structures’ performance. Furthermore, a higher number of variables may lead
to more complex distributions depicted by an SPNs. When utilizing a higher number of
variables, the learned distributions depicted by individual leaf nodes can be dependent
on other variables, e.g., discussed in (Rahman and Gogate, 2016). Hence, separating the
variables by utilizing SPA-SPN may destroy indirect dependencies among different variables.
Furthermore, SPA-SPN only considers individual pairs of variables and does not involve
global information, e.g., other variables or nodes.

59

6. Conclusion and Future Work

We introduced a bottom-up, simple post-pruning algorithm SPA-SPN for Sum-Product
Networks. In contrast to other approaches, this work presents the first post pruning method
for SPNs that do not rely on a validation set. The structural information of an initial
SPN is used to compare and combine similar leaf nodes. SPA-SPN uses a distance metric
for comparison and a threshold value to decide whether nodes are similar enough to be
merged. The SPA-SPN algorithm pruned SPN structures generated with the Learn-MSPN
algorithm. Moreover, different hyperparameters for the conditioning and decomposition
steps, such as the randomized dependency coefficient and the minimum instances to
slice. SPA-SPN was applied to initial SPN structures learned from five real-world data sets,
including binary variables. Many insights can be gained from evaluating the SPA-SPN.
For instance, the method leads to a better understanding of the relationship between
thresholds, hyperparameters for the initial structures, and evaluation measures. Generally,
an increasing threshold value leads to SPNs with a higher Log-Likelihood and reduced size. It
was found that initial SPNs with a larger size in parameters improved or maintained the Log-
Likelihood when increasingly merging more dissimilar leaf nodes. This demonstrates that
the SPA-SPN method reduces the number of parameters of a given SPN while maintaining
its performance. Utilizing a post-pruning method that does not rely on a validation set has
the advantage of a simpler and faster framework because extensive data set evaluations
are left out.

However, SPA-SPN also entails some disadvantages. Data sets with a large number of
variables yield SPNs with an increased number of leaf nodes. Therefore the pairwise
comparison of similar leaf nodes requires evaluating many combinations, leading to a
higher computation time when pruning an SPN for all variables individually. As a result,
future work could include a framework to select a sequence of merge candidates for different
variables that maximize the performance.

Another point is that SPN structures modeling data with larger amounts of random variables
tend to have a decrease in performance in log-likelihood when processed by SPA-SPN. There
are two ideas to address the problem of poor performance when it comes to post-pruning
SPNs. The first is motivated by the reduced error pruning method for decision trees.
Merging further leaf nodes could be terminated when the Log-Likelihood for a validation
set decreases.

There is another idea, which incorporates a similarity measure to include leaf nodes with
different scopes within a sub-SPN. The benefit of including different scopes allows SPNs to
model indirect interactions between variables. For example, the ID-SPN Rooshenas and
Lowd (2014) structure learner achieved state-of-the-art results by considering indirect
variable interactions. According to Nguyen and Vreeken (2015), the JSD extends to the
multivariate case, which allows the comparison of leaf nodes with different scopes.

Finally, the SPA-SPN algorithm was evaluated on data sets with binary variables. Therefore,
the merging strategy can be extended for categorical and continuous distributions.

60

Bibliography

Augasta, M. Gethsiyal and T. Kathirvalavakumar (2011). “A Novel Pruning Algorithm
for Optimizing Feedforward Neural Network of Classification Problems”. In: Neural
Process. Lett. 34.3, pp. 241-258. por: 10.1007/s11063-011-9196-7. urL: https:
//doi.org/10.1007/s11063-011-9196-7.

Bartoldson, Brian et al. (2020). “The Generalization-Stability Tradeoff In Neural Network
Pruning”. In: Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual.
Ed. by Hugo Larochelle et al. urL: https://proceedings.neurips.cc/paper/
2020/hash/ef2ee09ea9551de88bc11fd7eeea93b0-Abstract.html.

Bekker, Jessa et al. (2015). “Tractable Learning for Complex Probability Queries”. In:
Advances in Neural Information Processing Systems 28: Annual Conference on Neural
Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada. Ed.
by Corinna Cortes et al., pp. 2242-2250. urL: https://proceedings.neurips.cc/
paper/2015/hash/bb7946e7d85c81a9%9e69feelceadab87c-Abstract.html.

Breiman, Leo (2001). “Random forests”. In: Machine learning 45.1, pp. 5-32.

Breiman, Leo et al. (1984). Classification and Regression Trees. Wadsworth. 1sBN: 0-534-
98053-8.

Cheng, Wei-Chen et al. (2014). “Language modeling with sum-product networks”. In:
Interspeech 2014, 15th Annual Conference of the International Speech Communication
Association, Singapore, September 14-18, 2014. Ed. by Haizhou Li et al. ISCA, pp. 2098-
2102. urL: http://www. isca-speech.org/archive/interspeech%5C _
2014/114%5C_2098.html.

Chow, C. K. and C. N. Liu (1968). “Approximating discrete probability distributions with
dependence trees”. In: IEEE Trans. Inf. Theory 14.3, pp. 462-467. por: 10.1109/TIT.
1968.1054142. urL: https://doi.org/10.1109/TIT.1968.1054142.

Clemen, R. and R. Winkler (1999). “Combining Probability Distributions From Experts in
Risk Analysis”. In: Risk Analysis 19, pp. 187-203.

Costa, Eduardo P., Sicco Verwer, and Hendrik Blockeel (2013). “Estimating Prediction
Certainty in Decision Trees”. In: Advances in Intelligent Data Analysis XII - 12th Interna-
tional Symposium, IDA 2013, London, UK, October 17-19, 2013. Proceedings. Ed. by Allan
Tucker et al. Vol. 8207. Lecture Notes in Computer Science. Springer, pp. 138-149. por:
10.1007/978-3-642-41398-8_13. urL: https://doi.org/10.1007/978-
3-642-41398-8%5C_13.

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). “Maximum likelihood from incomplete
data via the EM algorithm”. In: Journal of the Royal Statistical Society: Series B 39, pp. 1-
38. urL: http://web.mit.edu/6.435/www/Dempster77.pdf.

Dennis, Aaron W. and Dan Ventura (2012). “Learning the Architecture of Sum-Product
Networks Using Clustering on Variables”. In: Advances in Neural Information Processing
Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012.
Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States. Ed. by

61

https://doi.org/10.1007/s11063-011-9196-7
https://doi.org/10.1007/s11063-011-9196-7
https://doi.org/10.1007/s11063-011-9196-7
https://proceedings.neurips.cc/paper/2020/hash/ef2ee09ea9551de88bc11fd7eeea93b0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/ef2ee09ea9551de88bc11fd7eeea93b0-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/bb7946e7d85c81a9e69fee1cea4a087c-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/bb7946e7d85c81a9e69fee1cea4a087c-Abstract.html
http://www.isca-speech.org/archive/interspeech%5C_2014/i14%5C_2098.html
http://www.isca-speech.org/archive/interspeech%5C_2014/i14%5C_2098.html
https://doi.org/10.1109/TIT.1968.1054142
https://doi.org/10.1109/TIT.1968.1054142
https://doi.org/10.1109/TIT.1968.1054142
https://doi.org/10.1007/978-3-642-41398-8_13
https://doi.org/10.1007/978-3-642-41398-8%5C_13
https://doi.org/10.1007/978-3-642-41398-8%5C_13
http://web.mit.edu/6.435/www/Dempster77.pdf

Peter L. Bartlett et al., pp. 2042-2050. urL: https://proceedings.neurips.cc/
paper/2012/hash/f33bal15effa5c10e873bf3842afb46a6-Abstract.html.

Elomaa, Tapio and Matti Kaaridinen (2001). “An Analysis of Reduced Error Pruning”.
In: J. Artif. Intell. Res. 15, pp. 163-187. por: 10.1613/ jair . 816. urL: https:
//doi.org/10.1613/jair.816.

Frank, Eibe (2000). “Pruning Decision Trees and Lists”. In:

Gens, Robert and Pedro M. Domingos (2013). “Learning the Structure of Sum-Product
Networks”. In: Proceedings of the 30th International Conference on Machine Learning,
ICML 2013, Atlanta, GA, USA, 16-21 June 2013. Vol. 28. JMLR Workshop and Conference
Proceedings. JMLR.org, pp. 873-880. urL: http ://proceedings.mlr .press/
v28/gens13.html.

Geurts, Karolien et al. (2003). “Profiling High Frequency Accident Locations Using Associa-
tion Rules”. In: ‘Proceedings of the 82nd Annual Transportation Research Board, Washington
DC. (USA), January 12-16, 18pp.

Gogate, Vibhav, William Austin Webb, and Pedro M. Domingos (2010). “Learning Efficient
Markov Networks”. In: Advances in Neural Information Processing Systems 23: 24th Annual
Conference on Neural Information Processing Systems 2010. Proceedings of a meeting held
6-9 December 2010, Vancouver, British Columbia, Canada. Ed. by John D. Lafferty et al.
Curran Associates, Inc., pp. 748-756. URL: https://proceedings.neurips.cc/
paper/2010/hash/e5e63da79fcd2bebbd7cb8bf1c1d0274-Abstract.html.

Haaren, Jan Van and Jesse Davis (2012). “Markov Network Structure Learning: A Random-
ized Feature Generation Approach”. In: Proceedings of the Twenty-Sixth AAAI Conference
on Artificial Intelligence, July 22-26, 2012, Toronto, Ontario, Canada. Ed. by Jorg Hoff-
mann and Bart Selman. AAAI Press. URL: http://www.aaai.org/ocs/index.
php/AAAI/AAAI12/paper/view/5107.

Joyce, James M. (2011). “Kullback-Leibler Divergence”. In: International Encyclopedia of
Statistical Science. Ed. by Miodrag Lovric. Springer, pp. 720-722. po1: 10.1007/978-
3-642-04898-2_327. urL: https://doi.org/10.1007/978-3-642-04898-
2%5C_327.

Knuth, Donald E. and Ronald W. Moore (1975). “An Analysis of Alpha-Beta Pruning”.
In: Artif. Intell. 6.4, pp. 293-326. por: 10.1016 /0004-3702(75)90019-3. URL:
https://doi.org/10.1016/0004-3702(75)90019-3.

Ko, Ching-Yun et al. (2020). “Deep Model Compression and Inference Speedup of Sum-
Product Networks on Tensor Trains”. In: IEEE Trans. Neural Networks Learn. Syst. 31.7,
pp. 2665-2671. por: 10.1109/TNNLS.2019.2928379. urL: https://doi.org/
10.1109/TNNLS.2019.2928379.

Lin, Jianhua (1991). “Divergence measures based on the Shannon entropy”. In: IEEE Trans.
Inf. Theory 37.1, pp. 145-151. por: 10.1109/18.61115. urL: https://doi.org/
10.1109/18.61115.

Lowd, Daniel and Jesse Davis (2010). “Learning Markov Network Structure with Decision
Trees”. In: ICDM 2010, The 10th IEEE International Conference on Data Mining, Sydney,
Australia, 14-17 December 2010. Ed. by Geoffrey I. Webb et al. IEEE Computer Society;,
pp. 334-343. po1: 10.1109/ICDM.2010.128. urL: https://doi.org/10.1109/
ICDM.2010.128.

Lowd, Daniel and Amirmohammad Rooshenas (2013). “Learning Markov Networks With
Arithmetic Circuits”. In: Proceedings of the Sixteenth International Conference on Artificial

62

https://proceedings.neurips.cc/paper/2012/hash/f33ba15effa5c10e873bf3842afb46a6-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/f33ba15effa5c10e873bf3842afb46a6-Abstract.html
https://doi.org/10.1613/jair.816
https://doi.org/10.1613/jair.816
https://doi.org/10.1613/jair.816
http://proceedings.mlr.press/v28/gens13.html
http://proceedings.mlr.press/v28/gens13.html
https://proceedings.neurips.cc/paper/2010/hash/e5e63da79fcd2bebbd7cb8bf1c1d0274-Abstract.html
https://proceedings.neurips.cc/paper/2010/hash/e5e63da79fcd2bebbd7cb8bf1c1d0274-Abstract.html
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5107
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5107
https://doi.org/10.1007/978-3-642-04898-2_327
https://doi.org/10.1007/978-3-642-04898-2_327
https://doi.org/10.1007/978-3-642-04898-2%5C_327
https://doi.org/10.1007/978-3-642-04898-2%5C_327
https://doi.org/10.1016/0004-3702(75)90019-3
https://doi.org/10.1016/0004-3702(75)90019-3
https://doi.org/10.1109/TNNLS.2019.2928379
https://doi.org/10.1109/TNNLS.2019.2928379
https://doi.org/10.1109/TNNLS.2019.2928379
https://doi.org/10.1109/18.61115
https://doi.org/10.1109/18.61115
https://doi.org/10.1109/18.61115
https://doi.org/10.1109/ICDM.2010.128
https://doi.org/10.1109/ICDM.2010.128
https://doi.org/10.1109/ICDM.2010.128

Intelligence and Statistics, AISTATS 2013, Scottsdale, AZ, USA, April 29 - May 1, 2013.
Vol. 31. JMLR Workshop and Conference Proceedings. JMLR.org, pp. 406-414. URL:
http://proceedings.mlr.press/v31/lowd13a.html.

Mansour, Y. (1997). “Pessimistic Decision Tree Pruning Based on Tree Size”. In: ICML 1997.

Molina, Alejandro, Antonio Vergari, Nicola Di Mauro, et al. (2018). “Mixed Sum-Product
Networks: A Deep Architecture for Hybrid Domains”. In: Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of
Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in
Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018. Ed. by
Sheila A. Mcllraith and Kilian Q. Weinberger. AAAI Press, pp. 3828-3835. urL: https:
//www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16865.

Molina, Alejandro, Antonio Vergari, Karl Stelzner, et al. (2019). “SPFlow: An Easy and
Extensible Library for Deep Probabilistic Learning using Sum-Product Networks”. In:
CoRR abs/1901.03704. arXiv: 1901 .03704. urL: http://arxiv.org/abs/1901.
03704.

Murphy, Kevin P. (2012). Machine learning - a probabilistic perspective. Adaptive computation
and machine learning series. MIT Press. 1sBN: 0262018020.

Newman, C.L. Blake D.J. and C.J. Merz (1998). UCI Repository of machine learning databases.
URL: http://www.ics.uci.edu/$%5CsimSmlearn/MLRepository.html.

Nguyen, Hoang Vu and Jilles Vreeken (2015). “Non-parametric Jensen-Shannon Diver-
gence”. In: Machine Learning and Knowledge Discovery in Databases - European Conference,
ECML PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part II. Ed. by Annal-
isa Appice et al. Vol. 9285. Lecture Notes in Computer Science. Springer, pp. 173-189. por:
10.1007/978-3-319-23525-7_11. urL: https://doi.org/10.1007/978-
3-319-23525-7%5C_11.

Nicolson, Aaron and Kuldip K. Paliwal (2020). “Sum-Product Networks for Robust Automatic
Speaker Identification”. In: Interspeech 2020, 21st Annual Conference of the International
Speech Communication Association, Virtual Event, Shanghai, China, 25-29 October 2020. Ed.
by Helen Meng, Bo Xu, and Thomas Fang Zheng. ISCA, pp. 1516-1520. po1: 10.21437/
Interspeech.2020-1501. urL: https://doi.org/10.21437/Interspeech.
2020-1501.

Paris, Iago, Raquel Sanchez-Cauce, and Francisco Javier Diez (2020). “Sum-product net-
works: A survey”. In: CoRR abs/2004.01167. arXiv: 2004 .01167. urL: https://
arxiv.org/abs/2004.01167.

Patel, N. and S. Upadhyay (2012). “Study of Various Decision Tree Pruning Methods with
their Empirical Comparison in WEKA”. In: International Journal of Computer Applications
60, pp. 20-25.

Pedersen, M. W. and D. G. Stork (1996). “Pruning Boltzmann networks and hidden Markov
models”. In: Conference Record of The Thirtieth Asilomar Conference on Signals, Systems
and Computers 1, 258-261 vol.1.

Peharz, Robert, Bernhard C. Geiger, and Franz Pernkopf (2013). “Greedy Part-Wise Learning
of Sum-Product Networks”. In: Machine Learning and Knowledge Discovery in Databases -
European Conference, ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013,
Proceedings, Part II. Ed. by Hendrik Blockeel et al. Vol. 8189. Lecture Notes in Computer
Science. Springer, pp. 612-627. por: 10.1007/978-3-642-40991-2_39. URL:
https://doi.org/10.1007/978-3-642-40991-2%5C_39.

63

http://proceedings.mlr.press/v31/lowd13a.html
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16865
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16865
https://arxiv.org/abs/1901.03704
http://arxiv.org/abs/1901.03704
http://arxiv.org/abs/1901.03704
http://www.ics.uci.edu/$%5Csim$mlearn/MLRepository.html
https://doi.org/10.1007/978-3-319-23525-7_11
https://doi.org/10.1007/978-3-319-23525-7%5C_11
https://doi.org/10.1007/978-3-319-23525-7%5C_11
https://doi.org/10.21437/Interspeech.2020-1501
https://doi.org/10.21437/Interspeech.2020-1501
https://doi.org/10.21437/Interspeech.2020-1501
https://doi.org/10.21437/Interspeech.2020-1501
https://arxiv.org/abs/2004.01167
https://arxiv.org/abs/2004.01167
https://arxiv.org/abs/2004.01167
https://doi.org/10.1007/978-3-642-40991-2_39
https://doi.org/10.1007/978-3-642-40991-2%5C_39

Poon, Hoifung and Pedro M. Domingos (2011). “Sum-product networks: A new deep
architecture”. In: IEEE International Conference on Computer Vision Workshops, ICCV 2011
Workshops, Barcelona, Spain, November 6-13, 2011. IEEE Computer Society, pp. 689—
690. po1: 10.1109/ICCVW.2011.6130310. urL: https://doi.org/10.1109/
ICCVW.2011.6130310.

Queyranne, Maurice (1998). “Minimizing symmetric submodular functions”. In: Math.
Program. 82, pp. 3-12. por: 10.1007/BF01585863. urL: https://doi.org/10.
1007 /BF01585863.

Quinlan, J. Ross (1987). “Simplifying Decision Trees”. In: Int. J. Man Mach. Stud. 27.3,
pp. 221-234. po1: 10.1016/S0020-7373(87)80053-6. urL: https://doi.org/
10.1016/S0020-7373(87)80053-6.

— (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann. 1sBN: 1-55860-238-0.

Rahman, Tahrima and Vibhav Gogate (2016). “Merging Strategies for Sum-Product Net-
works: From Trees to Graphs”. In: Proceedings of the Thirty-Second Conference on Un-
certainty in Artificial Intelligence, UAI 2016, June 25-29, 2016, New York City, NY, USA.
Ed. by Alexander T. Thler and Dominik Janzing. AUAI Press. URL: http://auai.org/
uai2@16/proceedings/papers/71.pdf.

Rooshenas, Amirmohammad and Daniel Lowd (2013). “Learning Tractable Graphical
Models Using Mixture of Arithmetic Circuits”. In: Late-Breaking Developments in the Field
of Artificial Intelligence, Bellevue, Washington, USA, July 14-18, 2013. Vol. WS-13-17. AAAI
Workshops. AAAIL urL: http://www.aaai.org/ocs/index.php/WS/AAAIW13/
paper/view/7183.

- (2014). “Learning Sum-Product Networks with Direct and Indirect Variable Interac-
tions”. In: Proceedings of the 31th International Conference on Machine Learning, ICML
2014, Beijing, China, 21-26 June 2014. Vol. 32. JMLR Workshop and Conference Pro-
ceedings. JMLR.org, pp. 710-718. urL: http://proceedings.mlr.press/v32/
rooshenas14.html.

Rudin, C. (2018). “Stop explaining black box machine learning models for high stakes de-
cisions and use interpretable models instead”. In: Nature Machine Intelligence 1, pp. 206—
215.

Sguerra, Bruno Massoni and Fabio Gagliardi Cozman (2016). “Image Classification Using
Sum-Product Networks for Autonomous Flight of Micro Aerial Vehicles”. In: 5th Brazilian
Conference on Intelligent Systems, BRACIS 2016, Recife, Brazil, October 9-12, 2016. IEEE
Computer Society, pp. 139-144. po1: 10.1109/BRACIS.2016.035. urL: https:
//doi.org/10.1109/BRACIS.2016.035.

Vergari, Antonio, Nicola Di Mauro, and Floriana Esposito (2015). “Simplifying, Regularizing
and Strengthening Sum-Product Network Structure Learning”. In: Machine Learning and
Knowledge Discovery in Databases - European Conference, ECML PKDD 2015, Porto, Portugal,
September 7-11, 2015, Proceedings, Part II. Ed. by Annalisa Appice et al. Vol. 9285. Lecture
Notes in Computer Science. Springer, pp. 343-358. po1: 10.1007/978-3-319-23525-
7_21. urL: https://doi.org/10.1007/978-3-319-23525-7%5C_21.

Zhou, Zhi-Hua (2015). “Ensemble Learning”. In: Encyclopedia of Biometrics, Second Edition.
Ed. by Stan Z. Li and Anil K. Jain. Springer US, pp. 411-416. po1: 10.1007/978-1-
4899-7488-4_293. urL: https://doi.org/10.1007/978-1-4899-7488-
4_293.

64

https://doi.org/10.1109/ICCVW.2011.6130310
https://doi.org/10.1109/ICCVW.2011.6130310
https://doi.org/10.1109/ICCVW.2011.6130310
https://doi.org/10.1007/BF01585863
https://doi.org/10.1007/BF01585863
https://doi.org/10.1007/BF01585863
https://doi.org/10.1016/S0020-7373(87)80053-6
https://doi.org/10.1016/S0020-7373(87)80053-6
https://doi.org/10.1016/S0020-7373(87)80053-6
http://auai.org/uai2016/proceedings/papers/71.pdf
http://auai.org/uai2016/proceedings/papers/71.pdf
http://www.aaai.org/ocs/index.php/WS/AAAIW13/paper/view/7183
http://www.aaai.org/ocs/index.php/WS/AAAIW13/paper/view/7183
http://proceedings.mlr.press/v32/rooshenas14.html
http://proceedings.mlr.press/v32/rooshenas14.html
https://doi.org/10.1109/BRACIS.2016.035
https://doi.org/10.1109/BRACIS.2016.035
https://doi.org/10.1109/BRACIS.2016.035
https://doi.org/10.1007/978-3-319-23525-7_21
https://doi.org/10.1007/978-3-319-23525-7_21
https://doi.org/10.1007/978-3-319-23525-7%5C_21
https://doi.org/10.1007/978-1-4899-7488-4_293
https://doi.org/10.1007/978-1-4899-7488-4_293
https://doi.org/10.1007/978-1-4899-7488-4_293
https://doi.org/10.1007/978-1-4899-7488-4_293

A. Appendix

A.1. Description of Figures

Figure 5.1 shows the quantity and performance of the individual SPNs trained with the
Learn-MSPN algorithm and the configuration of the column parameter as rdc. The x-axis is
a tuple of rdc and mis hyperparameters used to learn the structure of the respective SPNs.
Furthermore, the rdc and mis tuple show in ascending order from left to right on the x-axis.
The figure shows SPNs generated with the rdc values 0.1, 0.2, and 0.3 and mis values in
the range of 0.0001 to 0.5. The y-axis shows two different domains, the avg. LL and the
statistics in the SPNs quantity labeled as the ”# of parameters”. Additionally, the logarithm
with base 10 scales the y-axis by the number of parameters. This visualization ensures
better readability, which allows comparing different figures. The bar diagrams and the
line plot with the feature ”# nodes” refer to the domain with ”# of parameters”, the avg.
LL is shown with the dark red line in the graph. The legend shows the features and their

respective color, e.g., ”# product nodes” shows the number of product nodes with a green
line.

A.2. Initial structures with rdc decomposition

—#nodes ® #sumnodes ™ #productnodes = #leaf nodes #edges —avg. LL

(%]
’6 2
1000
2 0 -225
E 2 |
g 108 L] TTTTT0 .. =
8
5 1 O) o0 o R YO A BE ol ol
:ﬂ: ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ
O 0000 o oo oo ocooocotovoocotovoco’cocoococooc oo
PPPPPPPPPPNMNNMDMDNMNNOMNMDDODND®OO®®WW0O® O
O 0000 0000000000000 0000000000 00
QO O O O O FP N W B U1 O O OO0 O FF N WAUUDOD O O OO FF N WA~ O
CERES— == =< OPRPREQO === == O PRGSO —— <= ==
22883 22888 22883
g g g
(rdc, mis)

Figure A.1.: This figure represents the initial SPN structures learned on the KDD data set
by the Learn-MSPN algorithm with the column parameter set to rdc.

65

——#nodes M #sumnodes M # productnodes ® # leaf nodes = #edges — avg. LL
-14
-16

avg. LL

-18
-20

of parameters

Figure A.2.: This figure represents the initial SPN structures learned on the plants data set
by the Learn-MSPN algorithm with the column parameter set to rdc.

—#nodes W #sumnodes M #productnodes M #leafnodes = #edges —avg. LL

of parameters
avg. LL

Figure A.3.: This figure represents the initial SPN structures learned on the Netflix data set
by the Learn-MSPN algorithm with the column parameter set to rdc.

A.3. Pruned structures evaluated on CMLL

rde: 0.2

CMLL-30
-5
-5.2
-5.4
-5.6
-5.8
-6

Figure A.4.: This Figure depicts the CMLL-30 concerning the hyperparameters. Learn-
MSPN generated the SPN structures for th 0 on the NLTCS data set and column parameter
set to rdc. The SPNs with th bigger than 0 relate to SPNs resulting from SPA-SPN.

T00°0
T00°0
100
200
€00
900
T00°0
100
200
€00
900

66

rdc: 0.1 rde: 0.2 rdc: 0.3

05 || CMLL-60
0.4 -3.1
03 a0
0.2
0.1 -3.3
£0.06 -3.4
0.03
-35
0.02
0.01 -3.6
0.001 _3.7
0.0
o O O © O O o o ©o © o © OO © o o o o o o c © o o o 0o ©o o o ©
o o o o ok M W s O o o o o o kR MW S O o o o o ok N W s O
o B N W O o B N W & S PN W e
=3 = =
mis mis mis

Figure A.5.: This Figure depicts the CMLL-60 concerning the hyperparameters. Learn-
MSPN generated the SPN structures for th 0 on the NLTCS data set and column parameter
set to rdc. The SPNs with th bigger than 0 relate to SPNs resulting from SPA-SPN.

rdc: 0.1 rdc: 0.2 rdc: 0.3

0.5 CMLL-30
0.4
03 -5.48
0.2
0.1 -5.5
£0.06
0.03 -5.52
0.02 -5.54
0.01
0.001 -5.56
00

e o o o0 o 0 0 0 0 0
BN W s w (I I U

T000
100
200
€00
900

T000
100
200
€00
900

mis mis mis

Figure A.6.: This Figure depicts the CMLL-30 concerning the hyperparameters. Learn-
MSPN generated the SPN structures for th 0 on the MSNBC data set and column parameter
set to rdc. The SPNs with th bigger than 0 relate to SPNs resulting from SPA-SPN.

rdc: 0.1 rde: 0.2 rdc: 0.3
0.5 CMLL-60
0.4
0.3 -3.59
0.2
0.1 -3.6
£ 0.06
0.03 -3.61
0.02
0.01 -3.62
0.001
0.0 -3.63
© 9 9 9 9 0 9 90 9o o © 9 9 9 9 9 9 9o 9o o9 © 9 © 9 9 2 9 90 9o o
o o o o o Ll N w = (4] o o o o o - nN w = w o o o o o Ll N w B~ (&2}
8 BN WO S PN W o 8 BN W o
mis mis mis

Figure A.7.: This Figure depicts the CMLL-60 concerning the hyperparameters. Learn-
MSPN generated the SPN structures for th 0 on the MSNBC data set and column parameter
set to rdc. The SPNs with th bigger than 0 relate to SPNs resulting from SPA-SPN.

67

rdc: 0.1 rde: 0.2 rdc: 0.3

05 CMLL-30
0.4
03

-2

0.2
0.1
£0.06 -25
0.03
0.02
0.01 -3
0.001
0.0
© o 9 9 9 9 2 9 9 9 © o o9 99 9 9 9o 9 © 9 9 9 990 0 92 9 9o
o O O 0O o B N W & » O O 0O 0 o kFr N W & 0 o © o 0O o B N W & ”
gpwum Eb—‘Num gpmwm
mis mis mis

Figure A.8.: This Figure depicts the CMLL-30 concerning the hyperparameters. Learn-
MSPN generated the SPN structures for th 0 on the KDD data set and column parameter
set to rdc. The SPNs with th bigger than 0 relate to SPNs resulting from SPA-SPN.

rdc: 0.1 rdc: 0.2 rdc: 0.3

0.5 CMLL-60
0.4 -1
o3 12
0.2 o
0.1 -1.4
£0.06 16
0.03
0.02 -1.8
0.01 2
0.001
-2.2
0.0
O O O O O 0O O O O o O O O ©O O O ©o O O O ©C O ©O O O O O O O o
S oo ook b e~ & S o oo o b ks S c oo okl bR

mis mis mis

Figure A.9.: This Figure depicts the CMLL-60 concerning the hyperparameters. Learn-
MSPN generated the SPN structures for th 0 on the KDD data set and column parameter
set to rdc. The SPNs with th bigger than 0 relate to SPNs resulting from SPA-SPN.

rdc: 0.1 rde: 0.2 rdc: 0.3

nin

CMLL-30

-a2
-43
-a4
-45

Figure A.10.: This Figure depicts the CMLL-30 concerning the hyperparameters. Learn-
MSPN generated the SPN structures for th 0 on the Netflix data set and column parameter
set to rdc. The SPNs with th bigger than 0 relate to SPNs resulting from SPA-SPN.

© 0 90 9 9 0 9 0 0 O e 92 0 9 9 90 O 9 o O o 0 9 9 9 0 9 9 0 O
o o o o o Ll N w o~ (4] o o o o o - nN w o w o o o o o Ll N w N~ (&2}
o B N W O o B N W O o P N W e
=3 P P

mis mis mis

68

rdc: 0.1 rdc: 0.2 rdc: 0.3

0.5
0.4
0.3
0.2
0.1
£0.06
0.03
0.02
0.01
0.001
0.0

o o oo
N W s

CMLL-60

-245
-25
-255
—26

Figure A.11.: This Figure depicts the CMLL-60 concerning the hyperparameters. Learn-
MSPN generated the SPN structures for th 0 on the Netflix data set and column parameter
set to rdc. The SPNs with th bigger than 0 relate to SPNs resulting from SPA-SPN.

o
=3
&

T000
100
200

T000
900

T00°0
200
€00

mis mis mis

rdc: 0.1 rdc: 0.2 rdc: 0.3

11

° oo o
PN W s

CMLL-30

Figure A.12.: This Figure depicts the CMLL-30 concerning the hyperparameters. Learn-
MSPN generated the SPN structures for th 0 on the plants data set and column parameter
set to rdc. The SPNs with th bigger than 0 relate to SPNs resulting from SPA-SPN.

o
o
>

T000
100
200

T000
900

T000
200
€00

mis mis mis

rdc: 0.1 rde: 0.2 rdc: 0.3

111

.o o °© o oo °
=N W B

CMLL-60
-7

=75
-8
-85
-9
-9.5
-10

Figure A.13.: This Figure depicts the CMLL-60 concerning the hyperparameters. Learn-
MSPN generated the SPN structures for th 0 on the plants data set and column parameter
set to rdc. The SPNs with th bigger than 0 relate to SPNs resulting from SPA-SPN.

o
=

T000
100
200

T000
900

1000
200
€00

mis mis mis

69

	Introduction
	Background
	Decision Trees
	Pruning
	Pre-pruning
	Post-pruning

	Sum-Product Networks
	Structure
	Evaluation

	Structure Learning
	Learn-SPN
	Learn-MSPN

	Related Work
	Pruning for Sum Product Networks
	Sum Product-Network with alternating Structure
	Simple Post-Pruning Algorithm for Sum-Product Networks
	Merge similar Leaf Nodes
	Integrate Merge Candidates

	Reduction in Parameter by merging similar leaf nodes

	Evaluation and Experiments
	Evaluation Metrics
	Datasets
	Setup
	Influence of the Parameters on the Learned Structures
	Evaluation of SPA-SPN
	NLTCS data set
	MSNBC data set
	KDD data set
	Plants data set
	Netflix data set

	Conclusion and Future Work
	Appendix
	Description of Figures
	Initial structures with rdc decomposition
	Pruned structures evaluated on CMLL

