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Abstract

Anomaly detection on timeseries data has been an important research field for a long time. While the
original anomaly detection methods have been based on statistical approaches, in recent years more and
more machine learning algorithms have been developed to detect anomalies on time series. Furthermore,
many researchers tried to improve these techniques using neural networks. In the light of the continuously
increasing number of anomaly detection methods of these three classes, the research community suffers
from the lack of a broad comparative evaluation of statistical, machine learning and deep learning meth-
ods. This thesis tries to overcome this shortcoming by studying 20 univariate and 24 multivariate anomaly
detection methods from the mentioned categories. Additionally, the evaluation will be done on publicly
available datasets, which serve as benchmarks for time series anomaly detection. To provide a reliable com-
parison, in addition to the accuracy of each method, the computation time of the algorithms is measured.
By analysing univariate as well as multivariate timeseries, we hope to provide a thorough insight about the
performance of these three classes of anomaly detection approaches.
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1 Introduction

Detecting anomalies has been a research topic for a long time. In a rapid digitizing world where the amount
of data transfer exceeds the human ability to study it manually, the common interest relies on automated
analyse of data. One of the most important data analysing tasks is the detection of anomalies in data.
Anomalies are data points which deviate from the normal distribution of the whole dataset and anomaly
detection is the technique to find them.

The impact of an anomaly is domain-dependent. In a dataset of network activities, an anomaly could imply
an intrusion attack. An anomaly in a financial transaction could signify a financial fraud. Anomaly detec-
tion in medical images could help to detect diseases. Other objectives of anomaly detection are industrial
damage detection, data leak prevention, identifying security vulnerabilities or military surveillance.
Anomaly detection methods are based on the type of the analysed data. For instance, the algorithms used
to detect anomalies in images are different to the approaches used on data streams. In such context, this
thesis focuses on methods for anomaly detection in time series data.

Anomaly detection on time series have been of interest for a long time. In 1979, Tukey [1] proposed a
statistical approach to detect anomalies on time series. Chang et al. [2] proposed to use the likelihood
ratio test(LRT) to detect anomalies on time series.

With the increase of computation abilities in recent decades, machine learning approaches achieved high
popularity in data science tasks like classification and pattern detection. Therefore, many researchers
started to use similar machine learning methods to detect anomalies in time series. For instance, they tried
to use clustering methods like k-Means to detect anomalous points in time series data.

In the last decade, deep learning approaches achieved tremendous progress in computer vision tasks. This
success motivated researchers to use similar methods to detect anomalies in time series data. Therefore,
different deep learning approaches like Multi -Layer Perceptron (MLP), Convolution Neural Network (CNN)
and Long-Short Term Memory (LSTM) were proposed as anomaly detection techniques.

While there is a wide spectrum of anomaly detection approaches today, it becomes more and more difficult
to keep track of all these techniques. As a matter of fact, it is not clear which of the three categories of
detection methods, i.e., statistical approaches, machine learning approaches or deep learning approaches
is more appropriate to detect anomalies on time series data. To the best of our knowledge, there is no study
yet comparing approaches of these three categories in their accuracy and performance.

In a situation like this, this thesis presents a quantitative comparison of multiple approaches of each cate-
gory. It is going to select a wide range of methods to cover well-performing techniques of each class. One of
the main contributions of this work is that it evaluates both univariate and multivariate anomaly detection
approaches. In order to provide a reliable comparison, the methods will be evaluated on multiple time
series datasets.

This thesis is structured as follows:

1. Basics: In this chapter, the main concepts of anomaly detection on time series, which are fundamental
to the subject, are defined. These concepts are vital to understand the algorithms in the following
chapters.




. Selected Anomaly detection approaches for time series: This chapter introduces different anomaly
detection algorithms of the three main categories. For each category, several approaches for univariate
and multivariate time series are explained.

. Approach: While first introducing related and similar works, here we explain how the evaluation of
the different methods is carried out.

. Experiments: As a preceding step to the evaluations, this chapter lists the setup of the experiments
by listing all hyperparameters of the used algorithms.

. Results: Finally, this chapter illustrates the evaluation results.

. Conclusion: The last chapter makes a final conclusion of the performed experiments while at the
same time providing an insight of future works.




2 Basics

In this section we define basic concepts which are fundamental in the anomaly detection process.

2.1 Anomalies and outliers

There is no consent about the distinction of anomalies and outliers. On one hand, the following citation is
mostly referenced to prove the equality of anomaly and outliers:

Outliers are also referred to as abnormalities, discordants, deviants, or anomalies in the data
mining and statistics literature.[3]

On the other hand, there are definitions which regard outliers as a broader concept which also includes
noise in addition to anomalies [4]. Others consider outliers as corruption in data while anomalies as irreg-
ular points, but having a specific pattern [5].

As we are evaluating time series in this thesis, we consider the two terms, outlier and anomaly, interchange-
ably.

But the important point is to deliver a formal definition for the concept of anomaly. This is essential, be-
cause different definitions of anomalies imply different methods to detect them. Thus, it is necessary to
define the main characteristics of anomalies and highlight the boundaries by the definition.

The most common definition of anomalies is the following:

Anomalies are patterns in data that do not conform to a well defined notion of normal behavior.[6]

But chronologically, one of the first definitions was given by Frank E. Grubbs [7]. He defined outliers in
1969:

An outlying observation, or "outlier," is one that appears to deviate markedly from other members
of the sample in which it occurs.

And Barnet and Lewis [8] used the following definition:

An observation (or subset of observations) which appears to be inconsistent with the remainder of
that set of data.

And finally D. Hawkins [9] defines outliers as follows:

An outlier is an observation which deviates so much from the other observations as to arouse
suspicions that it was generated by a different mechanism.

All these definitions highlight two main characteristics of anomalies:

* The distribution of the anomalies deviates remarkably from the general distribution of the data.




* The big majority of the dataset consists of normal data points. The anomalies form only a very small
part of the dataset.

These two aspects are fundamental to the development of anomaly detection methods. Especially, the
second property on the one hand, prevents us from using common classification approaches that rely on
balanced distributed datasets and on the other hand enables us to use approaches like auto-encoders as a
semi-supervised approach to detect anomalies which will be explained in the following chapters.

Thus, in this thesis anomaly and outliers are defined as follows:

Definition 2.1. An anomaly is an observation or a sequence of observations which deviates remarkably from
the general distribution of data. The set of the anomalies form a very small part of the dataset.

It is also important to distinguish between anomalies and noise. Noise can be a mislabeled example (class
noise) or errors in the attributes of the data (attribute noise) [4] which are not of interest to data analysts
[3]. While for instance, in a set of medical images an anomaly may show a tumor, noise is just a random
variation of brightness and color information which is unwanted. Thus, noise is not of interest to the
analyst, while an anomaly is.

Whereas the difference between anomalies and noise is highlighted here, it still remains a difficult task to
differentiate between them in some sort of data. This is illustrated in Figures 2.1 and 2.2:
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Figure 2.1: Data without Noise Figure 2.2: Data with noise

In both figures the main distribution is the same. In Figure 2.1 the anomalous point marked in red seems to
be obvious as it deviates significantly from the rest. But in Figure 2.2 it is difficult to distinguish the anomaly
point from the other points in the sparse space. This example shows that the difficulty to distinguish
between anomalies and noises depends on the dataset. Thus, a deep understanding of the dataset is
necessary to distinguish between anomalies and noises.

Anomalies should also be differentiated from novelties [6][10]. Novelty patterns are data points which
haven’t been observed in the data yet. The difference with anomalies is, that novelties are considered
normal after being detected once, for example, a new communication pattern to a server after implementing




a new protocol. However, due to the fact that most methods used for novelty detection are also used for
anomaly detection and vice versa, in this thesis we treat them equal.

2.2 Types of Anomalies

Anomalies can appear in different forms. Commenly, three different types of anomalies exist:

1. Point anomalies: If a point deviates significantly from the rest of the data, it is considered as a point
anomaly. For instance, a big amount of credit transaction which differs from other transactions is
a point anomaly. Hence, a point X; is a point anomaly, if its value differs significantly from all the
points in the interval [X;_x, X; k]

2. Collective anomalies: There are cases where individual points are not anomalous, but a sequence
of points are labeled as an anomaly. For example a bank customer withdraws $500 from her bank
account every day of a week. Although withdrawing $500 occasionally is normal for the customer, a
sequence of withdrawals is an anomalous behavior.

3. Contextual anomalies: Some points can be normal in some context, while detected as anomaly in
another context: Having an average temperature of 35° C in summer in Germany is normal, while
the same temperature in winter is regarded as an anomaly.

Knowing a priori, which kind of anomaly the data might contain, assists the data analyst to select the
appropriate detection method. Some approaches that are able to detect point anomalies, fail to identify
collective or contextual anomalies.

2.3 Stochastic Process and Time series

The data that is analyzed in this thesis are time series. Thus, it is fundamental to provide a definition of
it. But primarily, another term has to be defined, which regularly appears simultaneously with time series:
Stochastic Process. William Wei [11] provides a comprehensive definition:

Definition 2.2. A stochastic process is a family of time indexed random variables Z(w,t), where w belongs to
a sample space and t belongs to an index set.

Hence, if ¢ is fixed then Z is a random variable over the sample space.
A time series is a realization of a certain stochastic process. A formal distinct definition for time series is as
follows:

Definition 2.3. A time series is a sequence of observations taken by continuous measurements over time.
Generally, the observations are picked up in equispaced time intervals:

T = (td,t4,...,t9),d € Ny, t € N where d defines the dimension of time series




A time series can be a sequence of observations from one source, i.e., one sensor. In this case d = 1 and
the series is univariate. If we collect information from more than one sensor, d > 1, we have a multivariate
time series. In this thesis, we consider only discrete time series, therefore ¢t € N, perceived in equal time
intervals.

Instances of univariate time series are cash transactions or weather histories. Figure 2.3 shows a time plot
of a sample time series of an observed stock market value of an asset over five years.
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Figure 2.3: Sample time series showing the prices of a sample stock over
five years

An example of a multivariate time series is the collected data from several sensors installed in a car.

One main difference between time series and other datasets is that the observations do not only depend on
components d, but also on the time feature n. Thus, time series analysis and the used statistical methods
are mostly different from the methods used for random variables that assume independence and constant
variance of the random variables.

To data analysts, univariate and multivariate time series are important in a variety of fields like economy,
healthcare and medical research, trading, engineering and geophysics. These data are used for forecasting
and anomaly detection.

2.4 Time series patterns

Time series has some important properties which will be defined briefly here. They are significant in the
statistical anomaly detection methods used later.

2.4.1 Trend

A time series has a trend if its mean p is not constant, but increases or decreases over time. A trend can be
linear or non-linear. The time series in Figure 2.3 has a positive trend from 2005 until 2008 and a negative
trend afterwards.

2.4.2 Seasonality

Seasonality is the periodic recurrence of fluctuations. The time series is called seasonal because seasonal
factors like time of the year or day of the week, or other similarities are influencing it. Thus, it always has




a fixed period of time that is limited to a year. Figure 2.4 shows a seasonal time series. It is the monthly
home sales index for 20 major US cities between the years 2000 and 2019.
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Figure 2.4: Sample time series showing the prices of a sample stock over
five years

2.4.3 Cyclic

A cyclic time series is influenced by time factors where there period is not fixed and the duration is above
a year, e.g., a decade. The time series in Figure 2.4 also has an approximate 12 year cycle.

2.4.4 Level

The time series level is equal to the mean of the series. If a time series has a trend then it is often said that
the level is changing.

2.4.5 Stationarity

Intuitively, a stationary time series is a time series having the same characteristics over every time interval.
Formally, we can express it as follows [12]:

Definition 2.4. X, is a stationary time series, if for all s, the distribution of (x4, ..., x4+s) is equal.

The above definition implies that a stationary time series z1, .., z7 will have the following characteristics:

1. Constant mean, thus no trend exists in the time series.
2. The time series has a constant variance.
3. There is a constant autocorrelation over time.

4. The time series has no seasonality, i.e., no periodic fluctuations.

1



2.4.6 White noise

White noise ¢; is a stochastic process, which is uncorrelated over time from a fixed distribution with a con-
stant mean x = 0 and a constant and finite variance o. Thus, white noise is stationary. One important
characteristic of white noise is that its autocorrelation function (ACF) and its partial autocorrelation func-
tion (PACF) are zero, meaning that there is no dependence between two different timestamps. Usually, in
many theoretical models it is assumed that white noise is Gaussian: € ~ N (0, o).

2.5 Anomaly detection

After having a general definition for anomaly and time series, we will define what anomaly detection means
and what kind of methods exist.

In literature, different terms are used that have the same or similar meaning to Anomaly Detection: Event
detection, novelty detection, (rare) event detection, deviant discovery, change point Detection, fault detection,
intrusion detection or misuse detection [13]. The different terms reflect the same objective: to detect rare
data points that deviate remarkably from the general distribution of the dataset. The amount of deviation is
usually regarded as a measure of strength of the anomaly or probabilistic looked as the likelihood of being
an anomaly which is called: anomaly score. Thus formally, anomaly detection can be defined as a function

¢:

6 RV SR

2.1
o(z) > 7 @D

where ~ is the anomaly score and z € X C RY and where X is the dataset.

To convert the continuous value ~ into a binary label — normal vs. anomaly — a threshold § is defined where
all points with an anomaly score greater than § are marked as an anomaly. Thus, let ¢score := ¢, then the
binary labeling anomaly detection method ¢4, can be defined as:

Pbinary : RY — {normal, anomaly}

anomaly  if Gscore(x) >0 (2.2)

normal  otherwise

¢binary(x) — {

Anomaly detection using ¢uinary is DOt a trivial binary classification. As stated in Definition 2.1, anomalies
form a very small part of the dataset. Often the anomalous part of a dataset is less then 1%. Therefore,
usual binary classifiers would achieve above 99% accuracy if all data points would be labeled as normal,
making anomaly detection a more difficult task. Nevertheless, to achieve satisfying results in anomaly
detection, the proper anomaly detection method has to be selected which is dependent on the properties
of the inspected data. The following properties are important for selecting the appropriate approach:

1. Temporal vs Non-Temporal data: Non-Temporal data can be medical images, protein sequences etc.
Temporal data include time series, but also data with timestamps of unequal interval.
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2. Univariate vs Multivariate data: Univariate data takes only one dimension like the stock prices while
multivariate contain more than one. Instances of multivariate time series are images or time series
observed by several sensors.

3. Labeled or unlabeled data: A dataset is labeled if a label exists for each element in the dataset, which
determines if it is a normal or anomalous data point. A labeled dataset with normal and anomalous
points is the object of supervised anomaly detection methods. It is also possible that the dataset is
completely labeled but only consists of normal points. Then, it will be analysed by semi-supervised
methods. Finally, unlabeled data is the object of unsupervised anomaly detection methods.

4. Types of anomalies in the dataset: Section 2.2 introduced different anomaly types. This informa-
tion affects the selection of the anomaly method. Point anomalies are detected by methods for rare
classification. To detect collective anomalies the methods focus on unusual shapes in the data while
searching for deviation aids finding contextual anomalies.

In this thesis, we focus on univariate and multivariate temporal data and specifically time series containing
labeled normal and anomalous points. Therefore, we will introduce the general concepts of these kinds of
methods here.

2.5.1 Anomaly detection on time series

Anomaly detection on non-temporal data like spatial data is different than on time series. For example one
of the main methods to detect anomalies in spatial data is by measuring the deviation of the abnormal points
to the rest of the data. Another way is to cluster the whole dataset and mark all points as anomalies that
lie in less dense regions. The main assumption about spatial data is that the data points are independent
from each other.

This is different in time series data. Here, the data points are not completely independent, but is assumed
that the latest data points in the sequence influence their following timestamps. Following this, values of
the sequence change smoothly or show a regular pattern. Thus, sudden changes in the sequence will be
regarded as an anomaly. To show this behavior, consider the following example which demonstrates a time
series listing the temperature in °C of an engine recorded every 10 minutes:

30,31, 33,32, 34, 35, 35, 85, 87, 88, 89, 89

If these points were regarded as independent points, most methods will not identify any anomalous be-
havior, but detect two equal distributed clusters. But in a time series the sudden change from 35°C to
85°C should be detected as an anomaly. The dependency between timestamps also results in the fact that
anomalies in time series are generally contextual or collective.

Aggarwal [3] breaks down anomaly detection methods for time series into two main categories:

1. Anomaly detection based on prediction of the time series
2. Anomaly detection based on unusual shapes of the time series

Most statistical anomaly detection methods on time series are based on time series prediction. On the other
side, there are several machine learning methods, which try to detect anomalies using clustering methods
on time series. The selected method is dependent on whether the time series is univariate or multivariate.
Therefore, we will give an overview while highlighting their differences.
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2.5.2 Anomaly detection on univariate time series

Anomaly detection in time series is strongly linked to time series analysis and forecasting methods. To
detect anomalies in univariate time series, a forecasting model is fitted to the training data. Then, the
test data is used for making prediction. To make a prediction on the test data, usually a sliding window is
used. A sliding window is a subsequence of a dataset, which is fed as the input to the model enabling it to
predict the following timestamp. Formally, let w be the width of the sliding window, and suppose we want
to predict xz;, and ¢ be the learned forecasting model. To forecast x; the following function and input data
is used:

T; = Y((Ticws -y Tiz1)) (2.3)

The anomaly score can be computed by measuring the distance between the predicted value z; and the
real value z;:

where d is a distance function. In univariate time series, usually the euclidean distance is used. The
deviation e; — also called error value — is proportional to the anomaly score. If the anomaly score is above
a threshold ¢, it is marked as an anomaly.
As mentioned, there are also approaches which try to detect anomalies in time series by looking for unusual
shapes. Therefore, in contrast to spatial data, a sliding window with width w is defined. Then, for each
timestamp z; the preceding w-timestamps are analysed using some clustering or density methods. These
methods are based on the assumption, that an contextual or collective anomaly will show a deviating shape
which can be detected by these clustering or density methods. We will dwell on this issue in chapter 3.

2.5.3 Anomaly detection on multivariate time series

Multivariate Anomalies are much more complicated than univariate ones. As the dimension of the data
increases, the necessity of a larger arsenal of data points extends. This makes the computation more
cumbersome.

Anomaly detection based on time series prediction on multivariate time series is not as easy as in univariate
time series. The rising number of random variables in multivariate time series increases the likelihood of
prediction errors of the forecasting method. For univariate time series, mostly the euclidean distance is
used to compute the deviation between the dependent variables. Thus, the euclidean distance between
the prediction and the real value is proportional to the anomaly score in univariate time series. This is not
often the case in multivariate time series. In multivariate time series two sort of deviations could result in
an anomaly:

* Anomaly due to deviation of one univariate time series: There are some time series data where
deviation in each of the univariate parts of the multivariate time series produces an anomaly. For
example, a multivariate time series for network intrusion detection, which has a univariate time
series detecting the host connection IP, another univariate time series for the port numbers that are
called, and one containing the number and kind of packets sent to the server. If we have a large
number of ICMPv6 packets sent to the server — whether from one machine source or multiple ones
— this could reflect an anomaly like a Ping of death attack. Or if a single machine is sending lots of
packages to the server, it could be a denial of service attack. Or if the univariate data shows that many
different ports are called in a small time interval, then that might be a port scan attack. Hence, for
such data each univariate time series could be analysed separately and if a deviation in one occurs,
it could be detected as an anomaly.
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* Anomaly due to deviation of the correlation of several univariates: Sometimes an anomaly occurs due
to the relationship of some random variables. Figure 2.5 clarifies the idea:

«  Anomaly .—-

-4 -2 0 2 4 6 8

Figure 2.5: Anomaly in multivariate data

Here, you have a bi-variate dataset. We assume that the data is the content of a sliding window with
width w of a multivariate time series with z; € R, Vi € {1,...,w}. The red point is an anomaly we
want to detect. If we consider each anomaly dimension as a univariate time series, the projected
points parallel to the x- and y-axis will be analysed. The abnormal point in the bi-variate time series
will be projected in the most dense area on each of the univariate time series. Therefore, it will not
be detected!

Figure 2.5 also shows how using euclidean distance can mislead us in detecting deviations in mul-
tivariate time series. If we imagine the centroid of the data in the center of the green points, then
the euclidean distance between the anomaly to the centroid is less than many normal points that lie
in the upper left or lower right of the cloud. Therefore, other similarity functions like Mahalanobis
distance are proposed. We will return to this issue in chapter 3

2.5.4 Supervised vs. Semi-supervised vs. Unsupervised Anomaly detection methods

If the time series dataset is labeled, such that for each timestamp it is known if it is an anomaly or not and
additionally the dataset contains normal and anomalous timestamps, then a supervised anomaly detection
method can be used. Supervised anomaly detection methods are able to detect an appropriate value for §
to classify all timestamps z; as an anomaly if the corresponding anomaly score is ¢(z;) > 4.
Semi-supervised approaches can be used if the dataset only consists of normal points and no anomaly is
existing. Then a model is trained, which fits to the distribution of the time series and detects any new point
deviating from this distribution as an anomaly. One-Class SVN or GANs are usual methods used for this
sort of data.

Finally, unsupervised anomaly detection methods assume that the time series data is unlabeled. Most
unsupervised anomaly detection methods try to determine ¢ by analyzing the distribution of all e;,i €
{1,..., N} and use the 7-percentile value as 6. One widespread approach is to set § = 30 where o is the
standard deviation of the distribution of ¢;,7 € {1, ..., N}.

In this thesis we will focus on supervised anomaly detection methods and use labeled datasets in our
experiments to evaluate them.
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2.5.5 Statistical vs. Machine Learning vs. Deep Learning Anomaly detection approaches on
time series

Munir et al. [14] categorize outlier detection methods in probabilistic models, statistical models, linear
models, proximity based models, and outlier detection in high dimensions while referencing on Aggarwal’s
book [3].

We believe that all anomaly detection methods on time series data can be divided in three main categories:

1. Statistical methods
2. Classical machine learning methods
3. Methods using neural networks (Deep Learning)

This categorization is goal-driven as we want to inspect if they behave differently. Some studies merge
the second and third class in machine learning approaches [15]. The boundary of the third category using
neural networks is rather clear as it only contains methods using some kind of a neural network. In chapter
3 we will define what a neural network is. In contrast, the boundary between statistical and machine
learning approaches are vague. Generally, statistical approaches assume that the data is generated by a
specific statistical model [16]. On the other hand, machine learning methods consider the data generation
process as a black box and try to learn from the data only. The machine learning methods are based on
the implicit assumption that the underlying data generation process is not relevant as long as the machine
learning methods are able to produce accurate predictions [17]. Thus, the machine learning methods rely
on data modelling. Breiman [16] regards these two approaches as two different cultures recommending
to use the machine learning approach. There is an ongoing debate about which of these methods performs
better. In this thesis, we want to evaluate each of them quantitatively to provide more clarity on this subject.
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3 Selected Anomaly detection approaches for time
series

In this chapter, the different anomaly detection methods are introduced. We divide the approaches in three
categories: statistical approaches, classical machine learning approaches and anomaly detection methods
using neural networks.

As there is a huge difference between these approaches when used for univariate time series on the one
hand and using them for multivariate time series on the other hand, we further divide each section to
explain the corresponding methods.

3.1 Anomaly detection using statistical approaches

As statistical approaches, we have selected some famous regressive models like AR, MA, ARMA, ARIMA and
some of the models that have worked well in the Makridakis Competitions (also known as M-Competitions)
and also some of recently published papers. Although M-Competitions compare statistical forecasting meth-
ods, the anomaly detection methods on time series is closely linked to the forecasting approaches. In this
regard, they provide a good reference for effective statistical algorithms in time series analysis. This section
is divided into approaches targeting univariate time series and multivariate ones.

3.1.1 Univariate Approaches

1. Autoregressive Model (AR)
One of the most basic stochastical models for univariate time series is the Autoregressive model (AR).
AR is a linear model where current value X; of the stochastic process (dependent variable) is based
one a finite set of previous values (independent variables) of length p and an error value e:

p
thzai'thi‘i'C‘i'Et (3.1)
i=1

The AR model in Equation 3.1 with a preceding window length of p is also called AR process of order
p or AR(p). The error values ¢; are considered to be uncorrelated and have a constant mean of zero
and constant variance o. In this model, € is used to determine the anomaly score.

The values of the coefficients a1, ..., ap, ¢ can be approximated by using the training data and solving
the corresponding linear equations with least-squared regression. After that, ¢; for each X; can be
computed, which represents the anomaly score. Hence, the anomaly score is equal to the difference
between the forecasted value and observed one [18].
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AR models assume that the data is stationary. Thus, it is important to analyse the data and transform
it if necessary.

. Moving Average Model (MA)

While the AR model considers X; as a linear transformation of the last p observations of a time series
{z¢, 241, ..., 24—}, the moving average Model (MA) considers the current observation X, as a linear
combination of the last ¢ prediction errors {e;, €;—1, ..., €—q}:

q
Xp=> ai-eitpte (3.2)
i=1

The MA model in Equation 3.2 with a preceding window of length ¢ is also called MA process of order
q or MA(q).

p is the mean of the time series and the coefficients {ao, ..., a, } are learned from the data. In contrast
to AR, learning the coefficients in MA is more complicated. While in the AR model preceding values
{z¢, 241, ...,24—,} are known, in the MA model the values of {¢, €1, ...,4} are unknown at the
beginning. The errors are known after the model is fitted. Thus, they are optimized sequentially.
Therefore, a closed solution for the MA models does not exist and an iterative non-linear estimation
algorithm is used to solve MA models [19].

After fitting the model, we use the deviation to detect anomalies like in the AR model.

. Autoregressive Moving Average Model (ARMA)
Another model is the combination of AR and MA, which is often used for univariate time series in
practise. A time series of the ARMA(p,q) model is dependent on last p observations and ¢ errors:

p q
X = Z a; - Xi—; + Z bi - er—i + € (3.3)
=1 =1

{Xr} is an ARMA(p,q) process if { X1} is stationary.

ARMA models use less variables in practice compared to AR and MA. However, the main challenge is
to select appropriate values for p and ¢. The bigger these two values are, the more likely is it that the
model overfits, resulting in too many false negatives in the anomaly detection process. On the other
side, if they are chosen too small, the model will underfit and too many false positives will arise, i.e.,
data points are detected as anomalies although they are not. In both cases, the model is not able to
detect the anomalies correctly.

There are several ways to fit the model and find appropriate values for p and ¢:

a) Using correlograms: First of all the data must be transformed, if necessary, to become station-
ary. Each ARMA model has its own specific autocorrelation and partial autocorrelation graphics,
which can be visualized in a correlogram. The same is true for AR and MA. Thus, the auto-
correlation function (ACF) and partially autocorrelation function (PACF) of the time series is
computed. Then, it will be discovered which p and which ¢ of the ACF and PACF correlogram
of ARMA(p,q) are similar to ours. This is an iterative process where different values of p and ¢
are evaluated.

b) Leave-One-Out Cross-Validation: Another proposed way is using the observed data to mini-
mize the error value by assigning different combinations of p and ¢ using leave-one-out cross-
validation [3].
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¢) Box-Jenkins Method[20]: The Box-Jenkins method which was introduced by George Box and
Gwilym Jenkins proposes a iterative method:

1. Identification: Use the data information to select the best model that represents the data
by setting the p and ¢ values. Additionally, evaluate whether the data is stationary and
transform it if this is not the case. For this purpose, the ACF and PACF plots are helpful.

2. Estimation: The model is fitted to the data so that the parameters a; and b; can be estimated.

3. Diagnostic checking: The fitted model is checked with the data to evaluate its performance
and if any inadequacies are witnessed. If the result is inadequate, we return to step 1.

These approaches are not only used for the ARMA model, but are general methods for all statistical
approaches.

. ARIMA Model

One of the main problems with datasets is the fact that they could be non-stationary. Stationarity is
a precondition for models like ARMA. The ARIMA model is a generalization of the ARMA model. In
addition to the p and ¢ parameter, it is also defined by a d parameter which defines the number of
times the time series is differenced. For d = 1, the time series {xy, ..., 7} is differenced as follows:

X=X, —X,-1,Vie{1,..,T} (3.4)

The effect of differencing is best shown through plotting some data. Figure 3.1 shows the stock data
from 2.3 for the years 2005 until 2008. The data shows clearly a positive trend. Therefore, we do
not have stationary data here. However, Figure 3.2 shows the daily changes of the same stock over
the three years and the data is stationary now:
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Figure 3.1: Stock value from 2005 until 2008
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Figure 3.2: Value changes of the stock value from 2005 until 2008
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Here, Figure 3.2 plots the differences between the consecutive data points of Figure 3.1.
Differencing removes a trend in the time series resulting in a constant mean. If the trend is non-linear,
differencing must be done several times, thus, d > 1.

Differencing is also used to remove seasons. The Seasonal Differencing is as follows:

X; = X; — X;_,, where n is the duration of the season (3.5)

After fitting the ARIMA model, anomalies are detected by evaluating the deviation of the predicted
point to the observed one.

. Simple Exponential Smoothing (SES) [21]

While in the previous models, the prediction is a linear optimization problem, SES uses a non-linear
approach by taking the previous time series data to predict assigning exponential higher weights to
the latest observations:

X1 =aXi+a(l—a) X1+ a(l —a)’Xi o+ ... +a(l —a)V X, N

3.6
where « € [0, 1] (36

Thus, X4, is a weighted combination of the previous data points. The parameter « defines the rate
at which the weights decrease, which is exponential. Therefore, it is called Exponential Smoothing.
The smaller « is, the more weight is given to data points that are more distant. This is listed in the
following table:

a 0,2 0,4 0,5 0,6 0,8
Xr 0,16000 0,24000 0,25000 0,24000 0,16000
Xy 0,12800 0,14400 0,12500 0,09600 0,03200
Xr_s 0,10240 0,08640 0,06250 0,08840 0,00640
Xr_3 0,08192 0,05184 0,03125 0,01536 0,00128
Xr_a 0,06554 0,03110 0,01563 0,00614 0,00026
Xr_s 0,05243 0,01866 0,00781 0,00246 0,00005
Xre 0,04194 0,01120 0,00891 0,00098 0,00001

Figure 3.3: SAS Coefficients for X; to X;_¢ for different o values

. Double and Triple Exponential Smoothing (ES)[22]

SES assumes that the data is stationary. SES can be extended to also handle non-stationary data,
which is called Double Exponential Smoothing. Here an additional parameter 3 is introduced to
smooth the trend in the series. If the data also contains seasonality the Triple Extension Smoothing
is used. This extension also contains a parameter  to control the effect of seasonality.

. Time series Outlier Detection using Prediction Confidence Interval (PCI) [23]

This approach uses a sequence of previous data which are weighted non-linear to forecast the next
data point. Then, by using the threshold, they classify a data point as anomaly or normal.

Thus, to calculate X, it uses a window of past observed points of the series:

2%
Dot W Xi—j

X = 2k
Zj:l Xij

3.7)
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where w;_; is the weight for X;_; and it is proportional to the inverse of the distance between X}
and X;_;. This gives temporal closer points X; more weight. If the anomaly detection is done offline,
a two sided window can be computed:

k k
X, = Zj:l we—j Xo—j + Zj:l Wiy Xt (3.8)

k k
Zj:l Xt*j + Zj:l Xt+j

Then, the approach computes an upper and lower bound for the anomaly detection:

PCI = Xt + taygkfl -sq/1+ i (39)
Here, the factor ¢, 2,1 is the p-th percentile of a Students ¢-distribution with 2k — 1 degrees of
freedom, s is the standard deviation of the model residual, and k is the window size used to calculate
s. If X; is outside the boundaries, it is marked as an anomaly.
Thus, this method has some hyperparameters: « to calculate the plausible range of PCI and & as the
window size. Here, the analyst faces again the challenge to overcome overfitting and underfitting by
adjusting these parameters correctly.
The authors used this method for hydrological time series data. In their corresponding experiments,
they recommend an « value from the interval [0.85,0.99] and % value from the interval [3, 15]
This method is a simplification of the previous methods as the coefficients are not fitted by the model
like AR, MA, ARMA or other autoregression approaches. It does also not use exponential weights
like the ETS methods. However, it was included in the evaluation of this thesis, because it uses a
k-Nearest Neighbor (k-NN) attempt and is a newer approach that was published in 2014.

3.1.2 Multivariate Approaches

1. Average of anomaly scores of multiple univariate time series[18]
One of the simplest approaches used for anomaly detection on multivariate time series is used to
compute the anomaly score on each individual univariate time series and take the average of this
score as the total anomaly score of the whole multivariate time series. It is also possible to take the
maximum and minimum anomaly score. We will evaluate all of them.
To compute the anomaly score for each univariate time series, some of the univariate anomaly detec-
tion methods explained so far can be used. For instance, Varun Chandola [18] uses the k-NN method
and Windows based approach with One-Class SVM to assign an anomaly score to each individual uni-
variate time series. In this thesis, we will evaluate Autoregressive Model (AR), Moving Average(MA),
Extreme Gradient boosting (XGBoost) and One-Class Support Vector Machine (OC-SVM). XGBoost
and OC-SVM will be explained in Section 3.2.1.
One of the most important shortcomings of this approach is that it ignores the relationship between
the random variables. We explained this issue in section 2.5. Often an anomaly in multivariate time
series affects all components in such a way that they are not detectable by univariate anomaly detec-
tion methods because univariate methods fail to combine information about the outlier among the
component series [24].
Despite this shortcoming, we will evaluate this anomaly detection method to have a persistent model
to compare other approaches with.
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2. Anomaly detection by projection

One of the main approaches to detect anomalies in multivariate time series is to project a multivari-
ate time series to univariate time series and then detect the anomaly by evaluating the deviation of
a point or set of points.
Chandola [18] proposes a window based technique reducing a multivariate time series into a univari-
ate time series by exploring the change in the correlation structure of the time series using subspace
monitoring. Cheng et al. [25] uses a kernel matrix which contains the similarity information between
the multiple time series. Pefia and Prieto [5] project the data onto the direction that maximizes or
minimizes the kurtosis coefficients where then they identify the outliers . Gupta et al. [26] extended
this approach by adding the directions of minimal and maximal kurtosis coefficients in addition to
orthogonal directions. Then, they use an iterative approach to clean the model of outliers where
they can finally estimate the outlier effects and model parameters . In our evaluation, we will take
Chandola’s approach based on correlation of the subspaces of the multivariate time series: Subspace
Monitoring for Multivariate Time Series
A multivariate time series can be converted into a univariate one, if the univariate time series con-
sists of temporal points containing the difference between two successive multivariate time series
windows. The original concept is based on the method proposed by Jordan et al. [27].
Let X; € R7*? be a multivariate time series consisting of d univariate time series with length T
Also let w be the length of a window, so that W; = x4, 41, ..., 4. Then, W; and W;_; are two
successive windows. Consider, V; and V;_; as the subspace of the principle components of W; and
W;_1 capturing a% of the total variance. Then, the change ¢;_;; is the maximum change between
the two spaces V; and V;_;. This can be computed by solving the eigenvalue problem of the following
matrix:

VI ViaViL v (3.10)

The eigenvalues of the Equation 3.10 are as follows:
AL > A2 > > Ay (3.11)

where p and ¢ are the number of basis vectors of V; and V;_; respectively. It can be shown that the
following equations apply:
cosly = A1, ...cos0p 14 = A\piq (3.12)

According to Manabu Kanu et al. [28], the following statement is true:

The change of subspace, when an m-dimensional subspace F1 changes to F2, is defined as the maximum
distance between an arbitrary unit vector x in F2 and the subspace F1.

Hence, the change between the two subspace V; and V;_; can be expressed as:

Ot—1,t = 1 — Ain (3.13)

The proof of Equation 3.10 can be seen in [18]. Consequently, the multivariate time series { X} is
converted into a univariate time series {o_,,+1}. After that, a univariate anomaly detection method
like One-class SVM can be used to detect the anomalies. In this thesis, we will use the AR-Model,
MA-Model, OC-SVM and XGBoost as univariate approaches to evaluate this algorithm. OC-SVM and
XGBoost will be explained in Section 3.2.
One advantage of this approach is that it is not necessary to first fit the VARMA model.
There are also approaches which can be used to estimate the similarities between two spaces. Gupta
et al. [25] computes the average cosine of the angle 6 between the basis vectors of the two spaces V;
and V;_1:

VIV VI

sim(Vi, Vi) = A

(3.14)
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where k is the number of principle components in the two spaces. In their approach, the two sub-
spaces have an equal number of principle components. The Equation 3.14 can be rewritten as:

ko k
1
sim(Vi,, Vizq) = Z Z Z cosQGij (3.15)
j=1 i=1

which can be rewritten as

k k 2
Doict D2j=1 AV AV, ;€08 0s;
k

where )y, ; is the eigenvalue of the ith principle component of V;.
In this thesis, the proposed method of Chandola will be used.

sim(Vi, Viz1) = (3.16)

. Time series Outlier Detection using Prediction Confidence Interval (PCI) [23]

Yu et al. recommend to use the same univariate approach for multivariate time series. Therefore,
each univariate time series of the multivariate time series is analyzed separately using the PCI method
explained before. Thus having a d-dimensional time series, d are each used analyzing a univariate
time series. This results in d anomaly scores for each timestamp z; € R%. The mean of this anomaly
scores is the anomaly score of the multivariate timestamp.

. Vector based Autoregressive Model (VAR)

Vector based Autoregressive model is a AR-Model for multivariate time series. Multivariate time
series of a VAR model are based on the assumption that each timestamp is dependent on the previous
timestamps and the values of other variables. Thus let X; = (21,22, ...,24¢) be a timestamp of a
multivariate time series such that X; ¢ R?. Hence, X; is a (d x 1) vector. Then, a p-th order VAR
model X; is equal to:

Xi=c+01X; 1 +02X4 2+ ...+0,X; )+ ¢ (3.17)

where ©; is a d x d matrix. Like the AR-Model for univariate time series, ¢; is white noise.

To detect anomalies on a multivariate time series, first a p-th order VAR model is fitted on the given
time series. After that, the deviation ¢ is used to determine if a timestamp X; is an anomaly or not.
Leigh et al. [29] use the euclidean distance to compute the amount of deviation between the observed
timestamp X; and the predicted one X;. As the euclidean distance is not always the best option for all
kind of data, we also use the Mahalanobis distance to include the relationship between the variables
of the error values.

. Vector Autoregression Moving-Average (VARMA)

VARMA is a multivariate ARMA process. Equal to the univariate ARMA process, a VARMA process is
defined by the p-th order vector AR-Model(VAR) and a ¢-th order vector MA-Model(VMA). Thus, let
X, be a (p, q)-VARMA model, then X is rewritten as:

Xi =601 X 1 +60X; o+ ...+ @pXt—p + Piep—1 + Poeso + ...+ (I)qﬁt_q + €

p q
(3.18)
= Z O X1+ Z D€t —m + €
=1 m=1

After fitting the VARMA-Model, similar to the VAR approach, we will use the error value ¢; to assign
an anomaly score to each timestamp. Also here, we will evaluate the euclidean and mahalanobis
distance.
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3.2 Anomaly detection using classical machine learning approaches

Machine learning algorithms try to detect anomalies in the time series dataset without assuming a specific
generative model. They are based on the fact that it is not necessary to know the underlying process of the
data, to be able to make time series prediction and time series anomaly detection. Therefore, these methods
are well advanced outside the field of statistics [16]. Many researchers argue that a theoretical foundation
of a model can be neglected, if the method performs effectively in practise [30]. In such context, in this
section several univariate and multivariate anomaly detection methods, using classical machine learning
algorithms, are introduced. Later, the performance of these algorithms are compared to the statistical
approaches introduced so far and the deep learning approaches in Section 3.3.

3.2.1 Univariate Approaches

1. K-Means Clustering — Subsequence Time-Series Clustering (STSC)
One of the clustering algorithms for anomaly detection is using K-Means clustering [31]. This method
is also called Subsequence time-series Clustering (STSC) [32]. To use K-Means as an anomaly detection
method for time series data, sliding windows approach is used [33] [34]. This implies that given a
time series { X7} = (z1, z9, ..., z7) and window length w and a slide length ~, the time series { X1}
results in a set of sub sequences S:

S = {(20, Z1, s Tw)s (T04rys Tlgys oo Tty )s ooy (TT 0y TT—wpp 15 -, TT) } (3.19)

After defining the desired number of clusters k, the k-Means algorithm is executed on the dataset
S until it converges resulting in & centroids [35]. The centroids are the mean of the vectors in the
specific cluster. The set of k& centroids shape the set C.

To detect anomalies, the distance of each subsequence s € S to its nearest centroid is computed
which results in the sequence &:

& = (eo, €1, €5)) (3.20)
where ¢; for i € {0, ..., |S|} is:
e; = min(d(s; — ¢)) (3.21)
VeeC

where d is distance function. Usually, the euclidean distance is used for univariate data.

Thus, the sequence £ represents the error value of each sliding window. By defining a threshold § a
window s; € S is an anomaly if the corresponding error value e; > 6.

The main challenge of this approach is specifying an appropriate value k. The complexity of this
method is O(kNrw) where k is the number of clusters, r the number of iterations until convergence,
N the number of objects (here NV = |S|) and w the length of the sliding window [36].

Note: Lin et al. [36] have demonstrated in their work that using sub-sequences of time series for
clustering algorithms is meaningless. They showed that the cluster centers found for several run of
K-means algorithm on the same dataset are not significantly more similar to each other than the
cluster centers of a random walk dataset. That means that after being asked to present the centroids
on a dataset, they could just present the centroids of a random walk and nobody would be able to
distinguish between them [36]. They also tried other algorithms like hierarchical clustering which is a
deterministic approach compared to K-means, but received the same result. The same was approved
on several datasets which furthermore confirmed their claim that using sub-sequences of the time
series data for clustering techniques is meaningless. They also tried different distance measures like
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Manhattan, L., and Mahalanobis distance. Furthermore, by using K-Means with £ = 3 and w = 128
on the famous Cylinder, Bell and Funnell (CBF) dataset, they showed that the resulting centroid are
sinus waves, which are totally different to the instances in the CBF dataset. Several authors tried
to analyse this behavior mathematically [32, 37, 38] and there have been a lot of attempts to solve
these problem or at least to show time series patterns that would work with STSC [39, 40]. But the
problems remain generally unsolved[41].

We will use STSC in our evaluation as it still is one of the basic clustering approaches and serves as
a comparing artifact.

. Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

Another anomaly detection method based on clustering is Density-Based Spatial Clustering of Ap-
plication with Noise algorithm (DBSCAN) [42]. But in comparison to other clustering methods like
STSC or CBLOF[43], it also analyses the density in the data.

The method classifies the data points into three different categories:

* Core points
* Border points
* Anomalies

To classify the points, the user has to specify two parameters: € and p where € is the distance to
declare the neighbors of the analysed point and p is the minimum number of points each normal
cluster has to have.

To classify a point, first the e-neighbors of each point have to be determined. Thus, for the dataset D
where D = {z;|z; € R,i € {1,...,n}}, the e-neighbors of z; is:

Definition 3.1. € — neighbors(x;)= {xj|x; € D : ¢(x;,xj) < €, x5 # xj}

where ¢ is a distance function.
Then, a point x; € D is a Core Point if :

Definition 3.2. CorePoint(x;)= true < € — neighbors(x;) > u

Border points are declared as follows:

Definition 3.3. BoarderPoint(x;) == true < 3x; € D : x; # x; N xj € € — neighbors(x;) A
CorePoint(x;) == 1

It is also possible to set a threshold ¢ for border points, such that it should have more than ¢ Core-
Points as neighbors.
Finally, anomalies are defined as follows:

Definition 3.4. Anomaly(x;) == true < CorePoint(x;) == false A BoarderPoint(z;) == false

Gelik et al. [44] have used DBSCAN for anomaly detection on univariate time series dataset, which
contains the daily average temperature observations for 33 years. They first split the dataset into
sequences containing the data of a month. Then, the data is normalized using the mean and vari-
ance of the data’s sequence.. After that, the DBSCAN is run on each sequence and the anomalies are
detected as described before. The main challenge is to select appropriate values for the parameters
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e-Distance and p as the minimum number of points in each cluster.

. Local Outlier Factor (LOF)

Another prominent clustering algorithm is Local Outlier Factor (LOF). In contrast to DBSCAN, it is not
based on density but finding the nearest neighbors (K-NN)[45] while also focusing on local outliers.
LOF was initially designed to detect anomalies on spatial data [46]. But Breuning et al.[47] extended
the approach to use it also for time series data.

Let D be a dataset and « € D. To calculate the LOF value of a data point x, the following steps has to
be performed:

a) Compute the k-distance §; of x:
let £ € N, and ¢ a distance function, then ¢, = k-distance of z if:

o(x,y) = o, where x € D and y is the k-th neigherst neighbor to x
Then k-distance neighborhood of z is the follows:
Nk—distance(:c))(z) = {y‘y €D, ¢(x>y) < 5k}
And the reachablity distance RD of x is defined as:

RDy(x,y) = max{k — distance(y), p(z,y)}

b) Then the local reachability density (LRD) of x is computed:

Z EN,_ RDk(ZL‘,y)
LRDy(x) = 1/( Y |kN(:S:Tw:(I> ol

c) Finally, the local outlier factor of 2 can be computed:

D LRDy(y)
yENkfdistance(m) LRDy(x)

‘ Nk—distance (‘73) ’

LOF(x) =

Breuning et al. used a sliding window with length w to classify a w-long sequence as an anomaly.
Thus, given a time series X3, it is split into a training set A and test set B. Using the window length
w, each set is transformed as follows:

A(w,t) C P{Xr}) = {(xi, ..., zizw)i € {1, ..., t —w}, t < {X7r}|} (3.22)
thus, A(w,t) is a set of time series of length w.
B(w,t) C{Xr} = {wt_%, ...,ajt+%} (3.23)

And B(w,t) is the sequence we want to analyse.

To determine if B(w, t) is an anomaly or not, we compute the anomaly score ¢ of B(w,t) and if ¢ > §
where ¢ is a threshold then we mark B(w,t) as an anomaly.

The anomaly score ¢ of B(w, t) specifies, how much B(w, t) is different than the sets in A(w, t). This
is done by computing the LOF value of {{ B(w, t)} UA(w,t)}. If LOF(B(w,t)) > ¢, then the sequence
is marked as an anomaly.

The main challenges of this approach are the following points:
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* Determine an appropriate value k for the k-nearest neighbors to compute the LOF value. In
general, it is considered that prior knowledge is available to determine an appropriate value for
k. The authors of the paper suggest using ensemble strategy to compute k[48].

* Concatenating the time series into a vector and computing the distance to other vectors removes
the ordered information of a time series. Here a temporal data is converted into a spatial data
where each dimension is equally important. But in time series the ordered sequence contains
important information, which is used in some statistical approaches like Exponential Smoothing.

* Determine an appropriate distance function ¢. While Bruening et al. recommend using the
Euclidean distance, there have been many cases where the Euclidean distance is not suitable,
especially to also consider the relationship between variables in multidimensional space.

* The LOF value only relies on the direct neighbors, which also makes it more appropriate to detect
local anomalies.

* Another drawback of the LOF algorithm is that the complexity is O(n?) as compared to DBSCAN
where the complexity is O(nlogn).

4. Isolation Forest
One of the machine learning approaches to detect anomalies in time series is isolation forest using
sliding window. Isolation forest, also known as iForest, was introduced by Lui et al. [49]. It builds
an ensemble of Isolation Trees iTrees, which are binary trees isolating data points. As anomalies are
more likely to be isolated than non-anomalous points, it is more likely that they are closer to the root
of an iTree [50]. Figure 3.4 shows how an iTree is generated on a sample data structure. An anomaly
is detected after two partitions while the first normal point is detected after the fourth partition:
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7.5

iTree=2
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Tree=1
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Figure 3.4: Isolation Forest: The anomaly is isolated by the random
generated tree after two partitions
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Thus, this method considers points with shorter path lengths as candidates that are highly likely to
be anomalies.
The anomaly detection process using Isolation Forests is performed generally in two steps:

a) Training: Create n iTrees for the given training set.
b) Evaluation: Pass the test instance through the isolation trees to determine the anomaly score.

There are some methods that have extended iForest to detect anomalies on time series. One main
approach to detect anomalies in univariate data is to analyse the dataset in sequences defined by the
window length w. Thus, let { X7} = (21,2, ...,27) be a univariate time series and w the window
length. Then:

W .

(Wh, Wa, ..., Wp)

(3.24)
=((@1, ey Tw), (X2, ey Tapg1), oos (Tpy ooy Tapp—1))

After that, the anomaly score on each sequence is computed, which is proportional to the average
path length of an instance. Using supervised learning, the threshold can be computed on the training
set and used for test set later.

Ding et al. [51] have extended the concept to compute the anomaly score S(z, p) where « is the data
point and w is size of the window:

E(h(z))
S(z,w) =2 < (3.25)
E(h(x)) = + Y1, hi(x)

where h;(x) denotes the length of the i-th iTree, E(h(z)) the average of h(x) from a collection of
iTrees and ¢(p) is the average of h(z) given w and L the number of iTrees.
The main challenges of the isolation forest algorithm are the following parameters:

* Window length w: If the length is too short, then there will not be enough data to construct
an appropriate model. On the other hand, if the length is too long, older and sometimes less
relevant data will be considered as much as more recent data points. Ding et al. [51] have
shown in their experiment results that fixed sliding window for different datasets result in bad
performance.

* Number of iTrees in the iForest: The higher the number of iTrees, the closer the average value
is to the expected value. The downside is that the higher number of iTrees will increase the
computation time [50]. For w as the window length and L the number of iTrees, iForest has a
time complexity of O(L - w?) and a space complexity of O(L - w).

* Contamination: Many implementations of iForest like the implementation in sklearn have a
contamination parameter where the proportion of anomalies in the dataset is set. This also
marks the threshold for the anomaly. Improper assignment of this parameter could result in a
higher rate of false positive or false negatives.

. One-Class Support Vector Machines (OC-SVM)

The original support vector machine algorithm was invented as a linear supervised approach by
Vladimir N. Vapnik and Alexey Ya. Chervonenkis in 1963. Boser et al. extended the algorithm by
introducing the kernel trick, which made SVM capable of making non-linear classification. After that,
a new approach to detect novelties using SVM was introduced called One-Class SVM (OC-SVM)[52].
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OC-SVM is a semi-supervised approach where the training set consists of only one class: the normal
data. After the model is fitted on the training set, the test data is classified as being similar to the
normal data or not, making it able to detect anomalies.

The original OC-SVM method was able to detect anomalies in a set of vectors and not on time series.
Most papers recommend to project the time series into a vector set. Ma et al. [53] propose to unfold
the time series into a phase space using a time-delay embedding process [54]. Zhang et al. recom-
mended to create windows with length w of the time series dataset, so that for a given time series
{X7} = (21,2, ...,27), the dataset is first converted into [55][56]:

w iZ(Wl, WQ, ceey Wp)

=((T1, s Tw), (T2 ey Tapg 1) ooy (Tpy ooy Tapgp—1)) (3.26)
Then, a function p projects the time series into a two dimensional space:
f:R— R?
F(Xe) = {gﬁz]l] :;tzl (3.27)

While in OC-SVM, the result is biased on time series points with large values, it is recommended that
the data is normalized.

. Extreme Gradient boosting (XGBoost, XGB)

A machine learning techniques which also gained high performance in the Kaggle and KDDCup com-
petitions is Extreme Gradient boosting (XGBoost). One of the main advantages of XGBoost is its scal-
abality [57]. XGBoost is derived from the Tree boosting algorithm using the second order method
introduced by Friedman et al. [58].

Let D be a dataset of n example with m dimension: D = {(x;,y;)|z; € R™,y € R, € {1,...,n}}.
Then, tree boosting uses a sequential sequence of tree models to make a prediction ¢ for x;:

K
ji = ¢(x:) =Y _ fr(zi), where f, € F (3.28)
k=1

where F is the space of regression trees. The corresponding loss function is:
L(¢) = > Ui yi) + 22 Sk

where Q(f) =T + $A||w||?

(3.29)

where T is the number of leaves in each tree and w the leaf weights.

The loss function in Equation 3.29 contains functions, which are not possible to optimize with tradi-
tional optimization methods in Euclidean space. To work around this obstacle, the model is trained
in an additive manner and the taylor approximation of the loss function is used to make it optimizable
in the Euclidean space.

Lt 1
£9 % Y MG y) + gifilws) + Shiff (@] + Q(f) (3.30)
where g; is the derivative of the loss: 9;(,_)!(i, 7~V and h, the second derivative: 8;( t71)l(yi’ gt=).
Tianqgi Chen et al. provide more details in their main paper about XGBoost [57].
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Thus, XGBoost is used as a regression model to forecast time series. To detect anomalies in univariate
time series, we extend the algorithm to compute the error in the prediction. Based on the training
data, we are able to compute \ percentile of the error distribution and mark it as the threshold § to
detect anomalies.

3.2.2 Multivariate Approaches

1. Local Outlier Factor (LOF)

Anomaly detection using LOF on univariate time series was explained in Section 3.2.1. Oehmcke et
al.[47] used the same method for multivariate time series. Their experiments were done on marine
time series data where 16 sensor values were observed.

Thus, to compute the anomaly score, each element z; € { X} is a multidimensional vector:

z; € R where d > 1 (3.31)

Hence, B(w, t) is redefined as following:

t—w t—w t+% t+%
B(w,t) = (x; *,..,xy @ 2,1y HT

(3.32)
In this context, the anomaly score is computed as described in Section 3.2.1. Oehmcke et al. have
used the Euclidean distance for their experiments.

The critical points of this method is the use of Euclidean distance. Using the Euclidean distance as
a similarity function for outlier detection could ignore the relationship between variables in multidi-
mensional space. Therefore, the performance of the method is highly dependent of the distribution
of the specific dataset.

. Density-Based SpatialClustering of Applications with Noise (DBSCAN)

DBSCAN has been used to detect anomalies in multivariate time series. Elsner et al. [59] use DBSCAN
to detect anomalies in Enterprise Applications containing multivariate time series. The recommended
algorithm consists of the following steps:

a) Select a subset of the time series, i.e., for a sliding window with width w, select X, := (i, ..., Zitw) €

{Xr}.

b) On each timestamp z; € {X,,} where z; € R" train a multivariate DBSCAN model. This results
in several clusters in n-dimensional space.

c) Select the biggest cluster: The cluster with the most points. This reveals the centroid of the
cluster: Chormai-

d) Calculate the distance of each observation x; € X, to the centroid C,,,;mq. This distance reflects
the anomaly score 7.

Elsener et al. recommend to use ¢ = 1 where ¢ is the distance and ;» = 10 where 4 is the minimum
number of points each normal cluster has to have.
Finally, we have to declare a threshold §, so that:

x; == Anomaly,Vx; € Xy & 75, > 0 (3.33)

This is done by using the training part of the time series dataset.
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3. Isolation Forest
Isolation forest can also be used to detect anomalies on multivariate time series. Diang et al. [51]
also used Isolation forest for anomaly detection on multivariate time series. The concept is the same
as used for univariate time series. Let {X7} be the multivariate time series such z; € {Xr} and
z; € RV, A sliding window with width w is defined, such that:

{Xw} =W, W, ... ., Wp) = (21, ..., Tw) s ooy (Tppy - 7)) (3.34)

An element of z; € {Xyw} is the concatenation of all dimensions N of the points in the sliding
window:

T; = (5(3171, vy TIN5 ooy Tap, 15 ....,wa,N) (335)

This will be the input of the isolation forest as described in the univariate part. The isolation forest
will detect the anomaly score 7 of z;:

w N
rey =155 hrig) (3.36)
i g

where h(x) denotes the length of the i-th Tree.
Again a threshold 6 can be computed using the training part of the time series dataset.

4. One-Class Support Vector Machine (OC-SVM)
Lamrini et al. [60] have used OC-SVM for anomaly detection on multivariate time series. Thus, for
{Xr} to be a multivariate time series, they use a sliding window with width w such that the time
series data { X} is split in:

{Xw} = (Wl, WQ, ceey Wp) = ((1:1, ) JIw), ceey (.CCp, ) a:T)) (337)

Thus, an element z; € { Xy } consists of w timestamps where each timestamp has N dimenions. This
data is further processed: Each dimension of each sequence «; is characterized by seven feautures:

a) Minimum of the sequence

b) Maximum of the sequence

¢) Mean of the sequence

d) Median of the sequence

e) Standard deviation of the sequence

f) Squared error computed between the sequence and the linear fitting
g) Number of the average crossings

The features are normalized and used as input for the OC-SVM. This approach converts a multivariate
time series to a univariate one which is then used as input for OC-SVM. The rest of the algorithm is
equal to the approach described in the univariate section.
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3.3 Anomaly detection using neural networks

Since neural network have achieved tremendous results in computer vision tasks like object detection,
classification and segmentation or similar tasks there have been increasing interest to use them for time
series forecasting and time series analysis. They are similar to classical machine learning approaches with
regard to the fact that they do not presume any knowledge of the underlying data generation process.
Their popularity is based on their empirical results.

Many researches have tried to evaluate the performance of neural networks compared to the classical
approaches like ARIMA. Sharda et al. [61] compared 101 time series using forward neural networks and
the ARIMA model. Thang et al. [62] also compared neural networks with ARIMA models focusing on 16
time series with different complexities. Using neural network for time series forecasting paved the way for
using neural network to detect anomalies in univariate and multivariate time series. In this section, we
selected the most prominent approaches used in recent years.

3.3.1 Univariate Approaches

1. Multiple Layer Perceptron (MLP)
The most fundamental artificial neural network architecture (ANN) is the Multilayer Perceptron
(MLP) [63] which is a fully-connected feed-forward neural network. According to Hyndman et al.
[12] a neural network used for time series prediction is a Neural Network Autoregression Model (NNAR
Model). They characterize a NNAR model by the lagged input p and the nodes in the hidden layer k:
NNAR(p, k). Thus:
NNAR(p,0) & ARIM A(p, 0,0) (3.38)

where no seasonal restriction exists. Thus, p, which is the lagged input, represents also the window
size w of the sliding window used on the time series. The window size is equal to the number of
neurons in the input layer of the MLP (Figure 3.5):
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Figure 3.5: Multilayer Perceptron (MLP)

While Hyndman et al. use a neural network with one hidden layer and extend the number of neurons
in the layer, it is also possible and sometime preferable to increase the number of hidden layers [64].
Haselsteiner et al. [65] used two different topologies of MLP for time series classification which is a
similar problem to anomaly detection. On the one hand, they implement an MLP using time series
with sliding window and on the other hand, a MLP with finite impulse response filters (FIR-MLP) is
used [66].
In this thesis, we will focus on MLP by sliding window on the time series. The MLP network is used
to make predictions. After that the error of the prediction is used to classify a data point as normal
or as an anomaly considering the error value proportional to the anomaly score.
Thus, let { X7} be a time series, x; € { X7}, w the window length, and f the function of the MLP,
then:

41 = f(@t—wy ooy 1),V € {w, ..., T} (3.39)

Hence, the label for a window of time series (x;_, ..., z¢)is the next datapoint of the time series:
Tt41-
An MLP and all other neural network approaches can also be used to predict more than one times-
tamp:
(i‘t+1, ceey jt—i—pw) == f(ﬂ?t_w, ceey l‘t) (340)

P is the number of timestamps the MLP predicts which is called the prediction window or Forecasting
Horizon[14].

The prediction of the MLP is then used to detect anomalies. Let § be the anomaly threshold, then
x;+1 is marked as an anomaly, if:

J(@icw, oo i) — 241 >0 (3.41)
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The training set of the time series data can be used to detect a proper value for 4.
One of the main challenges of neural networks is the hyperparameter tuning task. MLP has a remark-
able amount of hyperparameters:

a) Depth of the MLP (Amount of the hidden layers of the network)
b) Width of the MLP (Amount of nodes in each layer)
¢) Length of the window w
d) Learning rate
e) Optimization function
These parameters can be optimized using random search or more advanced techniques [67].

. Convolution Neural Networks (CNN)

Another artificial neural network approach, which is used for anomaly detection in time series data
is deep convolution neural networks (CNN). CNNs are mainly used in computer vision for tasks like
object detection, classification and segmentation [68, 69, 70]. In contrast to MLP, where layers are
fully connected, a CNN uses convolution layers that are partially connected reducing the amount of
parameters enabling them to go deeper and train faster. CNN, in contrast to MLP, focus on local pat-
terns in the data. In addition to the convolution layers, CNNs also use pooling layers as regularizer to
avoid overfitting. One of the pooling operations, which achieved the best results [71] is the maximum
pooling [72].

In the recent years, there have been increasing interests in using CNNs for time series analysis. Munir
et al.[14] used a CNN architecture, called deep-learning based anomaly detection approach (Deep-
AnT), to forecast time series and detect anomalies based on the error of the prediction. Zheng et
al.[73] use a similar CNN architecture for classification of time series data, a method that can also
be extended to detect anomalies.

Using CNNs for time series analysis is a bit different than using CNNs for image classification. While
the input for image classifying CNNs is 2D, univariate time series CNNs use 1D input. Therefore, the
kernels of the convolution layers are 1D, too. Figure 3.6 shows the architecture used in DeepAnT:

- m "-J_J;\JW,\%
VAU "

Time series Convl Output Max Pooling Conv2 Output Max Pooling Dense Layer Qutput

Figure 3.6: DeepAnT architecture for time series prediction [14]

The first layer after the input layer is 1-dimensional convolution layer followed by a max-pooling
layer. As figure 3.6 shows DeepAnT uses two pairs of convolution and max-pooling layers. However,
this could vary based on the dataset. Therefore, one of the major hyperparameters of neural networks
in general and CNN in particular is the architecture of the model. The amount of convolution and
max-pooling layers differ in the architectures used in this thesis based on the dataset. We will analyse
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this in chapter 5.
After the convolution and max pool layers, a dense layer is used which is fully connected to the output
node. If the prediction window is greater than one, the amount of the output nodes will increase
accordingly. As an activation function for the convolution layer and the Dense Layer, the rectified
linear units (ReLU) is used [74]. Sergey loffe et al. suggested another regularization technique called
Batch Normalization [75]. Experiments in computer vision showed that Batch Normalization results
in a higher learning rate, acts as an alternative for dropout layers and decreases the importance
of careful parameter initialization. Therefore, we also implement a CNN architecture using Batch
Normalization for univariate anomaly detection to evaluate its performance in anomaly detection.
The CNN model is used to make a prediction in the same way as the MLP model. To detect the
anomalies, the same algorithm is used.
Let ¢ be the anomaly threshold, f the function implemented by the CNN model, then x;, is marked
as an anomaly, if:

f(SUi—wa ey SL‘Z) — Tjyr1 > 1) (3.42)

In addition to the hyperparameters that MLP also had to handle, CNN expects the following:
a) Architecture of the CNN, i.e., using Batch Normalization, Dropout or Max Pooling layers
b) Amount of kernels in each convolution layer
¢) The size of the kernel
d) Depth of the Convolution Layer

. Residual Neural Network (Resnet)
An extension of the CNN model, which achieved good results in the last years was Residual Neural
Network (ResNet). ResNet introduced a new artifact called residual blocks developed by He et al.
[76]. Residual blocks add the output of a convolution block with the input of it using a skip connec-
tor. A convolution block consists of several convolution layers, activation layers and regularization
artifacts like Max-Pooling or Batch Normalization layers.
To express residual blocks formally, let z;; be the input and ¢ be a convolution block, then the output
of a residual block y is as follows:

y = ¢(xi) +z; (3.43)

Usually, an activation function ¢ like the RelU activation function is used as well:

y = Y(d(x;) + ;) (3.44)

Figure 3.7 shows a residual block that is used in this thesis:
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Figure 3.7: Residual Block used for time series consisting of convolution
block of two convolution layers with one ReLU and two Batch
Normalization layers

Residual Blocks were used to avoid the vanishing gradient problem, which occurs often in deeper
CNNs.

Wang et al.[77] used ResNet to classify time series data. They use three residual blocks with 64, 128
and 128 filters. As compared to our residual block in Figure 3.7, they use three convolution layers
and Batch Normalization layers with ReLU activation function. We tried different amount of residual
blocks, which will be explained in detail in chapter 5.

ResNet is best suited for large amounts of data. Therefore, it could overfit on the time series data if
the size of the data is too limited. But as we have achieved good results with ResNet in computer
vision tasks, it would be of interest to evaluate this model on time series data to detect anomalies,
too.

. WaveNet

WaveNet was developed by Adron van den Oord et al. [78] as a deep generative model to create
raw audio waveforms. Especially the ability to approximate the predictive distribution of each audio
sample conditioned the previous ones, makes it a proper candidate for time series forecasting. Thus,
WaveNet, which was constructed to create audio waveforms, is a probabilistic model that tries to
approximate the joint probability of a waveform = = {z1, z2, ..., z7}:

T

p(z) = Hp(wt\$17-~-7$t—1) (3.45)
t=1

which makes audio sample = dependent on all samples before.

To accomplish that, WaveNet uses a specific kind of convolution layers: dilated convolution layers.
Normal convolution layers use filters. A filter uses a convolution operation on the data with the same
size as the size of the filter. Figure 3.8 shows a CNN with regular convolution layer:
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Figure 3.8: CNN with regular convolution layers with filter size of 2
In contrast, the dilated convolution layer performs the convolution operation on a data bigger than

the filter size. This is accomplished by skipping some input values using a skip step. Figure 3.9 shows
a CNN with delation convolution layers:
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Figure 3.9: CNN with dilated convolution layers with filter size of 2 and
changing skip steps (delation) = {1, 2,4}

One big advantage of the dilation convolution layers is that it will learn long term and short term
dependencies while normal convolution layers are designed to extract local patterns.

Borovykh et al. [79] used the concept of WaveNet to design a CNN for time series forecasting. Thus,
to predict a timestamp z; € { X7}, a sequence of timestamps with width w is used as the input for
the function f which is expressed by the CNN:

i‘t = f((l‘tfw, ...l‘tfl)) (346)

The dilation of the convolution layers increases by a factor of 2, which is illustrated in Figure 3.9.
Therefore, the window width w can be much bigger than the value used in normal convolution layers.
In this thesis, we will extend this approach to also detect anomalies where we use the same approach
we used for the MLP and CNN approach:

Let 0 be the anomaly threshold, then z; is marked as an anomaly, if:

Ii‘t — Ty > 1) (347)
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5. Long Short Term Memory (LSTM) network
Another ANN, which is designed for sequence data is the LSTM network. LSTM network belongs to
the recurrent neural networks (RNN) architectures. In contrast to MLP and CNN where the data is
just flowing forward and therefore also called feed-forward neural networks, RNN networks have a
feedback connection enabling them to use the output information for the next input of the sequence.
Formally, the output of a neuron in a feed forward neural network is as follows:

yr = d(x] - wy +b) (3.48)

where ¢ is a non-linear activation function. In contrast, the output of a neuron of a recurrent neural
network is the following:
ye = o] - wy +yly wy +b) (3.49)

A neuron in a simple RNN is computed like 3.49. Sepp Hochreiter et al. [80] developed a new
version of recurrent cells called Long Short Term Memory (LSTM). Figure 3.10 shows the structure
of an LSTM cell.
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/ tanh tanh activation

Xy ) _—
logistic activation

Figure 3.10: LSTM Cell

In contrast to simple recurrent neuron, LSTM reuses two vectors: ¢; and h;. h; is added with the
new data x; making it a short term memory. On the other side, ¢; is multiplied with the new value
making it long term memory. The three gates regulate how much of data is kept, forgot and delivered
to the output. This design aims to recognize important input and by using addition to the output
of the input gate storing it in the long-term state. Additionally, by using the logistic regression and
elementwise multiplication it determines which elements of the long-term memory should be erased.
And finally the output gate specifies which part of the new long-term memory is going to be output.
While most neural network architecutures like MLP, CNN and simple RNN suffer from the vanishing
gradient problem where the weight updates in the back-propagation step becomes very small, LSTM
cells overcome this problem due to its gates, especially the forget gate.

There have been different works using LSTM for univariate and multivariate time series analysis. It’s
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recurrent manner makes it an appropriate method for sequence data especially time series. Addition-
ally, most LSTM methods do not use a sequence of timestamp as input for the LSTM model as other
approaches like MLP, CNN, ResNet did, as its long and short memory keeps the information of the
recent timestamps. Hence, the input of the LSTM consist of just one timestamps, which accelerates
the learning process.

Chauhan et al. [81] use an LSTM model to predict healthy electrocardiography (ECG) signals. By
using the probability distribution of the prediction error, it is able to mark timestamps as normal or
anomalous.

C*‘—‘T
LSTM Layer 1
i

INPUT

Figure 3.11: Stacked LSTM: The original LSTM model consisted of just one
LSTM layer. Stacked LSTM has multiple LSTM layer

Malhotra et al. [82] use a stacked LSTM (Figure 3.11) model consisting of two hidden LSTM layers
to predict the next / timestamps. Hence, the prediction window p,, = [ where [ > 1. Let again { X}
be a univariate time series with and z; € { X}, then:

(i’i_._l, veey .Cﬁ'lurl) = f(ib'l) (350)

Vie {l,..,t},l <i<t—I, each z; is predicted l-times (3.51)

Then, the error value of each prediction is computed:

eV = (e, yer) = (F@imt)i — Tist, F(Tiip1)i1 — Tig1s ooer F(T0)1 — Tig1) (3.52)

After that, the error vector is used to fit to a multivariate Gaussian distribution N" = N (u, ¥). By using
Maximum Likelihood Estimation (MLE), the parameters x and ¥ can be computed, which enables it
to give any e’ a likelihood p’. Finally given a anomaly threshold §:

x; is an anomaly — P(e(i))emNN(Mz) >0 (3.53)

Like the methods we used for MLP, CNN..., here we can use the training set to compute an appro-
priate value for 0.

6. Gated recurrent unit (GRU)
In 2014, Cho et al. [83] proposed a simplified version of the LSTM cell: Gated recurrent unit (GRU).
GRU couples the input and forget gate into one forget gate. The state vectors ¢ and h are merged into
one vector h. Additionally, the output gate is removed and the full state vector is the output at every
timestamp. Figure shows the architecture of GRU:
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Figure 3.12: Gated recurrent unit (GRU)

Researches have shown that mostly GRU performs as well as LSTM although requiring less computa-
tion due to its simplified structure [84].

GRU has also been used for anomaly detection on time series data. Wu et al. [85] used a stacked
GRU model to detect anomalies on online time series data.

In this work, we will also evaluate a GRU model to detect anomalies in univariate time series. The
model will be equal to the LSTM model for anomaly detection for time series data we explained
before. The only difference is that the LSTM cells will be replaced by GRU cells.

. Autoencoder

One method to detect anomalies to reduce the dimensionality of the data and to project it on a lower
space, i.e., latent space, where more correlated variables remain. The main assumption about the
distribution of data is the fact that normal and abnormal data are significantly different on this space,
which the definition of anomalies (Definition 2.1) implies. Then, projecting back to original space
will show significant difference in some data points, which represent the anomalous data instances
making the autoencoder appropriate for anomaly detection.

Autoencoders belong to the feed-forward neural networks, which is optimized to output the same
information that was inserted in the network. The challenge is that the first half of the hidden layers
reduces the dimension of the dataset and the second half increases the dimension back to the original
value. These two parts are named accordingly the Encoding and Decoding part. Formally, let X be the
dataset and ¢ the decoding function and ¢ the encoding function and f the corresponding function
of the autoencoder, then:

X = (o(X)) (3.54)

40



The optimization function of the autoencoder tries to minimize the deviation between X and X:

guin |[X = X[, = min X~ 9(6(X)l, (3.55)

where 6, and 6, are the weights of the decoding and encoding part. Figure 3.13 shows the concept
of an autoencoder graphically:
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Figure 3.13: Autoencoder: The encoding layers ¢ reduce the dimension of =
to z and the decoding layers ¢ projects the data to original
dimension resulting in &

There have been different approaches using autoencoder to detect anomalies on spatial data. Chong
Zhou et al. [86] use Robust autoencoders to detect anomalies on images. Baur et al. [87] use deep
autoencoders to detect anomalies on 2D brain MR images.

Mayu Sakurada et al. [88] use an autoencoder to detect anomalies on time series and compare it
with linear and kernel PCA. They implemented a normal autoencoder and a denoising autoencoder.
Denoising autoencoders contaminate the input X with some noise and try to reproduce the noise-free
input. Here in this thesis, we will implement the normal autoencoder to detect anomalies on time
series. Thus, let { X1} be a univariate time series and w be the width of the sliding window on our
time series, then the input for the autoencoder will be a vector (z;, Z;11, ..., Zitw) € {Xr}. Then the
autoencoder will compute the following:

(‘%h i'iJrlv ceey j"l'er) = ¢(¢(($l? L1y eeey xi+w))) (356)
Using the training set, the autoencoder tries to minimize the error using the following optimzation
function:
Hmien H(.I'“ Lidlyeens .Z'H_w) - (JA}Z, Tidly s ji—&—w)”Q Vi € {Z, T = U)} (3.57)
b0

Then, the test set can be used to detect the anomalies. Let f,, be the trained autoencoder, for an
zj € {Xrpsr} we first make a prediction:

&y = fyo(xj) = P(0(25)) (3.58)
After that, the error value e; for the prediction of z; will be computed:
ej = llzj — &l (3.59)

Last but not least, having an anomaly threshold 6, «; is marked as abnormal if and only if e; > 0.
As described in the previous approaches, the training data is used to determine an appropriate value
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for §.

Autoencoders are best suited to semi-supervised learning approaches where the training data only
consists of normal points. This results in learning a latent space of the normal data points and result-
ing in deviations when later an anomaly is fed into the model.

3.3.2 Multivariate Approaches

1. Multi-Layer Perceptron (MLP)
Detecting anomalies on multivariate time series is done in two steps:

a)
b)

Use an MLP for multivariate forecasting

Compute the deviation for the forecast to the real value to determine anomalous timestamps
using an appropriate distance function.

To use an appropriate MLP architecture for multivariate time series forecasting, different approaches
exist. Let {X7} be a multivariate time series where each z; € {Xr} is a d-dimensional vector:
(xi1,xiz2,...,x;q). Charkraborty et al. [89] evaluated three different approaches:

a)

b)

)

Use a separate MLP for each time series, i.e., construct d different MLP where z; is the input
to the j-th MLP for each j € [1,d]. Thus, each MLP is trained on a separate univariate time
series. That means that Vj € [1,...,d] a separate neural network is trained on the time series
(21,5, 2,4, ..., x7 ;). To improve the forecast results, a sliding window with width w will be used.
Therefore, the input layer of each MLP would have w neurons.

It is clear that this approach is possible, if d is small. Charkraborty et al. used a trivariate time
series and therefore had to create just three networks. But there are often multivariate time
series where d > 30. In such cases, it is not efficient to create more than 30 distinct MLPs.

The second approach is to create d different MLP, but the input would be a multivariate time
series consisting of all dimensions. Thus, let z; € { X7}, to predict z; ; the j-th MLP will be used
where the input would be (xi—w,lv oo i, dy Timw+1,15 ooy Limqpt1,ds -ors Lim1,15 -o xifl,d)- Let Mj
be the j-th MLP. Then it is optimized using the following objective function:

n%in | MG ((Timw, 15 oos Timwds Timawog 1,15 +oos Timro Luds o5 Tim1,15 s Tie1,d)) — (Tij) || (3.60)
J

Charkraborty et al. received the best results with this architecture.
It is still clear that this architecture is also not appropriate for high values of d.

The last option is to use just one MLP. Therefore, all dimensions will be concatenated in one
vector. That means to predict x;, the input of the MLP would be:

(l‘i—w,l, vy Li—w,dy LTi—w+1,15 -+ Li—w+1,dy +-+» Li—1,15 -5 xz;l,d)
and the output would be (z; 1, ..., z; 4) using the following objective function:
mein IM(Z5 0,15 oo Timo,ds Timwt 1,15 ooy Timwt1,ds +oos Tim1,15 ooy Tim1,d)) — (Ti,1, -0, Tiq)|| (3.61)

Charkraborty et al. could not achieve good results with this approach assuming that using the
same weights ¢ for all dimensions could affect the accuracy. On the other hand, this approach
is suitable when the dimension value d is high.

42



In our evaluation, we will switch between model 2 and 3 based on the amount of dimensions of the
time series.

Finally, we have to detect the anomalies based on the deviation of the prediction to the actual value.
Therefore, we compute for each x; € { X7} the deviation:

€; — HM(({L‘Z'_w, ...,.’L‘i_l)) — sz (362)

Then, we can compute the probability distribution of the e;Vi € 1, ..., T. Using the computed probabil-
ity distribution, we can determine an appropriate ¢ using the 7-Percentile. Then, let z; € { Xy gsr} be
a timestamp in the test dataset, we will mark it as an anomaly if and only if || M ((zi—w, ..., Ti—1)) — x;|| >
J.

. Convolution Neural Network (CNN)

CNNs are also used to detect anomalies on multivariate time series. Zheng et al. [73] use a specific
CNN architecture to classify multivariate time series. Therefore, the multivariate time series with d
dimension is split into d univariate time series. This d univariate time series are fed into d different
convolution blocks that extract separate features for each dimension. The result of each channel is
then combined at the end. Then, an MLP is placed to classify the time series as normal or abnormal.
The drawback for such an architecture is that the MLP is designed for classification of a balanced
dataset. But time series datasets are not balanced, which makes the optimization of the MLP very
difficult.

Munir et al. [14] does not use different convolution layer, but one CNN for all inputs. Here again a
sliding window with width w is used. Thus to predict z; € { X1}, the data sequence (x;—q, ..., x;—1) =
(imw, 15 s Timp,ds -o» Ti—1,1, ---, Ti—1,4) 15 used as an input requiring w - d input neurons where d is the
dimension of a timestamp. The authors used two convolution blocks with 32 filters with max pooling
layer and ReLU activation function. At the end, a full connected layer is using the filtered data to
make a multidimensional prediction. As loss function, the Mean Absolute Error (MAE) function is
used

1 )
MAE:§§:w—y| (3.63)
7j=1
To determine whether x; is an anomaly, the euclidean distance between the prediction to the real
value is computed:

ei = (Yi — 9i)? (3.64)

This value is used as an anomaly score. Using the training data, a threshold § can be computed,
analyzing the distribution of e;,Vi € [1,T].

In this thesis, we implement an architecture that is very similar to the DeepAnT approach of Munir
et al. The differences are other hyperparameters, which will be mentioned in chapter 5.

. Residual Neural Network (ResNet)

To detect anomaly on multivariate time series with ResNet, we use exactly the same method as the
CNN approach. The only difference is that instead of convolution blocks, residual blocks are used in
the ResNet approach.

. WaveNet
We will also evaluate anomaly detection on multivariate time series using the WaveNet architecture.
Here, we use a CNN architecture using dilation, which increases by factor of 2. The detection method
is equal to the other CNN approaches. Further details about the hyperparameters are mentioned in
chapter 5.
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5. Autoencoder
Detecting anomalies with autoencoders on multivariate time series is very similar to the univariate
approach. Mayu Sakurada [88] uses their autoencoder approach on multivariate time series data,
which consist of several spacecraft telemetry datasets. In contrast to the LSTM methods, they only
use one timestamp as input.
Thus, let {X7} € RT*P be the dataset of time series with 7' timestamps where each timestamp
x; € {Xr} has D dimensions, then the input of the autoencoder would be z; where i € [1,T)]. Hence,
no sliding window will be used.
As the previous timestamps are important, we will use an extended version of this approach. There-
fore, a sliding window with width w will be defined. The input for the encoder f would be:

J((@i, g1, oy Tigw)) = F(@41, 25 i, Dy Tig 1,15 s Tig 1, D - Ligaw, 1y -5 Ligw,D) )5 Vi € [1, ..., T — w]

(3.65)
Using the training set, the autoencoder tries to minimize the error using the following optimzation
function:

Héin (s, i1y -oos Tigw) — FU(Zis Tig1, ooos Tiw)) ||, Vi € {4, ..., T — w} (3.66)
f

The training set is used to get the optimal weights §;. Instead of using the probability distribution of
the error value e; as in the LSTM approach, we decided to attach an SVM to classify the outcome of
the encoder as anomaly or normal. Thus, a timestamp z; € { X7} is classified as normal or abnormal
as follows:

SVM(H($Z, L1y eees xi+w) — f((.Zl, Ljt1yeees me))H),W S {i, ceey T — w} (367)

where the SVM is trained on the training data of { X1} where each timestamp z; is labeled as normal
or abnormal. A sequence of timestamps in a sliding window in the training set is labeled as follows:

(@i, ooy Tigw) == abnormal < 3j € [i,i+ w] : ©; == abnormal (3.68)

Hence, a sequence is abnormal if an abnormal data point is present. This is mostly used in online
anomaly detection where it is necessary to detect the anomaly A time before it happens [90].

Thus, this method is a combination of an autoencoder and SVM. It is also possible to compute the
probability distribution of the errors in the training set and to classify a sequence (x;, ..., i4p) as
anomaly if p(f(x;, ..., xy)) > 0 for a pre-computed §.

We will evaluate both methods.

6. Long Short Term Memory (LSTM) network
LSTM networks are also used to detect anomalies in multivariate time series. The approach is very
similar to the method used for univariate time series. Malhotra et al. [82] used the same approach
for multivariate time series. Let {X7} € RT*P be a multivariate time series with T timestamps
(z1,...,z7) and each timestamp z; is a vector with d-dimension: (z},2?,...,zP). Here an LSTM
model is used, which predicts the next [ timestamps of x;. Thus, let f be the appropriate function of
the LSTM model, then:

f:RPL 5 R (3.69)
The prediction window has a length [ and therefore:
Vie{l,..,t},de D1 <i<t—I, eachz{ is predicted l-times (3.70)
The error for a multivariate timestamp x; is computed as follows:

e = (egil), ...,egl), ...,egil), ...,eéil)) = (f(xi—1)i — Tit1, f(Tici41)i-1 — Tit1y - f(@i)1 — Tip1) (3.71)
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To detect the anomalies, the same approach used for univariate time series, will be carried out: The
error Vector e € R"? is fit to a multivariate Guassian distribution (11, ©) and MLE is used to estimate
the parameters ;. and ¥ to compute the likelihood P(e?)). Finally, for a anomaly threshold 4§, e(®) is
an anomaly, if and only if P(e()) > 4.

. Gated recurrent unit (GRU):

GRU models can be used like LSTM to detect anomalies in multivariate time series. The approach is
equal except that the LSTM cells will be replaces by GRU cells as we did for univariate time series.
This enables us to check the LSTM model and GRU model against each other.
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4 Approach

4.1 Related Works

Time series analysis have been an important topic for a long time. In the last decades, while different ma-
chine learning approaches achieved noticeable progress in different areas, there have been much effort to
benefit from them in time series analysis. There have been a lot of published works using machine learning
to make better prediction. The Makridakis Competitions, also known as M-Competitions, are taking place
regularly to evaluate different forecasting methods [91]. Afterwards, there have been attempts to compare
the best performing approaches. Makridaki et al. [15] published an article where they compared the best
performing statistical forecasting methods of M-3 Competition with different machine learning approaches
[92]. Their paper focuses on univariate time-series models.

There have also been attempts to compare different anomaly detection methods. Goldstein et al. evaluated
different unsupervised anomaly detection methods on multivariate datasets [48]. They selected 19 differ-
ent unsupervised anomaly detection algorithms and evaluated them on 10 different datasets. However, the
algorithms are not designed for timeseries data and the datasets are mostly not containing time series, too.
There have also been different studies comparing ML methods but for a specific sort of data. For instance,
Almaguer-Angeles et al. [93] compare 22 ML algorithms detecting anomalies on IoT-Datasets. There
are also papers where the authors compare their anomaly detection approach with different approaches.
Charkraborty [89] compare their neural network approach with ARMA model. Furthermore, there are
also researches, which compare anomaly detection methods, but only evaluate on a single dataset. Lazare-
vic et al. compare different clustering techniques like Mining Outliers Using Distance to the k-thNearest
Neighbor, Nearest Neighbor approach, Mahalanobis-distance Based Outlier Detection, LOF approach and
SVM, but using just one dataset. Munir et al. [90] compared their proposed approach, FuseAD, with other
state-of-the-art anomaly detection methods like LOF, iForest, OC-SVM, PCA, Twitter anomaly detection
(TwitterAD)[94], and DeepAnT[14] on Yahoo Webscope dataset which is a time series anomaly detection
dataset.

To the best of our knowledge, there exists no extensive research comparing statistical approaches with
classicial machine learning approaches and neural networks detecting anomalies in univariate and multi-
variate time series. This is despite the fact that anomaly detection in time series is becoming increasingly
important. The most similar study to our approach is the work of Makridaki et al. [92] which compares
univariate forecasting methods using statistical approaches and ML methods.

In this thesis, we use different univariate time series datasets to compare the univariate approaches and
different multivariate time series datasets for the multivariate anomaly approaches that have been intro-
duced in chapter 3. All the approaches are supervised, thus using a part of the datasets for training and
other part for testing.
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4.2 Datasets

To evaluate the introduced univariate and multivariate methods, several time series datasets have been
selected. Most of them are benchmarks for anomaly detection. One of the important criteria was that
the dataset should indeed be a time series dataset. There are different articles evaluating anomaly detec-
tion methods on time series while choosing non-time series datasets like Forest Cover Type (ForestCover)
dataset. Even the KDD Cup ’99 dataset is critical, as it is not based on equal time intervals. Thus, we will
only use a small portion of it to make it compatible with the timeseries requirements.

Therefore, several univariate and multivariate datasets consisting of real and synthetic data have been
chosen. Furthermore, time series data are preferred, which are also used in other studies enabling us to
compare our results with theirs when using similar methods.

4.2.1 Univariate Datasets
UD1 - Real Yahoo Services Network traffic

This dataset, which is published by Yahoo [95], is a univariate time series dataset containing the traffic to
Yahoo services. The anomalies are labeled by humans. This dataset consists of 67 different time series each
containing about 1400 timestamps. The timestamps have been observed hourly. Most of the time series
are stationary and in average each time series consists of 1420 timestamps where 1.9% are anomalies.

UD2 - Synthetic Yahoo Services Network traffic

Yahoo made also another dataset [95] available which consists of 100 synthetic univariate time series data
containing anomalies. Each time series contains about 1421 timestamps. The anomalies have been inserted
randomly therefore representing point anomalies. In average, each time series consists of 0.3% anomalies.

UD3 - Synthetic Yahoo Services with Seasonality

This dataset also consists of 100 synthetic univariate time series [95] each containing about 1680 times-
tamps. In contrast to the former one, this dataset also contains seasonality. The anomalies are inserted at
random points marking the changing points. In average, the anomalous rate of each time series is about
0.3%.

UD4 - Synthetic Yahoo Services with Changepoint Anomalies

The dataset also contains 100 synthetic univariate time series. Each time series has about 1680 timestamps.
The difference to the former one is the fact that this dataset also contains changepoint anomalies where the
mean of the time series changes. For our evaluation, we focus on the main anomalous points and ignore
distinguishing between anomalous types. In average, 0.5% of the dataset is anomalous.
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NYCT - NYC Taxi Dataset

This is univariate time series dataset containing the New York City (NYC) taxi demand from 2014-07-
01 to 2015-01-31 with an observation of the number of passengers recorded every half hour containing
10320 timestamps. It is from the Numenta Anomaly Benchmark (NAB) which is a benchmark for evaluating
algorithms for anomaly detection, especially on streaming data. It contains five collective anomalies, which
occur on the NYC marathon, Thanksgiving, Christmas, New Years day, and a snow storm.

4.2.2 Multivariate Datasets
NASA - NASA Shuttle dataset [96]

The NASA Shuttle dataset consists of a multivariate time series data one containing 49097 timestamps. The
data consists of 1.89% anomalous data. Originally it was multiclass dataset consisting of seven different
categories. It was transformed to an anomaly dataset, labeling class 1 as normal and all other classes as
anomaly. As a multivariate time series each timestamp consists of nine numerical features. This dataset is
a benchmark dataset used in more than 20 different papers.

SMTP — SMTP Dataset [96]

The dataset is a subset of the KDD Cup 1999 data, an annual Data Mining and Knowledge Discovery
competition. This dataset only contains the data where the service is equal to SMTP, filtering out other
services like http or ftp. The dataset contains 95156 records where about 0.03% are anomalous. It is a
bi-variate dataset containing two continuous features.

SD - Synthetic dataset

This dataset is multivariate time series based on the synthetic dataset of Chandola [18]:
First, we created four univariate first autoregressive time series z1, x2, x3, x4 Where we use 0.1 as coefficient
for the AR model where each of them contain 3000 timestamps. Additionally, we create a vector z with

the length 100 and all values equal to zero except 2390 = ... = 2320 = 1, 2600 = ... = 2610 = —0.7, 21300 =
21320 = 2, 22100 = ... = 22150 = —1.5. Additionally, the following matrix M is constructed:

1 0 0 0 1

0 1 0 01

0O 0 1 0 1 4.1)

0 0 0 11

1 -1 0 0 1
Then, the normal multivariate time series data is generated as follows:

N = [z1,29, 23,24, 2] * M 4.2)

Therefore, the multivariate time series contains about 3000 timestamps and each timestamp has five di-
mensions. The anomalous portion of the time series is about 3%.
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4.3 Data Preprocessing

4.3.1 Standardize data

One of the main data preprocessing tasks performed on the datasets, before evaluating the anomaly detec-
tion methods, is standardizing. A dataset is standardized, if its mean y is zero and its standard deviation o
is one. Thus, let D be the dataset and x the mean of D and o the standard deviation. Then, to standardize
D:

T =

—EvreD (4.3)
Standardization is not equal to normalization, where D is changed, such that:
€[0,1],Vz € D 4.4

Normalization are sensitive to outliers. Thus, it would be inappropriate to normalize our datasets, which
contain outliers.

Standardization in Equation 4.3 helps many ML methods to converge faster. Especially, in multidimen-
sional data, i.e., multivariate time series where features have different scales, standardization speeds up
the training process. Shanker et al. [97] have shown that especially in smaller datasets, the neural network
yields better results when the data is standardized. Guo-Rui Ji et al. [98] mention in their paper that stan-
dardizing time series data is necessary for the SVM approach. Also other approaches which are evaluated
in this thesis like DBSCAN, K-Means, and K-NN benefit from standardization.

4.3.2 Deseasonalizing and Detrending

Most statistical approaches for time series analysis presume stationarity in mean and variance. But for
machine learning approaches and neural networks, this is a debatable requirement. There are studies ne-
glecting for transforming the time series into a stationary sequence. Neural networks are universal function
approximators and therefore several researchers claim that they are able to detect non-stationary trends.
Therefore, Wilpen Gorr [99] believes that they are able to detect non-linear trends and seasonality in the
time series dataset. Sharda et al. [61] showed empirically that neural networks are able to detect automat-
ically the seasonality in univariate time series by evaluating about 101 different time series. They argue
that neural networks will behave similar on multivariate time series. Although there have also been other
works achieving similar results [100, 62].

There have also been studies achieving contradicting results. Faraway et al. [101] compared models using
detrended and deseasonalized time series to networks using the origin data. They showed empirically,
that the model using detrended and deseasonalized data achieved better results. Zhang et al. [102] made
an empirical study comparing the performance of neural networks using detrending and deseasonalizing
performed better. In particular, they found out that the combination of both achieves the best results con-
cluding that NN are not able to detect seasonal and trend variations effectively.

Therefore, to get more precise results when comparing different approaches, we will analyze the perfor-
mance of the methods using the raw time series dataset (except for standardization) compared to detrended
and deseasonalized time series.
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4.4 Evaluation Metrics

4.4.1 F-Score

To compare the different anomaly detection methods, several metrics can be taken into consideration. One
of the metrics used in similar approaches is the F-Score:

Precision - Recall
F- =2. 4.5
score Precision + Recall (4-5)

Munir et al. [14] used this metric to evaluate their anomaly detection methods on different time series.
Also Maya et al. [103] also used the F-Measure in addition to recall and precision.

4.4.2 Area under the curve (AUC)

Another metric that is often used is the receiver operating characteristic curve, ROC-Curve, and the associated
metric area under the curve (AUC), which is the area under the ROC-Curve. This measure is very helpful
especially for anomaly detection. The ROC-Curve illustrates the correlation of the true positive rate and the
false positive rate based on different threshold values. The true positive rate (TPR) is defined as follows:
Let P be the positive labeled values, e.g., timestamps which are actually anomalous, N the negative labeled
values, e.g., timestamps which are actually normal, TP be the true positive classifications, i.e., timestamps
which are anomalous and have been detected as anomalous by the algorithm, FP the false positive, i.e.,
timestamps which are normal but have been labeled falsely as anomalies, then TPR is:

TP
TPR = — .6
Iz (4.6)
and FPR is: Pp
FPR = — .
R ~ “4.7)

To compute the ROC-Curve, we use different ¢ as threshold for our anomaly detection method resulting in
different pairs of TPR and FPR for each ¢. This values can finally be plotted showing a curve starting at the
origin and ending in the point (1,1). The associated metric AUC is the area under the curve. In anomaly
detection, the AUC expressed the probability that the measured algorithm assigns a random anomalous
point in the time series a higher anomaly score than a random normal point. This makes AUC appropriate
to compare the different anomaly detection methods. Several other papers [88, 104, 105, 106] also used
the ROC-Curve and AUC-Value to compare different anomaly methods. For instance, Goldstein et al. [48]
used this measure to compare different machine learning anomaly detection methods.

In a nutshell, AUC-value will be the main measure used in the experiments of this thesis in chapter 6.

4.4.3 Computation Time Comparison

Another factor to evaluate the different approaches, is the computation time a method uses to analyse the
data. The time an algorithm needs to predict if a timestamp is abnormal or not, plays an essential role in
the success of the approach. There are many use cases where the inference time is crucial. For instance, to
detect online anomalies the approach must be able to respond quickly if new data points appear rapidly.
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To measure the computation time, different approaches are possible, based on the nature of the algorithms.
For instance, Maya et al. [103] computed the time used for training and inference separately. Goldstein et
al. [48] computed the time the unsupervised anomaly detection methods needed to analyse a dataset.
The method to measure the time performance in this thesis is different to the approaches used in the
mentioned papers. This is based on the fact, that those papers compare similar detection methods. For
instance [48] just compares machine learning approaches especially clustering and density approaches.
Also [103] compares deep learning methods making it possible to measure the training and inference
phase separately. This is not possible when comparing deep learning method like LSTM with a classical
machine learning method like LOF. While LSTM mostly needs a big amount of time in training, its inference
time is very quickly. This is completely different in clustering methods like LOF.

Hence, the time performance of the algorithm is mainly compared based on the total training and prediction
time. This will provide a relative value to compare the approaches with each other.
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5 Experiments

In this section, the settings for the experiments are listed. This is necessary, to evaluate the results of the
different approaches.

5.1 Datasets

The datasets are divided into training and test set where 30% is used for training and 70% as test data.
If the test data does not contain any anomalous point, the time series will be ignored and excluded from
the evaluation. Additionally, the data is standardized before being used by the methods as explained in
chapter 4. The test data forms the source of the method evaluation. The AUC-Value is computed on the
test data while the train data is only used for training. For some deep learning methods 10% of the training
data is used as validation set to optimize the hyperparameters.

5.2 Experimental Setup

The main requirement for the evaluation is achieving an optimally trained model for each anomaly de-
tection method. This requires to optimize the hyperparameters of the model in addition to the trainable
parameters. Therefore, as described before a validation set is used. This prevents overfitting in training
process.

In addition to that and especially for the anomaly detection methods, which are based on a forecasting
model, hyperparameter tuning is performed on the forecasting model. An optimized forecasting model
will achieve better results later in detecting anomalies. To evaluate the forecasting model, a naive model is
created. In some literature this naive model is also called persistent model. The naive model in time series
forecasting is a model where the output Z; of the model is equal to the input:

Ty :fNaiveModel((xtfwfla ceey xtfl))
where fNaiveModel ‘RY - R (51)

fNaiveModel((litfwfla ) xtfl)) = Ti—1

The accuracy of the naive model forms a lower bound for the target model. Following this, the Mean
Squared Error (MSE) of the target model should be lower than naive model. Therefore, this thesis suggests
the following metric to evaluate the forecasting performance of the prediction model:

MS ET del
NMM(MSETargetmodeh MSENaiveModel) - MSENGT?EZ:OC;Z (5.2)
atveM ode
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where NMM stands for Naive Model Metric. Empirically, we have noticed that a model usually has a higher
AUC-Value when NMM is lower. This has been especially useful when the dataset is unlabeled or the rate
of anomalies in the training set is extremely low. Therefore, the hyperparameters of the model are tuned
to minimize the NMM value aiming to keep it strictly lower than 1.

5.2.1 Involved Software and Hardware
Software

The entire algorithms have been implemented in python. For the statistical approaches mainly the module
Statsmodels [107] was used while some custom algorithms like PCI was implemented from scratch. The
classical machine learning approches have been mostly implemented using Scikit-learn (Sklearn) [108]
and for the deep learning approaches the tensorflow [109] and keras library [110] have been used.

Hardware

The training and testing of the models were performed on the following hardware:

Artifact Value

CPU Model name: 2xIntel(R) Xeon(R) CPU @ 2.30GHz, 46MB Cache, 1 Core
RAM ~12.4 GB

GPU 1xTesla K80, 12GB

All computation have been performed on a single process and a single thread.

5.2.2 Hyperparameter Tuning
General Hyperparameters

Some of the hyperparemters are general and dependent on the dataset, unless another value is listed
explicitly for a specific approach. These are the following:

Dataset Hyperparameter Value

Yahoo Services Network traffic  Sliding window width w 30

All datasets Ratio of training set 0.3
Ratio of test set 0.7
Ratio of validation set 0.1 of test set
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Statistical approaches

The hyperparameters of the statistical approaches are listed based on the specified algorithm:

Univariate Statistical Approaches

Model Hyperparameter Value
AR-Model maximal lag 12 ( %)%

Fitting method Conditional maximum likelihood using OLS
MA-Model maximal lag 12 - (%)%

error residual lag Sliding window width w

Fitting method Conditional maximum likelihood using OLS

H X rain 1

ARIMA-Model maximal lag 12 - (%)4

P 1

d 1 if data contains trend, otherwise O

q 2

Fitting method Maximizing Conditional Sum of Squares likelihood

Maximal iteration 500

Convergence tolerance 1078
SES Smoothing Parameter o Use brute force grid optimizer to find the best values using MLE
ES a, B,y Use brute force grid optimizer to find the best values using MLE
PCI k 30

Q@ 98.5

The following are the parameters for the multivariate statistical approaches, which achieved the best results
on the different multivariate datasets
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Multivariate Statistical Approaches

Model Hyperparameter Value
Average AR-Model maximal lag 12 (%)i
(AvgaRr) Fitting method Conditional maximum likelihood using OLS
Aggregation functions  max, min, mean
Average MA-Model maximal lag 12 - (%)i
(Avgarra) error residual lag Sliding window width w
Fitting method Conditional maximum likelihood using OLS
Aggregation functions mazx, min, mean
VAR-Model maximal lag 12- (%)i
Fitting method Conditional maximum likelihood using OLS
VARMA-Model maximal lag 12 (%)i
(p.q) (4,2)
Fitting method Maximizing Conditional Sum of Squares likelihood
Maximal iteration 100 and 1000
PCI k 100
o 98.5

Projection with AR-Model
(Proj )

maximal lag

X'r‘ain 1
12'(| 166 |)4

. . . . X rain 1
PrOJe.ctlon with MA-Model maximal lag 12- (%) 1
(Projy/4)

Projection with OVSVM-Model Upper bound of outliers 0.4
(Projovsvar) Sliding window w 10
Projection with XGBoost Sliding window w 10

(Projxcp)

Machine Learning approaches

The hyperparameters of the machine learning approaches used for univariate time series are listed based

on the specified algorithm:
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Univariate Machine Learning Approaches

Model Hyperparameter Value
K-Means k 4
DBSCAN € 0.4
I 5
distance function Euclidean distance
LOF k 10
distance function Minkowski distance
Isolation Forest Number of iTrees 10
(iForest) Contamination value Find automatically
One-Class SVM (OC-SVM) kernel Radial basis function kernel(RBF)
Upper bound of outliers 0.7
XGBoosting Max Tree depth 3
(XGB) Learning rate 0.1
Number of estimators 1000
Loss function MSE

In the following table the hyperparameters of the machine learning approaches for the multivariate time
series are listed. If the parameter values differ from the datasets they are listed separately.
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Multivariate Machine Learning Approaches

Model Hyperparameter Value
Average One-Class SVM kernel Radial basis function kernel (RBF)
(Avgxcn) Upper bound of outliers 0.5
Aggregation functions max, min, mean
Average XGBoosting Max Tree depth 3
(Avgxcn) Learning rate 0.1
Number of estimators 1000
Loss function MSE
Sliding window w 100

Aggregation functions

max, min, mean

Multivariate One-Class SVM

kernel

Radial basis function kernel(RBF)

(OC-SVM) Upper bound of outliers 0.9
sliding window w 350
Multivariate XGBoosting Max Tree depth 3
(XGB) Learning rate 0.1
Number of estimators 1000
Loss function MSE
Sliding window w 108
LOF k 6
distance function Minkowski distance
DBSCAN € 0.3
W 30
distance function Fuclidean distance
sliding window w 100
Isolation Forest Number of iTrees 20
(iForest) Contamination value Find automatically
sliding window w 100

Deep Learning approaches

The hyperparameters of the deep learning approaches for univariate timeseries are listed based on the
specified algorithm:
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Univariate Deep Learning Approaches

Model Hyperparameter Value
MLP Number of hidden layers 2

Neurons in each hidden layer 100, 50

Activation function RelLU

Optimizer, Loss Adam, MSE

Batch size,Epochs 32,50
CNN Architecture 3 Convolution Blocks with Max-Pooling and ReLU,

then one Dense layer with 50 neurons and ReLU

Filters 8,16,32 with kernel size 2

Optimizer, Loss Adam, MSE

Batch size, Epochs 32,50
CNN+Batch Architecture 2 Convolution Blocks with Batch-Normalization with ReLU
Normalization then one Dense layer with 50 neurons and ReLU
(CNN_B) Filters 256,256 with kernel size 3

Optimizer, Loss Adam, MSE

Batch size, Epochs 32,50
CNN+Residual  Architecture 1 Convolution Block with One Residual Block 3.7
Blocks then one Dense Layer with 50 neurons and ReLU
(CNN Residual) Filters 256,256,256 with kernel size 3

Optimizer, Loss
Batch size, Epochs

Adam, MSE
32,50

WaveNet Architecture 3 Convolution Blocks with Max-Pool and ReLU function,
with Dilation rate 1,2,4 then one Dense layer with
50 neurons and ReL.U
Filters 8,16, 32
Optimizer Adam, MSE
Batch size, Epochs 32,50
LSTM Architecture 2 stateful LSTM Layer
Filters 4,4
Optimizers, Loss Adam, MSE
Batch size, Epochs 32,50
GRU Architecture 2 stateful LSTM Layer
Filters 4,4
Optimizers, Loss Adam, MSE
Batch size, Epochs 32,50
Autoencoder Architecture 2 Encoding Layers (32,16), 2 Decoding Layers (16,32)

Activation functions
Optimizer, Loss
Batch size, Epochs

ReLU for Decoding and Encoding, linear for output
Adam, MSE
32,50

In the following table, the hyperparameters of the multivariate deep learning methods are listed:
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Multivariate Deep Learning Approaches

Model Hyperparameter Value
MLP Number of hidden layers 2
Neurons in each hidden layer 100, 300, 400, 200
Activation function RelLU
Optimizer, Loss Adam, MSE
Batch size,Epochs 32, 30
CNN Architecture 3 Convolution Blocks with Max-Pooling and ReL.U function,
then one Dense layer with 18 neurons and ReLU
Sliding window w 30
Filters 8,8,8 with kernel size 2
Optimizer, Loss Adam, MSE
Batch size, Epochs 32,20
CNN+Batch Architecture 2 Convolution Blocks with Batch-Normalization with ReLU
Normalization then one Dense layer with 18 neurons and ReLU
(CNNp) Sliding window w 30
Filters 8,8,8 with kernel size 2
Optimizer, Loss Adam, MSE
Batch size, Epochs 32,20
CNN+Residual  Architecture 1 Convolution Block with One Residual Block 3.7
Blocks then one Dense Layer with 18 neurons and ReLU
(CNN Residual) Sliding window w 180
Filters 3,3,3 with kernel size 1
Optimizer, Loss Adam, MSE
Batch size, Epochs 32,60
WaveNet Architecture 4 Convolution Blocks with Max-Pool of size 2
and ReLU function, with Dilation rate 1,2,4,8
then one Dense layer with 18 neurons and ReL.U
Sliding window w 30
Filters 8,8,8,8 with kernel size 2
Optimizer Adam, MSE
Batch size, Epochs 32,20
LSTM Architecture 2 stateful LSTM Layer
Sliding window w 30
Filters 8,8
Optimizers, Loss Adam, MSE
Batch size, Epochs 32,3
GRU Architecture 2 stateful LSTM Layer
Sliding window w 30
Filters 8,8
Optimizers, Loss Adam, MSE
Batch size, Epochs 32,3
Autoencoder Architecture 2 Encoding Layers (5,3), 2 Decoding Layers (3,5)

Activation functions
Optimizer, Loss
Batch size, Epochs

RelL.U for Decoding and Encoding, linear for output
Adam, MSE
32,3
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6 Results

In this chapter, the results of the different approaches are presented. The listed approaches in chapter 3
with the hyperparameters listed in chapter 5 have been executed. The following sections list the AUC-Values

and Computation time of the univariate and multivariate approaches respectively.

6.1 Results of Univariate Approaches

6.1.1 AUC-Values

The following table lists the AUC-Values obtained on the different datasets by the univariate approaches.
The AUC-Value was computed on each dataset separately:

Dataset AR MA SES ES ARIMA PCI

UD1 0.911394 0.868123 0.824894 0.830289 0.8730 0.522397

UD2 0.994769 0.994150 0.932215 0.957964 0.9891 0.762529

UD3 0.994116 0.994245 0.990782 0.989360 0.990 0.674337

UD4 0.975152 0.986400 0.969333 0.971991 0.9709 0.688257

NYCT 0.6369 0.3938 0.3452 0.3423 0.3583 0.5377

Dataset K-Means DBSCAN LOF iForest OC-SVM XGBoost

UD1 0.877623 0.806574 0.814574 0.803997 0.850292 0.896743

UD2 0.923446 0.995251 0.995116 0.993984 0.995276 0.968308

UD3 0.728037 0.696868 0.951007 0.952241 0.957272 0.80231

UD4 0.663028 0.725566 0.952523 0.955123 0.939444 0.85375

NYCT 0.9137 0.5407 0.5294 0.4922 0.5859 0.4602

Dataset MLP CNN CNN B CNN Residual Wavenet LSTM GRU Autoencoder
UD1 0.780471 0.809449 0.785505 0.819109 0.8239 0.8121 0.8025 0.782197
UD2 0.71911 0.74924 0.74815 0.721279 0.761423 0.7348 0.7183 0.742767
UD3 0.569883 0.582761 0.581911 0.575338 0.579589 0.5781 0.5711 0.602905
UD4 0.558124 0.581019 0.604943 0.568564 0.592414 0.5891 0.5811 0.597238
NYCT 0.7962 0.8181 0.76 0.7468 0.8229 0.8404 0.7978 0.6967

The best results are highlighted in the table. To provide a better illustration of the results, the average
AUC-Value of all datasets UD1-UD4 for each algorithm is computed and plotted as a sorted sequence in

figure 6.2:
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Average AUC-Value on UD1-UD4
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Figure 6.1: Average AUC-Value computed on UD1-UD4

This figure shows that the statistical models achieved the best results while the deep learning methods
generally performed poorly. Four of the five best performing algorithms are statistical while four of the
worst performing algorithms are deep learning approaches. Most of the machine learning approaches are
located in the center. Only PCI is an exception of the statistical approaches, which reached a very low
AUC-value.

However, surprisingly the deep learning methods perform much better on the NYCT dataset while the
statistical approaches achieve a very low AUC-Value. Figure shows how the results:
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Figure 6.2: Average AUC-Value computed on UD1-UD4

The main reason to this poor performance of the statistical approach is the fact that the NYC timeseries
contains contextual anomalies while the anomalies in UD1, UD2, UD3 and UD4 are either point anomalies
or collective anomalies. Most of them do not contain any contextual anomalies. The values of the anomalous
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points differ clearly from the rest normal points. But in the NYCT dataset the value of the anomalous points
is similar to the normal points. They are anomalous due to their contextual information. We observed that
the statistical models overfit to these data, preventing them to detect the anomalies. On the other side,
deep learning approaches provide a more flexible way to optimize the model according to the anomaly
type by tuning the broad range of hyperparameters making them able to achieve high AUC values.

6.1.2 Computation Time

The computation time is measured for each algorithm on the datasets UD1-UD4 containing 367 time series
which is listed in the first line of the following table. Then the average time needed to train and detect
anomalies on a single time series is computed and listed in the second line. The time is measured in
seconds:

Dataset AR MA SES ES ARIMA PCI

UD1-4 51 17 2910 13268 72422 374

One timeseries 0.139 0.046 7.93 36.15 197.3351 1.02

Dataset K-Means DBSCAN LOF iForest OC-SVM  XGBoost

UD1-4 190 319 319 38451 210 14

One timeseries 0.52 0.87 0.87 104.77 0.57 0.38

Dataset MLP CNN CNN B CNN Residual Wavenet LSTM GRU Autoencoder
UD1-4 7396 10824 12938 37038 17252 54083 49756 9413

One timeseries 20.15 29.49 35.38 100.92 47.0 147.36 135.57 25.65

The results show that the autoregression models AR and MA are the fastest algorithms while in general
the deep learning methods have a huge computation time. But not all statistical approaches benefit from
a lower runtime. SES and ES require more time than many machine learning approaches. Deep learning
approaches have higher computation time because of their time-consuming training phase. Especially,
LSTM and GRU are the bottom of the table.

Some papers argue that deep learning approaches invest most of their computation time in the training
phase and that the inference time in deep learning approaches is much faster than other machine learning
methods. But this statement is not always true as the following table, which contains the measured training
and inference time on the NYCT dataset, demonstrates:

AR MA SES ES ARIMA PCI
Training Time  0.1004 0.1404 125.26  989.49 1482.87 2.85
Inference Time 0.1004 0.6423 5.06 9.5115 1481.56 0.0093
Dataset K-Means DBSCAN LOF iForest OC-SVM XGBoost
Training Time  0.25845 0.0879 0.0917  5.5646 0.02 0.1187
Inference Time 1.99455 8.3774 5.5646 787.29 2.98 0.0205
Dataset MLP CNN CNN B CNN Residual Wavenet LSTM GRU Autoencoder
Training Time  4.439 48.322 39.2339 111.36 23.263 1067 813.021 17.459
Inference Time 0.561 0.6783 0.7661 1.6401 0.737 1086 385.979 0.5406
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The training time represents the computation time we measured by fitting the model on the trainings set
which consists of 30% of the NYCT dataset. The inference time was the measured time, the model needed
to label the rest of the NYCT dataset which represents the test set.

Most of the deep learning approaches have a very low inference time. But as the measured values in the
table show, recurrent neural network like LSTM and GRU also have a very huge inference time exceeding
the inference times of almost all machine learning approaches. Hence, although the LSTM model achieved
the best results on the NYCT dataset, but its inference time remains critical.

6.1.3 Computation Time vs AUC-Value

An interesting relation is the accuracy a method can achieve compared to the computation time it requires.
Figure 6.3 displays how the different univariate approaches perform in regard to AUC-Value and Compu-
tation time on the datasets UD1-UD4. The best performing algorithms would locate at the lower right part
of the graph having a high AUC-Value and a low computation time. The graph shows that the statistical
methods are performing best, i.e., AR and MA model. On the other hand, most deep learning methods are
showing low AUC-Value. CNN with residual blocks is performing worse than any other method having low
time performance and low AUC-Value at the same time.
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Figure 6.3: Average AUC-Value vs computation time
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6.2 Results of Multivariate Approaches

6.2.1 AUC-Values

In the following table, the AUC values of each algorithm on the multivariate data sets are listed. For each
dataset the algorithm with the highest AUC-Value is highlighted:

Dataset Avgar  Av8ma Avgxgp Av8ocsvm VAR VARMA PCI

SD 0.5785 0.5047 0.593 0.6163 0.5632  0.7337 0.5883
SMTP  0.6055 0.8203 0.9058 0.7326 0.8669  0.8292 0.7996
NASA 0.91 0.7907 0.8323 0.9212 0.4632  0.5781 0.4866
Dataset PI‘OjAR PFOjMA PI'OjXGB ProjOCSVM

SD 0.9542 0.9611 0.9557 0.9524

SMTP  0.4432 0.5872 0.4178  0.811
NASA  0.4706 0.4714 0.4658  0.4684

Dataset OCSVM XGB LOF DBSCAN iForest

SD 0.796 0.7368 0.6897 0.5069 0.6354

SMTP 0.6496 0.7263 0.6747 0.6929 0.7201

NASA 0.885 0.4738 0.8158 0.4633 0.8814

Dataset MLP CNN CNN B CNN Residual Wavenet LSTM GRU Autoencoder
SD 0.85 0.922 0.8943 0.9269 0.9336 0.9364 0.9299 0.8926
SMTP 0.5878 0.6110 0.7102 0.6447 0.646 0.4413 0.5294 0.9030
NASA 0.4727 0.4689 0.4719 0.4732 0.4722  0.4703 0.4708 0.4526

As stated in Chapter 5, we used the minimize, maximize and mean function for the statistical projection
methods, i.e., Proj 4, Projas 4, Projxaps and Projocsv ar, where most of them achieved the best results with
the minimize function. Figure 6.4 shows the average AUC-Value achieved by each approach on the SD and
SMTP datasets. These two datasets have been selected for this figure to have the average value of one real
and one synthetic dataset:
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Figure 6.4: AUC-Value on the SD and SMTP datasets

Figure 6.4 shows that the deep learning approaches achieve high AUC-Value for the two datasets. Five of
the best six approaches are deep learning approaches.
Another interesting outcome of the evaluation is illustrated in figure 6.5:
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Figure 6.5: Separate AUC-Values of the SD and SMTP datasets and average
AUC-Value

Figure 6.5 shows that the statistical methods perform much better on the synthetic data compared to the
ML and Deep Learning approaches. This is due to the fact that the dataset is created by several AR-Models.
Interestingly, the figure also shows how the AUC values of the statistical models decreases on the SMTP
dataset and how the values of the deep learning methods improve. Also ML methods like LOF, AVGxap
or AVGocsv iy achieve high results. The blue line illustrates the average AUC-Value on the two datasets
where the autoencoder and the hybrid approach Projoc sy as consisting of statistical Projection and Machine
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learning methods OC-SVM achieve the best results. It also interesting to notice that the GRU model achieves
almost the same results as the LSTM model, although GRU is less complicated than LSTM as decribed in
Chapter 3.

Another important observation of the experiments was the performance of the different distance functions
in anomaly detection methods, which are based on time series forecasting. The results in table 6.1 show
that using the mahalanobis distance improves the AUC-Value compared to the euclidean distance:

Dataset Function MLP CNN CNN B CNN Residual WaveNet LSTM  GRU Autoencoder
SD Mahalanobis 0.8712  0.9225 0.9118 0.9297 0.9336 0.9364 0.9332 0.8926
Euclidean 0.6997 0.7457 0.7545 0.7592 0.7787 0.7589 0.7467 0.8726
SMTP Mahalanobis 0.6878 0.611  0.7102 0.6447 0.646 0.4413 0.5382 0.903
Euclidean 0.6076  0.5941 0.5494 0.5067 0.5178 0.404 0.4981 0.8438
NASA Mahalanobis 0.4727 0.4689 0.4719 0.4732 0.4722 0.4703 0.47089 0.4526
Euclidean 0.47635 0.476  0.4747 0.4749 0.4756 0.4751 0.4751 0.4513

Table 6.1: Mahalanobis vs. Euclidean distance

Almost in all approaches with all datasets, the mahalanobis distance achieves better results than the eu-
clidean distance where the difference between the AUC-Values varies on the different datasets.

6.2.2 Computation Time

The computation time is measured for all the datasets and is listed for each approach in seconds in the
following table:

Dataset Avgar  Avg@ya AvVvgxa Av8ocsvm VAR VARMA PCI

SD 1.401 0.593 0.387 10.783 0.198 117.93 0.7721
SMTP 21.91 4.403 1.338 103.23 2.429 5377 1.37
NASA 57.412 10.399 3.760 337 3 11387 3.454
Dataset Projar  Projma Projxgs Projocsvu

SD 0.2534 0.075 2.3698 0.5967

SMTP 15.148 7.111 4.6182  64.5
NASA 11.682 8.161 8.199 31.756

Dataset OCSVM XGB LOF DBSCAN iForest

SD 17 13 9 3 231

SMTP 588 76 72 100 7524

NASA 431 261 53 71 4000

Dataset MLP CNN CNN B CNN Residual Wavenet LSTM GRU Autoencoder
SD 11 11 11 21 11 164 133 34

SMTP 151 117 151 578 150 4673 3874 70

NASA 88 58 84 314 69 3001 1844 32
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Similar to the univariate approaches, the statistical approaches on multivariate time series benefit from
higher performance while some machine learning approaches like iForest or deep learning approaches like
LSTM suffer from high computation times. The results also show that the variance between the measured
computation time values is huge. For instance, iForest takes about 300-times longer than the Projs4
method.

6.2.3 Computation Time vs AUC-Value

As shown in evaluation of the univariate approaches, analysing the AUC-value and computation time sep-
arately could misguide us. Therefore, we will analyze the relationship between these two measurements.
Figure 6.6 shows the relationship between these two variables based on the inspected approach.
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Figure 6.6: Average AUC-Value vs computation time

While for the univariate approaches the statistical methods occupied the bottom right corner, on multi-
variate approaches another distribution is noticed. Here, deep learning methods like autoencoder achieve
high AUC-Value while also having low computation time. Also other deep learning methods like the differ-
ent variations of CNN-Model achieve high AUC-Values while profiting from low computation times. Figure
6.6 also shows that hybrid approaches like Projocsy s gain high AUC-values as well as low computation
times.

6.3 Findings

The evaluation on the univariate time series data has shown that despite the advances in machine learning
approaches and deep neural networks, still the statistical methods that rely on the generating process are
generally performing best. In addition to the fact that these methods detect anomalies more accurately
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than the other appraoches, they also perform faster and have a very low training and prediction dura-
tion. Furthermore, the optimization of the statistical methods is much easier compared to deep learning
methods, because the number of hyperparameters of the statistical algorithms is low. The results have also
highlighted the fact that in time series anomaly detection the machine learning approaches usually perform
better than the deep learning methods, although the computation time of several of them is critical. For
instance, the isolation forest has a very high AUC-value, but needs a thousand times more time for training
and inference than the AR and MA model. This is despite the fact that the number of trees selected in
our experiments have been quite moderate. But at the same time, the experiments have also shown that
statistical approaches have trouble dealing with contextual anomalies. In cases like this, neural network
approaches and some machine learning approaches could achieved notably higher AUC-values. This find-
ing is important, because a similar comparison of statistical approaches and machine learning approaches
for forecasting univariate timeseries concluded that statistic approaches dominated the machine learning
and deep learning approaches across in both accuracy and for all forecasting horizons they examined [15].
Hence, these findings show how anomaly detection on univariate time series data differ from exclusive
univariate forecasting.

The results of the multivariate time series showed a shift in the achieved AUC values. Compared to the
univariate time series where the neural network approaches generally performed poorly, in multivariate
time series most of them could obtain high AUC values. Especially on datasets that have not been simulated
explicitly by autoregression models like the NASA and SMTP datasets, deep learning approaches like au-
toencoders performed very well. The results highlighted also the fact that choosing an appropriate distance
function can increase significantly the accuracy of deep learning method. During the training process, we
also observed that neural networks overfit much faster on time series data than we were used to. While in
computer vision tasks, large amount of trainable parameters were used, in the timeseries of the mentioned
datasets we achieved the best results by decreasing the amount of layers, amount of neurons, kernel sizes
and kernel numbers. We also observed that the number of epochs should be kept low, otherwise the model
overfits resulting in low AUC values. The explicit hyperparameter values have been listed in section 5.2.2.
It also showed up that for multivariate timerseries LSTM based approaches didn’t outperformed simpler
models like CNNs. This is in spite of the fact, that LSTM and GRU models are the most time consuming
neural network approaches and need ten times more training time on the small datasets. On the bigger
datasets like SMTP and NASA the computation time difference reaches a ration of 30:1.

The final interesting observation was the fact, that hybrid approaches consisting of a statistical and ma-
chine learning part like Avgoc sy s achieved promising AUC values while still need a limited computation
time. We recommend that these methods should be analyzed further in future works.
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7 Conclusion and Future Works

In this thesis for the first time a comparison between statistical and classical machine learning and deep
learning approaches has been performed using a wide range of state of the art algorithms. Overall, we
evaluated 20 univariate and 24 multivariate anomaly detection methods by using five univariate time se-
ries datasets consisting of 368 univariate time series and three multivariate time series datasets to provide
a reliable contribution for the research community about the performance of these three classes of anomaly
detection methods. Additionally, by analysing both univariate and multivariate approaches, we wanted to
evaluate if statistical, machine learning and deep learning methods behave differently on univariate and
multivariate timeseries.

The experiments showed that the statistical approaches perform best on univariate time series, especially
in detecting point and collective anomalies. They also require less computation time compared to the other
two classes. Although deep learning approaches have gained huge attention by the artificial intelligence
community in the last years, our results have revealed that they are not generally able to achieve the accu-
racy values of the statistical methods on the univariate time series benchmarks which only consist of point
and collective anomalies. Only if the univariate dataset mainly consists of contextual anomalies, neural
network could outperform the statistical methods. On the other hand, deep learning approaches showed
promising performance on multivariate time series. Although still suffering from high computation time
compared to statistical approaches, some of the deep learning methods could outperform them by achiev-
ing higher AUC-rates.

The results have also shown that hybrid approaches consisting of statistical and machine learning com-
ponents can achieve satisfactory outcomes. Therefore, these methods are the subject of future research.
Additionally, one related field, which is also of current interest, is Online Anomaly Detection. This thesis
focused on anomaly detection on static data, but can be extended to evaluate streaming data.

In this thesis, we evaluated the anomaly detection methods on general time series datasets and the results
have shown that the property of the data affects the performance of the algorithms. Therefore, it would be
a line of future works to extend the experiments of this thesis by evaluating the approaches on different
domain-specific datasets.

Finally, several attempts can be made to extend the results of this thesis. However, to the best of our
knowledge, this is the first attempt to provide a broad evaluation of different anomaly detection techniques
on timeseries data. We hope that this thesis and the corresponding experiments aid other researchers in
selecting an appropriate anomaly detection method when analysing timeseries.
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