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➢ Deep Neural Networks DNN (Artificial Neural Networks ANN’s with more than one 

hidden layer) used as classifiers 
➢ have a competitive prediction accuracy especially for 

high-dimensional data, e. g. classification of objects in images,

➢ but the network structure is generally not descriptive, 
i. e. an observer of the data transformations from layer to layer cannot conclude 
why this class was predicted. 

1 Foundations – Networks and Rules
1.1 Motivation by Deep Neural Networks DNN 

Instance vector Class
Classifier

=

DNN

What is it? very accurate answer

Why?  no (direct) answer
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1 Foundations – Networks and Rules
1.2 Deep Neural Network Classifiers
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1 Foundations – Networks and Rules
1.3 Sub-Modules in ANN / DNN

IR1=f1(I)

C=f(IR)

IR4=f4(I)

IR3=f3(I)

IR2=f2(I)
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using linear activation a:
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➢ Training:

➢ No Backpropagation 

➢ Layerwise = forward  

➢ ‘Neuronal’ data transformation function: 

➢ Decision Tree (‘ForwardThinking Deep Random Forest’)

➢ Random Forest (‘gc Forest’)

➢ Rule (explored here) 

➢ Training:

➢ No Backpropagation 

➢ Layerwise = forward  

➢ ‘Neuronal’ data transformation function: 

➢ Decision Tree (‘ForwardThinking Deep Random Forest’)

➢ Random Forest (‘gc Forest’)

➢ Rule (explored here) 

1 Foundations – Networks and Rules
1.4 Alternative Network Classifiers 

Instance vector
Intermediate 

Representation
= 

Class?

Alternative 
to 

linear + 
non-linear 
activation

Neuron

If generally yes, 
network is 

‘ensemble’ of
classifiers 



Thursday, August 20, 2020  |  Knowledge Engineering Group, Technische Universität Darmstadt  |  Daniel Jung  |  7

1 Foundations – Networks and Rules
1.5 Rule-Based Classification - Decision List

➢ Rule-based decision list classifiers (trained by SeCo algorithms like Ripper), 
➢ high predictive accuracy 
➢ descriptive, 

● exposing patterns relevant for the prediction. 

● because the instances of the instance space prior to the classification are grouped by eventually 
meaningful features different from the actual classes.

➢ Decision lists are ‘ensembles’ of rules and have a network 
structure

➢ SeCo produces ‘diverse’ rules (classifiers)
➢ Predictions are combined by the (predefined) ‘rule’: 

● First rule in list that covers the instance 

● determines the prediction of the decision list classifier
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1 Foundations – Networks and Rules
1.6 Sub-Modules in a Decision List 

1. “No Class” : Rule doesn’t cover instance
2. “Positive Class” : Rule covers instance
3. “Negative Class”: ‘Last’/default rule 

used if no other rule covered the 
instance
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1 Foundations – Networks and Rules
1.7 Ensembles of Rule-Based Classifiers

➢ Ensembles work well typically with different types of 
classifiers 

➢ Stacking  
➢ Level 0 model: Base classifier 
➢ Level 1 model: Meta classifier
➢ Rules (Rule set with one element) 

● can be used as base classifiers and
● as the meta classifier

➢ This model can be characterized as a network
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1 Foundations – Networks and Rules
1.8 Sub-Modules – Stacking of Rule Sets
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2 Network of Rules
2.1 Motivation 

➢ Idea: 

Network of stacked layers of diverse single rule classifiers

➢ Prediction accuracy and descriptiveness of classifiers could 
profit from a feed-forward network structure.

➢ Width : Increase diversity of single rule classifiers  that 
form each layer 

➢ Depth : Additional layers consist of single rules as meta 
classifiers 

● that profit from the diversity of preceding layers and 
● serve the succeeding layer as advanced diverse set of 

base classifiers
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2 Network of Rules
2.2 Classification Using Network Structure

Repeat for Depth
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2 Network of Rules
2.3 Network of Stacked Rule Classifiers

φ
2

(φ1, φ2)

(φ1, φ3, φ4)

(φ1, φ4)

r
11

r
12

Feature 
Vector

Instances
Feature 

Selection

r
31

Layer 1
Rules

Last
Meta-

Learner
Layer

φ
1
  

 

φ
3
 

φ
4

r
13

(c11, c12)

(c11, c13)

Meta-Instances
Feature Selection

r
21

r
22

(c21, c22)

Meta-Instances
Feature 

Selection

Layer 2
Meta-Learner
Rules

Input Output

Instance

      I 

Predicted
Class

      cStacking 
level-1 model

Stacking 
level-0 model

Stacking 
level-0 model

 Conjunctive Rule Layer Disjunctive Rule Layer

This Rule Serves 
as Level-0 Model 
for the Rules of 
Conjunctive Rule 

Layer 3

x<8

x>2

x≤2

y>5



Thursday, August 20, 2020  |  Knowledge Engineering Group, Technische Universität Darmstadt  |  Daniel Jung  |  15

2 Network of Rules
2.4 Rule Induction - Diversity

➢ Goal: Diversity of Rules in Each Layer

➢ Possible approach:
➢ Separate and Conquer – SeCo

● Pro: diverse rules  
● Contra: limited number of different rules

➢ Weighted Covering

● Pro: higher number of different rules
● Contra: decreasing difference between rules 

➢ Bagging

● Individual: each rule induced on different bootstrap sample data sets
● Per SeCo/Weighted Covering Cycle: Use same sample data set per set of rules

– Pro: for SeCo the separation of instances remains consistent 
➢ Random Attribute Subset Selection

● Pro: diverse rules  
● Contra: not ‘compatible’ with SeCo  
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2 Network of Rules
2.5 Rule Induction – Disjunctive Rules

➢ Goal: High Expressiveness of Final Hypothesis
➢ Sets of ordinary conjunctive rules are usually interpreted as disjunctions 
➢ effectively creating a hypothesis in DNF for binary classification 

➢ The final meta classifier: 
➢ single rule of the last layer of the network 
➢ would be a conjunctive rule since it would use predictions of conjunctive rules 

recursively 

➢ Solution:
➢ Conjunctive and disjunctive rules 
➢ alternate layerwise

➢ Disjunctive rule:
➢ empty rule covers no instance 
➢ adding alternatives generalizes the rule  
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2 Network of Rules
2.6 Rule Induction – Heuristic

➢ Confusion Matrix CM

➢ F-Measure
➢ to find trade off between recall and precision
➢ Optimize β for 

● rules in conjunctive layers
● rules in disjunctive layers



Thursday, August 20, 2020  |  Knowledge Engineering Group, Technische Universität Darmstadt  |  Daniel Jung  |  18

Contents

   1
Foundations -
Networks and
Rules

   2
Network 
of 
Rules

   3
Rule Types

   4
Evaluation



Thursday, August 20, 2020  |  Knowledge Engineering Group, Technische Universität Darmstadt  |  Daniel Jung  |  19

3 Rule Types
3.1 Types of Rules 

➢ Used Rules: 

All Rules that Form the Prediction Model
➢ Copy Rules: 

Used Rules that is equivalent to a rule from it’s preceding layer
➢ Feature Rules:

Used Rules that combine more than one rule from preceding layer
➢ Birth Rules:

Used Rules that has no condition, i. e. is not a combination of any rule 
in the preceding layer

➢ Unused Rules:

Rules that are induced by any layer but it’s not used by the succeeding 
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3 Rule Types 
3.2 Hypothesis Examples of Rule Networks

Feature (final) rule r41 
in layer 4

predicts class
if 

r32 (rule of layer3)
predicts class 

or 
r34 predicts class

Copy rule r32
in layer 3

predicts class
if 

r21 predicts class
(this would be a 
conjunction if it 

was a feature rule)
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3 Rule Types
3.3 Network Example 

f_measure_14_f_measure_18_accuracy_seco_secoFirst_rss_synth2Ddense-train_p-200_n-800_seed-1_8_6_synth2Ddense-train_p-200_n-800_seed-1

Attributes

layer0

layer1

layer2

layer3

layer4

layer5

layer6

layer7

a_0:

x

a_1:

y

a_2:

 

n0:

y < 3.032 ###

[[32.0 0.0][139.0 829.0]] 1000.0

refined to f_measure_0.148 : 0.91

class = 1

n1:

x >= 9.969 ###

[[5.0 0.0][134.0 829.0]] 968.0

refined to f_measure_0.148 : 0.64

class = 1

n2:

y < 3.415 AND

y >= 3.052 ###

[[6.0 0.0][128.0 829.0]] 963.0

refined to f_measure_0.148 : 0.69

class = 1

n3:

y < 4.319 AND

x >= 4.017 ###

[[13.0 0.0][115.0 829.0]] 957.0

refined to f_measure_0.148 : 0.84

class = 1

n4:

x >= 9.32 AND

y < 8.756 ###

[[21.0 0.0][94.0 829.0]] 944.0

refined to f_measure_0.148 : 0.91

class = 1

n5:

x >= 7.924 AND

y < 6.578 ###

[[27.0 0.0][67.0 829.0]] 923.0

refined to f_measure_0.148 : 0.95

class = 1

n0:

PredOfNode@l0n3 = 1 OR

PredOfNode@l0n5 = 1 OR

PredOfNode@l0n4 = 1 ###

[[102.0 0.0][98.0 800.0]] 1000.0

refined to f_measure_0.183 : 0.97

class = 1

n1:

PredOfNode@l0n0 = 1 OR

PredOfNode@l0n4 = 1 ###

[[4.0 1.0][94.0 799.0]] 898.0

refined to f_measure_0.183 : 0.5

class = 1

n2:

PredOfNode@l0n2 = 0 OR

PredOfNode@l0n4 = 1 ###

[[94.0 798.0][0.0 2.0]] 894.0

refined to f_measure_0.183 : 0.11

class = 1

n3:

[[0.0 0.0][0.0 800.0]] 800.0

refined to f_measure_0.183 : 0.0

class = 0

n4:

[[0.0 0.0][0.0 800.0]] 800.0

refined to f_measure_0.183 : 0.0

class = 0

n5:

[[0.0 0.0][0.0 800.0]] 800.0

refined to f_measure_0.183 : 0.0

class = 0

n0:

PredOfNode@l1n0 = 1 ###

[[102.0 0.0][98.0 800.0]] 1000.0

refined to f_measure_0.148 : 0.98

class = 1

n1:

PredOfNode@l1n1 = 1 AND

PredOfNode@l1n4 = 1 ###

[[4.0 1.0][94.0 799.0]] 898.0

refined to f_measure_0.148 : 0.57

class = 1

n2:

PredOfNode@l1n2 = 1 AND

PredOfNode@l1n1 = 0 ###

[[94.0 797.0][0.0 3.0]] 894.0

refined to f_measure_0.148 : 0.11

class = 1

n3:

[[0.0 800.0][0.0 0.0]] 800.0

refined to f_measure_0.148 : 0.0

class = 1

n4:

[[0.0 800.0][0.0 0.0]] 800.0

refined to f_measure_0.148 : 0.0

class = 1

n5:

[[0.0 800.0][0.0 0.0]] 800.0

refined to f_measure_0.148 : 0.0

class = 1

n0:

PredOfNode@l2n0 = 1 OR

PredOfNode@l2n1 = 1 ###

[[106.0 1.0][94.0 799.0]] 1000.0

refined to f_measure_0.183 : 0.96

class = 1

n1:

PredOfNode@l2n2 = 1 OR

PredOfNode@l2n4 = 0 ###

[[94.0 797.0][0.0 3.0]] 894.0

refined to f_measure_0.183 : 0.11

class = 1

n2:

[[0.0 0.0][0.0 800.0]] 800.0

refined to f_measure_0.183 : 0.0

class = 0

n3:

[[0.0 0.0][0.0 800.0]] 800.0

refined to f_measure_0.183 : 0.0

class = 0

n0:

PredOfNode@l3n0 = 1 AND

PredOfNode@l3n3 = 1 ###

[[106.0 1.0][94.0 799.0]] 1000.0

refined to f_measure_0.148 : 0.98

class = 1

n0:

PredOfNode@l4n0 = 1 ###

[[106.0 1.0][94.0 799.0]] 1000.0

refined to f_measure_0.183 : 0.98

class = 1

n0:

PredOfNode@l5n0 = 1 ###

[[106.0 1.0][94.0 799.0]] 1000.0

refined to f_measure_0.148 : 0.98

class = 1

n0:

PredOfNode@l6n0 = 1 ###

[[106.0 1.0][94.0 799.0]] 1000.0

refined to accuracy_NaN : 0.91

class = 1

Feature Rules

Copy Rules

Birth Rules

Not Used Rules

Attributes

First Layer

Final Rule
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3 Rule Types
3.4 Feature Rules 

➢ High number of feature rules indicates 
➢ learned  hypothesis could have profited from the network 

structure 
➢ and improved from layer to layer  

➢ If rules of the first layer (regular conjunctive rules) are 
disjunctively combined by a rule of the second layer (disjunctive 
layer) 

➢ and this rule performs already well,
➢ it is challenging to improve such a rule combining it 

conjunctively or disjunctively with other rules, 
➢ so it will likely be propagated to the last layer by copy rules 
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4 Evaluation
4.1 Experimental Setup

Goal: Find Correlations between parameters and accuracy to optimize parameters 

Hyper-parameters for rule induction – (random selection) 
➢ Network size:

● Number of layers:                                            l
● Maximum number of rules per layer:             n

➢ Trade off between recall and precision  
● f-measure parameter for conjunctive rules   β-con
● f-measure parameter for disjunctive rules    β-dis

➢ Diversification of rules 

(separate for first layer and all consecutive layers):
● SeCo (with cyclic bagging):                           SeCoFirst / SeCoAll
● Weighted covering (with cyclic bagging):     WeightedFirst / WeightedAll
● Bagging (sample for each rule):                    BaggingFirst / BaggingAll
● Random attribute subset selection               RssFirst / RssAll

– Number of attributes:                                k
● random enforcement of feature rules          

(enforcing a minimum 
of two conditions per rule):                             enforceTwoCond
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4 Evaluation
4.2 Accuracy - Synthetic Data Set
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4 Evaluation
4.3 Rule Characteristics

The rule characteristics show 
➢ how the number of feature rules is related to the number 

of mere copy rules 
➢ how many of the rules used for the hypothesis (used 

rules) are
● first layer rules = neither  copy nor feature rule
● copy rules
● feature rules

➢ number of birth rules indicating weak preceding rules 
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4 Evaluation
4.4 Rule Characteristics - Vote 
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4 Evaluation
4.5 Rule Characteristics

➢ Preferable configurations that encourage 
➢ feature rules over
➢ copy rules

➢ Could be observed in preliminary experiments where the first 
layer 

➢ uses random subset selection 
➢ but not SeCo or weighted covering to induce rules 
➢ led to lower accuracy in comparison with SeCo

➢ Random Hyper-parameter experiments could not reveal 
other correlations 
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4 Evaluation
4.6 Layerwise Accuracy 

➢ Expected increase in predictive accuracy with additional 
layers 

➢ Decrease possible, e. g. in case of enforced feature rules if 
one condition is optimal
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4 Evaluation
4.7 Layerwise Accuracy - Vote

Due to copy rules 
No change with 
increasing layers
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4 Evaluation
4.8 Layerwise Accuracy 

➢ For the applied diversity strategy and the dimension of the 
network (up to 100 rules per layer) 

➢ there could be no pattern observed that would increase 
the accuracy by adding layers

➢ If the performance of the rules in the first layers is kept low 
(e.g. by random attribute subset selection without SeCo in 
the First Layer) 

➢ an increase can be observed 
➢ but not beyond the accuracy that occurs if higher 

performance in first layers is encouraged
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Conclusion

➢ If SeCo in first layer 

highest accuracy typically 
➢ already within 2 layers 
➢ copy rules propagate result to 

available deeper layers 

➢ No considered configuration exceeds this accuracy
➢ additional layers can increase accuracy 
➢ but only from a lower accuracy in the first 2 layers (Random subset selection without 

SecO/Weighted Covering) 

➢ Future Work:

➢ Random subset selection per SeCo cycle 
● for high number of cycles – high number of rules per layer 

● In case of layerwise increase – experiments with more layers 

➢ Increase of number of random hyper-parameter configurations 
● to find correlations that allow parameter optimization 
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Thank You!

Questions?
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