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Abstract

Time series data is used for modelling, description, forecasting, and control in many fields from
engineering to statistics. Time series forecasting is one of the domains of time series analysis,
which requires regression. Along with the recent developments in deep learning techniques, the
advancement in the technologies personal health care devices are making it possible to apply
deep learning methods on the vast amounts of electronic health data. We aim to provide reliable
blood glucose level prediction for diabetes patients so that the negative effects of the disease
can be minimized. Currently, recurrent neural networks (RNNs), and in particular the long-short
term memory unit (LSTM), are the state-of-the-art in timeseries forecasting. Alternatively, in this
work we employ convolutional neural networks (CNNs) with multiple layers to predict future
blood glucose level of a diabetes type 2 patient. Besides our CNN model, we also investigate
whether our static insulin sensitivity calculation model’s results have a correlation with basal
rate of the patient. We use the static insulin sensitivity data with our prediction model, in
order to find out whether it contributes for a better prediction or not. Our experimental results
demonstrate that calculated static insulin sensitivity values do not have any correlation with
the basal rate. Our convolutional neural network model forecasts multivariate timeseries with
multiple outputs including the blood glucose level with a 1.0729 mean absolute error for the
prediction horizon of 15 minutes.
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1 Introduction

Diabetes mellitus is a major and increasing global problem [38]. There are around 171 million
diabetes patients worldwide according to the study of [38]. This figure is predicted to rise to
336 million by 2030 [51], and it represents 4.4% of the world’s population. Short term com-
plications are hypoglycemia and hyperglycemia. The long term complications usually affect the
vascular system, central nervous system and organs such as kidneys and eyes. These long term
complications usually result in cardiovascular disease, retinopathy, and nephropathy. However,
the costly complications can be reduced by managing to keep the blood glucose level between
acceptable levels.

The control of the blood glucose level inside safe limits requires continuous monitoring of
blood glucose level. The most common method for type 1 diabetics is finger prick test which
is taken several times a day. These readings are used in order to adjust the required insulin
dose which keeps the blood glucose between certain levels. Besides the blood glucose measure-
ment, there are many other factors influencing the diabetes. Insulin type and dose, diet, stress,
exercise, illness, and pregnancy are some of the factors with significant influence on diabetes
theraphy. Continuous blood glucose meters (CGMs) and insulin pumps (IPs) provide ease of
measuring the blood glucose and better monitoring for the patient. Using the information pro-
vided by CGMs, patients can better adjust the injection of exogenous insulin. However, CGMs
require user interpretation. A system without the feedback system is called an "Open-loop sys-
tem". In open-loop systems insulin is delivered in a preprogrammed independent of the amount
of glucose measured. This type of glucose monitoring systems are common. Conversely, in
closed-loop systems, output of the system is used as a feedback loop. In such system, insulin or
other substances are given in response to a measured amount of glucose [42]. A system where
these devices can work in closed-loop fashion to maintain a steady blood glucose level with
minimal intervention from the patient, can be the next step in diabetes management. However,
according to [21] such systems are at research and development stage, but initial clinical trials
are promising.

1.1 Scope

The goal of this thesis can be roughly divided into two main categories. First of all, we want
to show whether our static insulin sensitivity calculation correlates with the basal rate or not.
Secondly, we want to predict future blood glucose levels of the diabetes patient. Additionally,
we want to find out whether this newly generated feature, the insulin sensitivity, can contribute
to the blood glucose level prediction when used as an additional feature. Therefore, type 1
diabetes is out of the scope of this thesis.

We will be discussing state-of-the-art methods for insulin sensitivity assessment and also our
method. Our insulin sensitivity assessment model is a minimal physiological model using few
parameters such as, continuous glucose measurement, and bolus insulin value. For blood glu-
cose prediction models we will briefly explain different model structures, also related work, but
in this thesis we use neural network approach which is a data-driven model. Even though, RNNs
and in particular the LSTM, are the state-of-the-art in timeseries forecasting, we use CNN. In-
stead of RNN, we use one-dimensional convolutional neural network model using a real dataset
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derived from a type 2 diabetes patient. The idea behind applying CNNs to time series forecast-
ing is to learn filters that represent certain repeating patterns in the time series and to use these
to forecast future blood glucose values. We belive that the layered structure of CNNs might
perform well on noisy time series as in the work of [6]. Since we use the insulin sensitivity
feature in our neural network model, the overall architecture of our model is considered as a
hybrid model.

1.2 Outline

This thesis is organized in following manner: Chapter 2 describes necessary information re-
quired for understanding the disease diabetes mellitus, basic machine learning principles and
related terms, artificial neural networks and deep learning. In chapter 3, state-of-the-art has
been covered. We also discuss their significance, contribution and downsides. In chapter 4, we
present structure of our dataset which is used in our experiments. In chapter 5, we introduce
frameworks and libraries used for the experiments. In the next chapter 6, we present our ap-
proach for calculation of static insulin sensitivity from the dataset and neural network model for
predicting the future blood glucose levels. Besides these, we also evaluate the results derived
from these models. In chapter 7 we conclude our work with a forward looking approach.
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2 Theoretical Background

In this chapter we will explain; diabetes mellitus disease, why it occurs, how it can be treated
and the most important how we can contribute the treatment with our approach in this thesis.
In the following section, we discuss why machine learning algorithms are used, especially which
types of problems they are capable of solving. How a machine learning algorithm learns and
what are the metrics used to evaluate the performance of a machine learning algorithm. We will
explain also different types of problems where machine learning can be applied.

2.1 Diabetes Mellitus

Diabetes is a chronic disease due to a malfunction of the pancreas. Pancreas is an endocrine and
digestive organ that, in humans, lies in the upper left part of the abdomen. Besides the function
of helping the digestion, another function of the pancreas is to produce insulin hormone allow-
ing blood glucose absorption by the body cells. Hence, pancreas also responsible for regulating
the blood glucose. Insulin is a hormone released by the beta cells of the pancreas. The most
important glucose source is food items that are rich in carbohydrates.

Every cell of the body needs energy to function. Blood glucose can be absorbed by the body
cells, only with presence of insulin hormone, which is normally produced by pancreas. This hor-
mone with healthy people, produced just with a right amount, but with diabetes patients, addi-
tional insulin injections are needed. Figure 2.1 provides an overview how insulin and glucose
metabolism works. In the figure, the carbohydrates inside the food consumed by the patient,
provide glucose to the blood stream after it is digested and converted into a smallest building
blocks after digestion. Bread unit is used in for estimation of carbohydrate amount inside the
food consumed by the patient. One bread unit corresponds to approximately 10g − 12g of
carbohydrates.

Besides the normal blood glucose and insulin mechanism, there are two more important cases
to mention. Firstly, muscles need almost no insulin during the sport in order to make use of
the glucose. Secondly, the body has a protection mechanism to deliver quick energy for the
cases where blood glucose level is critically low or during a heavily stressed situation. Critical
level threshold is 50 mg/dl. Another source of glucose is the glucose store which can release or
backup glucose. When the dangerous situation is over, this mechanism works in the opposite
direction, retrieving glucose from blood to the glucose store. Another hormone called glycogen
controls this glucose release and backup. On the other side, working muscles are the other
factor consuming the glucose inside the blood. Since glucose absorption is only possible with an
insulin release, for the diabetes patients, an insulin pump which releases insulin into the blood
stream is needed. The insulin pump works with a sensor placed under the skin of the patient.
The sensor measures the blood glucose level periodically and provides these measurements to
the insulin pump. In this way the pump can calculate the required amount of insulin needed for
the patient and release it. The rate of insulin released from the pump is called basal rate of the
patient. Basal rate varies with each patient and can be programmed with the insulin pump. The
dose of insulin released according to basal rate called basal insulin which stabilizes the blood
glucose to an optimal value when the patient does not do any physical activity and does not eat
anything.
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Figure 2.1: Illustration of insulin-glucose system

Disease arises from the reason; either the pancreas cannot produce enough insulin, or the
body cannot effectively use the produced insulin. When diabetes is not responded with a suitable
treatment, it leads to serious damage to the body’s systems. When the blood glucose level
is higher than the normal value, it is called hyperglycaemia, conversely low blood glucose is
named hypoglycaemia. In the next paragraph, we will discuss two types of diabetes and other
related effects in more details.

Type 1 diabetes patients characterized by deficient insulin production, while type 2 diabetes
patients by ineffective use of insulin. Majority of the diabetes patients are type 2. In the scope
of this thesis, we will be focusing on type 2 diabetes hypoglycemia prediction and prevention
using machine learning techniques. For type 2 diabetes patients, controlling the blood glucose,
and improving the insulin sensitivity is possible by changing life style and healthy diet. In order
to keep the blood glucose within normal level, diabetic person needs to inject certain amount
of insulin into the tissue between body skin, and the muscle. If the insulin is not injected, it
also could be inhaled with an inhaler or it can be infused with a pump. Insulin amount needed
is calculated based on food intake which is considered in terms of bread units. Blood glucose
level is highly dependent on injected insulin amount and food intake. Besides food intake, other
factors such as exercise, sleep-wake cycles, sleep quality, stress, illness, alcohol are known to be
affecting blood glucose mechanism. We summarize the other known effects which are known
to be influencing the blood glucose values, in the table 2.1.

2.2 Basics of Machine Learning

A machine learning algorithm which is able to learn from data [17] is used to tackle with
tasks, which are too difficult to solve with ordinary programs designed and written by human
beings. Machine learning algorithm processes collection of features measured from an object
or event. In order to simplify things, we will refer to an experience as E, class of tasks as T ,
and a performance measure as P. In the context of machine learning tasks, T are, tasks which
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Known Effects Description
Refill Effect After longer periods (>30 min) of sports, a blood glucose degra-

dation can be observed up to 10 hours after the event. This is
caused by a refill of the glucose stores of the body, since the stored
glucose is used to provide enough energy for the working muscles.

Dawn Phenomenon It is an early morning (usually between 2 a.m. and 8 a.m.) in-
crease in blood glucose. It is not associated with nocturnal hypo-
glycemia (low blood glucose value). The dawn phenomenon can
be managed by adjusting the dosage of the basal insulin in the
insulin pump.

Chronic Somogyi Rebound Chronic Somogyi Rebound describes a very high blood glucose
value after a hypoglycemia (low blood glucose value). It occurs
almost every time when the blood glucose value falls below 50
mg/dl (sometimes even earlier). The high blood glucose value is
caused by a panic release of the glucose reserves in the body. This
is triggered by hormone like Glucagon, Adrenalin and Cortisol.

Temporal Insulin Resistance After longer periods without eating carbohydrates, a temporal in-
sulin resistance can occur. However, patients have to inject more
insulin to overcome this effect. But mostly patients do not notice
this effect, and just wonder why the insulin dose does not work.
In order to prevent this effect, the patient should consume small
amounts of carbohydrates on a regular basis (3 times a day is
suggested).

Table 2.1: Known Effects of Diabetes Mellitus
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are too difficult to solve with fixed programs or human beings. When a computer program is
learning from experience E with respect to some class of tasks T , and performance measure P;
its performance at tasks in T , as measured by P, is called improving with the experience E [26].

Most of the machine learning algorithms can be thought as experiencing the entire dataset
during the training phase, in supervised or unsupervised manner. A dataset can be considered
as a collection of many examples or data points. In most of the cases, a dataset is a collection of
examples, which turns into a collection features by the training. For example; a design matrix
can be used to describe a dataset, which contains a collection of different example within every
row. In other words, we can represent a dataset with 150 examples, and with 4 features for
each example as X ∈ R150x4, where X i,1 corresponds to the first feature, X i,2 is the second
feature, and so on. Another way of expressing a design matrix is, defining each example as a
vector, each with the same size. However, this is not always possible, especially when the dataset
is heterogeneous. For example; a dataset consisting of photographs with different dimensions
(width and height) would result into images with different size and number of pixels. Therefore,
with the vector representation, it is not possible to represent all the examples. In some cases
with the heterogeneous data, instead of using a matrix with m rows to describe a matrix, it is
possible to use the representation {x (1), x (2), ..., x (m)} which corresponds to a set containing m
elements. With this notation, there might any two example vectors x (i) and x ( j) different sizes
in the dataset exist.

Depending on the dataset, the learning can be categorized as supervised and unsupervised,
even though the line between them is not sharp. The other variant of learning algorithm also
called semi-supervised learning, which involves some supervision to the unsupervised learning.
Machine learning can be used for solving many tasks. We will mention some of these tasks,
such as; classification, regression, anomaly detection, and denoising. However, the list can
be expanded. In order to accomplish the learning, the desired features from the dataset, cost
function, and optimization algorithm are required. Another basic requirement for the machine
learning is the performance evaluation, a measure how well the learning has done. In the
next section we will be describing these different performance evaluation metrics, and different
machine learning tasks and algorithms types.

2.2.1 Performance Measures

In order to evaluate the abilities of a machine learning algorithm, a quantitative measure is
needed. This quantitative measure P, is specific to the task T , which is carried out by the
learning algorithm. Performance metrics are used for defining, how well the machine algorithm
is performing the tasks. Decision process of performance metric is a difficult task, and should
be considered closely with the requirements of the application. For different machine learning
task categories, there are different metrics with different granularity used for measuring the
performance of the model. For example, for a regression task, error rate corresponds well to
the desired behavior, on the other hand, accuracy metric is well suited for a classification task.
For some problems penalizing the frequent medium sized mistakes, conversely for some others,
penalizing rare but large mistakes might fit. During a machine learning algorithm is training
using the data points, it is experiencing the training dataset. Evaluation of the learning should
be done with a separate test dataset, which is not seen during the training phase. Next section
we will be discussing about these different types of machine learning algorithms.
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Figure 2.2: Confusion Matrix Layout for Error Visualization

Classification Metrics

One of the performance metrics used for the tasks of classification is accuracy. It is calculated
from the proportion of examples, the model gives the correct output to all outputs. Error rate
is also used for measuring the accuracy of a machine learning model, where the proportion
of examples giving the incorrect output are used for the measurement. In order to introduce
the formula of accuracy, we introduce the concepts of sensitivity and specificity which are also
known as true positive rate and true negative rate.

A classifier classifies the outcome into positive and negative, as in the table 2.2 1. When
the classifier predicts positive and the actual value is also positive or negative, this is called
True Positives (TP) and False Positive (FP) respectively. Similarly, when the classifier predicts
negative and the actual value is also positive or negative, this is called False Negative (FN),
and True Negative (TN) respectively. Accuracy is simply the fraction of the total sample that is
correctly identified. In other words, accuracy is the ratio of training examples which produces
correct output to the total number of training examples. Therefore, accuracy can be formulated
using these terms as follows:

Accurac y =
T P + T N

T P + T N + F P + FN

For the tasks of classification, and classification with missing inputs, accuracy is the metric
used to measure the performance of the model. Error rate is another metric also used to derive
the same information, other way around. Error rate is the ratio of training examples which
produces wrong output to the total number of training examples. It is also referred as the
expected 0-1 loss. The 0-1 loss on particular example is 0 if it is correctly classified, and 1 if it
is not correctly classified. For some tasks, such as density estimation, none of the performance

1 Adapted from https://rasbt.github.io/mlxtend/user_guide/evaluate/confusion_matrix/
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metrics we discussed till now, is suitable. For such tasks, a performance metric which gives a
continuous-valued score for each given example should be used. Usually, in order to report the
average log-probability, the model itself assigns to some examples.

Regression Metrics

One of the popular metrics for measuring the performance of a regression model, is mean
absolute error (MAE). It is also called quadratic loss function. It is widely used in regression
tasks as a performance measure. It is expressed with the following formula:

MAE =
1
n

n
∑

i=1

ŷ (i) − y (i)

where ŷ is the predicted value and y is the original value. The parameter n represents number
of data examples. Therefore, it is an average of the absolute errors the prediction and the true
value.

Second important metric is Mean Squared Error (MSE), which is also similar to MAE. MSE
is always positive value, since it takes the square of the difference between the prediction and
the real value. Therefore, it provides the gross idea of the magnitude error, and represented as
follows:

MSE =
1
n

n
∑

i=1

( ŷ (i) − y (i))2.

Another variation of this metric is called Root Mean Squared Error (RMSE), as its name sug-
gests; it takes the square root of MSE. Since this metric takes the square root of MSE, it converts
back the unit into its original units of the output variable. Therefore, it provides more meaning-
ful representation. This metric is described with the following formula:

RMSE =

√

√

√1
n

n
∑

i=1

( ŷ (i) − y (i))2.

2.2.2 Types of Machine Learning Algorithms Tasks

In this section we describe different machine learning tasks.

Classification

This type of task, computer program is expected to categorize the input into one of the available
categories. The computer program is asked to solve the problem by producing the function
f : Rn → {1, ..., k} where k is the number of possible class labels. When y = f (x), the learned
model is able to assign the input vector x into the correct category k, identified by numeric code
y . In other words, learning algorithm must learn a function, which maps the input vector to a
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categorical output. Computer program, which can recognize handwritten digits and numbers,
is one of the application examples.

More difficult variant of classification is the classification with missing inputs. In this case,
computer program might get an input vector with missing measurements. A computer program
has to use a learning algorithm, which can learn a set of functions, rather than only a single
function. Each function corresponds to classifying x with a different subset, where some of
its input is missing. In case of this type of classification problem with n inputs, 2n different
classification functions needed for each set of possible missing inputs, but computer program
only has to learn a single function which describes the joint probability distribution.

Regression

In this type of task computer program is expected to predict a numerical value, rather than a
class label. A computer program predicting the future number of passengers’ based on previous
years of passengers’ data is a regression problem. Learning algorithm is asked to output a
function f : Rn→ R, similar to classification task, except the format of the output. Similarly, it
can be also used to find similarities between two variables. One of the basic regression problems
is a linear regression. The goal of the algorithm is to predict a scalar value from the given input
vector. Linear regression models’ performance can be measured in terms of the squared error
produced when test data set given as an input.

Anomaly Detection

In this type of task computer program is expected to point out unusual events or objects from a
set. These unusual events do not conform to the expected behavior, and usually referred to as
anomalies, outliers, discordant observations, exceptions, aberrations, surprises, peculiarities or
contaminants in different application domains [7]. One way is, training the machine learning
model to be able to reconstruct the original input with minimum error rate. After the model is
trained, anomalous input will cause a higher error rate than the usual non-anomalous examples.
Anomaly detection has an extensive use in many applications such as fraud detection for credit
cards, intrusion detection for cybersecurity domain, fault detection for safety critical systems
and military surveillance for enemy activities.

Similar to anomaly detection, novelty detection aims to detect previously unobserved, emer-
gent or novel patterns in the data. The distinction between novel patterns and anomalies, is
that the novel patterns are typically incorporated into the normal model after being detected.
The solutions for mentioned problems are used often for both anomaly and novelty detection
problems.

Denoising

In this type of task, computer program is expected to recover the clean example x ∈ Rn from its
corrupted version x̃ ∈ Rn . This task is similar to anomaly detection, except instead of training
the model with original data, slightly corrupted version of it if given as input. Learning algorithm
learns to derive clean example x from its corrupted version x̃ , while predicting the conditional
probability distribution p(x | x̃). Error rate is calculated based on the difference between the
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Cluster Genres Included

Cluster 1
Short, Drama, Comedy,
Romance, Family, Music,
Fantasy, Sport, Musical

Cluster 2
Thriller, Horror, Action,
Crime, Adventure, Sci-Fi,
Mystery, Animation, Western

Cluster 3
Documentary, History,
Biography, War, News

Cluster 4
Reality-TV, Game Show,
Talk Show

Cluster 5 Adult

Table 2.2: Outcome of movie clustering , adapted from [43]

produced output, and original version of the input. Therefore, the model is forced to learn the
noise and corrupted parts, during the training process [32].

2.2.3 Learning Algorithm Types

In this section, we explain different types of learning algorithms, and the main differences
between them. Machine learning algorithms can be roughly divided into 4 categories; unsuper-
vised, supervised, semi-supervised and reinforcement learning algorithms.

Unsupervised Learning

When the algorithm experiences and learns useful features and structure of a dataset; the algo-
rithm is called an unsupervised learning algorithm. Unsupervised learning is used for density
estimation, synthesizing, denoising and clustering. There is no instructor or teacher, who shows
the machine learning system what to do. The algorithm should find out a way to extract useful
properties of the given dataset. In the context of deep unsupervised learning, the entire prob-
ability distribution of the dataset is aimed for tasks such as density estimation, synthesis, and
denoising. Unsupervised learning algorithms observe several examples of random vector x , and
tries to learn the probability distribution p(x), or some other interesting properties of the dis-
tribution. There are other unsupervised learning algorithms doing clustering, which is dividing
the dataset into many similar examples. For example; clustering movies into different subsets,
based on their titles and keywords, using the similarity is one of the applications of clustering.
With or without providing the possible outcomes, the possible genres, the algorithm produces
different clusters. The table 2.2 has the outcome of movie clustering which carried out in the
work of [43].

Supervised Learning

When a machine learning algorithm experiences a dataset, and each example of the dataset has
an associated label, the algorithm is called a supervised learning algorithm. Training process
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involves observation of several labelled examples acting as a teacher, and showing the algorithm
how to learn the target from the given dataset. Label could be a number or a sequence of words.
For example, of speech recognition scenario, record of speech would have a sequence of words
as a label. Some of the supervised machine learning algorithms are logistic regression, support
vector machine (SVM), k-Nearest Neighbors, Naive Bayes, random forest, and linear regression.

For supervised learning, an example contains a label or target and collection of features.
Labels can be represented with a numeric code or sequence of words depending on the task.
When the dataset contains a design matrix of feature observations X , we also provide a vector
of labels y , with yi providing the label for an example i.

Unlike unsupervised learning algorithm, supervised learning algorithm involves observation
of several examples of input vector x , and associated output vector y and given together of
this information, algorithm tries to predict y from x during the training usually by estimating
p(y|x). Even though there is no instructor or teacher for unsupervised learning, sometimes the
line between supervised and unsupervised learning is blurred [17]. Usually these techniques are
categorized as semi-supervised learning[54]. We discuss semi-supervised learning in the next
section.

Even though supervised and unsupervised learning algorithms are not completely distinct
concepts, helps us to categorize the learning algorithms. For example; usually regression, classi-
fication, and structure output problems are considered as supervised learning algorithm, while
density estimation in support of other tasks is considered as unsupervised learning algorithm
according to [17].

Semi-supervised Learning

Another variant of machine learning algorithm including both supervised learning practices by
a supervision target and unsupervised fashion, is called semi-supervised learning algorithm.
For example; in multi-instance learning algorithm, an entire collection of input examples are
labeled as containing or not containing an example of a class, but the individual members of the
collection are not labeled.

Majority of the data in real world is unlabeled, and the process of labeling is time consuming
task. Therefore, these techniques can use the advantage of both labeled and unlabeled data.
There are many machine learning techniques can be used for both of the learning tasks. As
an example; an image classifier which uses both supervised and unsupervised methods can be
considered [18]. Another example, in the work of [18] a strong Multiple Kernel Learning (MKL)
classifier using both the image content and keywords is used in order to score unlabeled images.
Afterwards, the techniques; support vector machines (SVM) or least-squares regression (LSR)
from the MKL output values on both the labeled and unlabeled images are used.

Reinforcement Learning

Unlike the previous machine learning algorithms, reinforcement learning interacts with the en-
vironment during the learning process, besides experiencing the dataset. Interaction with the
environment happens within a feedback loop between the experiences and the learning system.
Reinforcement learning algorithm does not experience a fixed dataset like other supervised and
unsupervised learning algorithms. Popular applications of reinforcement learning are used with
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computer programs learning to play games such as chess, Go, Atari [28] and [27]. In this thesis
reinforcement learning methods are not used.

2.3 Related Terms

In this chapter, we use the one of the simple machine learning algorithms, in order to ex-
plain some related terms of machine learning algorithms. After quick introduction to machine
learning algorithm; the linear regression, we explain the terms overfitting, underfitting, regu-
larization, gradient based optimization. As the name suggests, linear regression is a machine
learning algorithm, which is used for solving regression problems with a linear function. The
algorithm takes a vector x ∈ R as an input, and tries to predict the value of scalar y ∈ R as an
output. The function of linear regression can be written as:

ŷ = wT x ,

where w ∈ Rn is a vector of parameters, and ŷ is the prediction and the value y is the actual
value. The parameters w and x control the behavior of the system. In this equation, wi is the
coefficient that is multiplied by the feature x i, and the result is summed up together with all
the contributions from all feature vectors. If a feature received positive value from the weight
vector wi, the contribution of the feature vector x i increases on the prediction value ŷ . When
the weight value is negative, the effect of that specific feature decreases on the prediction. De-
pending on the magnitude value of the weight value, prediction changes. Therefore, if feature’s
weight is zero, it has no effect on the prediction. For linear regression the task, T is to predict y
from x by outputting ŷ = wT x .

For the performance measure P, there is a need for a test dataset, which is not used for the
training. One way is by computing the mean squared error of the model on the test set. Assum-
ing a model with a design matrix of m example inputs, the inputs of the design represented as
X (test), and the vector of regression target represented as y (test). The prediction ŷ (test) can be
evaluated with the performance measure P as follows:

MSEtest =
1
m

∑

i

( ŷ (test) − y (test))2i .

The error decreases when the difference between the prediction ŷ (test), and the target y (test)

getting closer to the zero. Similarly, another performance metric can be defined in terms of
Euclidean distance between the prediction and the target as follows:

MSEtest =
1
m
|| ŷ (test) − y (test) ||22 .

In the equation above the total error decreases when the Euclidean distance between the
prediction and the target increases. Therefore, in order to a machine learning algorithm to
function correctly, it should either decrease the mean squared error, or increase the Euclidean
distance between the prediction and the target, while it is experiencing the training dataset.
To achieve minimization of the mean squared error on the training set MSEt rain, the algorithm
should adapt its weights w accordingly.
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Linear regression often used to refer to slightly different model with an additional parameter
which is usually called bias b, which makes the new equation:

ŷ = wT x + b.

The additional parameter b makes the plot of the model still linear, but instead just not passing
through the origin. The terminology of the word bias is different from the statistical point of
view. It can be thought as the output is biased towards, based on the value of the parameter b.

Linear regression is one of the simplest machine learning algorithms. Therefore, it has limited
use for different problem types. In the following sections we will be discussing more sophisti-
cated algorithms and more terms related with machine learning.

2.3.1 Capacity, Overfitting and Underfitting

The ability of a machine learning model performing well on unseen data (test dataset) is called
generalization ability of the algorithm. During the training of the model, training error is used
as a performance in order to reduce the error rate on the training set. For example, measuring
the performance of the test phase of a machine learning algorithm, we have to have certain
assumptions about the train and test dataset. First of all, training and test sets should be in-
dependent from each other. Another assumption is; both sets should be identically distributed.
In other words, both sets should be drawn from the same probability distribution. When these
assumptions hold, training error of randomly selected model should be equal to the expected
test error of that model, since both are formed from the same data sampling process.

All machine learning algorithms aims to reduce the training error, and the difference between
the training and test error. While trying to achieve these goals, the main challenge is to be able
to fight with underfitting and overfitting. Capacity of a neural network is one of the important
factors of over and under fitting. Capacity of a neural network is directly related with the size of
the network. A neural network with more hidden layers and more hidden nodes tend to store
more information, therefore they have more capacity according to [49]. When the model has
high capacity, it starts to memorize the properties of the training test, instead of learning. This
happens when model has high generalization error, also called testing error. An overfitted model
performs poorly on unseen test data, while performing well on training data. In this case, the
model’s capacity is reduced in order to avoid overfitting. On the other hand, when a model has
low capacity, it is likely to underfit, which means it can not derive the essential features from the
training set. Underfitting takes place when the gap between training and generalization error is
too large, which is illustrated in the figure 2.3 in the area after the optimal capacity.

As a summary, machine learning algorithm has the best performance with the right capacity,
and also requires less amount of time for the training. Machine learning models with insufficient
capacity, fail to solve complex tasks, similarly models with high capacity fails to generalize well
and overfit for the tasks.

2.3.2 Regularization

Another method used to control overfitting and underfitting is regularization. It is any modifica-
tion made to a learning algorithm, in order to reduce its generalization error while not changing
the training error [17]. One way to do this for the linear regression algorithm, is modifying the
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Figure 2.3: Illustration of Overfitting and Underfitting, adapted from [17]

training criterion to include weight decay. Regularization adds a penalty on the different param-
eters of the model. Therefore freedom of the model is reduced by adding the penalty. As a result
of this, the model will be less likely to fit the noise of the training. Therefore regularization im-
proves the generalization abilities of the model. However too much regularization increases the
testing error rate, and leaving the model with too few parameters, which would not be able to
learn the complex representations from the input.

There are three types of regularization methods; namely L1, L2 and L1/L2. In L1 regulariza-
tion some of the model parameters are set to zero. Therefore those parameters no longer play
any role in the model. L2 regularization adds a penalty equal to the sum of the squared value of
the coefficients. Therefore, L2 regularization will force the bigger parameters for bigger the pe-
nalization, while on the smaller coefficients effect penalty is smaller too. For any other machine
learning algorithm, there are many ways to design regularization technique. Therefore, there
is no regularization form which fits to all of the machine learning algorithms. Regularization is
one of the central concerns of the field of machine learning, such as optimization problem.

2.3.3 Gradient Based Optimization

Optimization is a task of minimizing or maximizing a function f (x) by altering x . The function
f (x) is called objective function or criterion. For the maximization of f (x) is also referred as cost
function, loss function, or error function. We will use the notation x∗ to refer the ar g min f (x).

The derivative function is used for minimizing, since it provides the information how to
change the x in order to minimize for the function y = f (x) at the point x . The derivative
of a function f (x) is denoted as f ′(x) or

d y

d x . The figure 2.6 at page 21 provides visual. This
derivative function provides the direction information, from the red region where the cost is
high, towards which direction to move in order to reach the blue region(where error is mini-
mum). We will discuss gradient based optimization in more details in the section 2.4.2.
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Figure 2.4: Artificial Neuron Model

2.4 Artificial Neural Networks

Artificial Neural Networks (ANNs) are computational model which is inspired from biological
neurons of human brain [10]. The figure 2.5 2 on page 20 has typical ANN structure with input,
hidden and output layer. ANNs are called networks, because they are typically represented by
composing together many functions. A neural network with 3 layers can be considered as com-
puting the formula f (x) = f (3)( f (2)( f (1)(x))). First layer is f (1), second layer is f (2), and third
layer is f (3) of the neural network. ANNs are invented to solve tasks specifically humans are
good at, such as pattern recognition and other tasks which does not require to be re-programmed
and the tasks involving uncertainty. Therefore, ANNs have potential of solving many real life
problems in a wide range of fields. They contain layers of computing nodes called the percep-
tron doing the nonlinear summation operation. A neuron fires when a particular function of
summation of the signals outcome is greater than some threshold value. The neuron in fig-
ure 2.43 with three incoming connections and the activation function of

∑

i(wi x i + b). Nodes
within each layer are interconnected by weighted connections, where weights are represented
with wi. Signal strength depends on the weighted connections. Therefore, while some neurons
are passing the signal to the next layer, some might drop. ANNs have an input and output lay-
ers. The middle layer is known as hidden layer. ANN having at least one hidden layer is capable
of solving nonlinear tasks by training with gradient descent methods. ANNs with many hidden
layers are called deep neural networks.

Before neural network is trained, its weights are usually initialized by a random distribution
function. At this stage ANN is not expected to produce any meaningful result. Input data is
fed during the training phase. By the time, over iterations, weights of the neural network are
adjusted in order to output according to the desired function. In other words, neural network
changes its weights, in order to adapt new environment requirements during its training [13].

During the supervised learning of a neural network, both the input and the correct answer
is provided. The input data is propagated forward from input layer to the output neurons.
Outcome of propagation is compared with the correct answer. Based on the difference between
outcome and the correct answer, weights of the network are adjusted in a way to increase the
probability of the network giving correct answer for the future runs with the same or similar

2 Adapted from http://cs231n.github.io/neural-networks-1/
3 Adapted from https://towardsdatascience.com/from-fiction-to-reality-a-beginners-guide-to-artificial-neural-networks-d0411777571b
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Figure 2.5: Artificial Neural Network Structure

data. For unsupervised learning, no correct answer, but only input data is provided. Network
has to evolve by itself according to some structure, which in the given input data. Usually
the structure is a some of form redundancy or clusters in the given input data[13]. Another
important property of neural network training, as well as all machine learning algorithms is,
how well the network generalize after the training. In the case of overlearning set of training
input data is called overfitting. Since the network does not generalize well, it performs poorly
with the unseen test data. While the number of hidden neurons provides a degree of freedom,
on the other hand increases the risk of overfitting, because the network will tend to memorize
the data. In order to overcome this problem some weights removed explicitly to increase the
generalizability of the neural network. In case of too few hidden layer neurons, network might
not perform the desired functionality. Therefore, a compromise should be found while designing
neural network.

In the next sections we will be discussing the different types of neural networks and related
terms.

2.4.1 Deep Neural Networks

Feedforward neural networks with more than one hidden layers are called deep neural networks
or deep-learning networks. Deep neural networks are used to approximate some function f ∗.
For classification task, y = f ∗ (x) maps an input x to a category y . The neural network defines
a mapping y = f (x;θ ), and learns the value of the parameters θ which would result in the best
possible approximation. In deep-learning networks, each layer of nodes trains on a distinct set of
features based on the previous layer output. The further hidden layer added to the network, the
more complex the features can be recognized, since they aggregate and recombine features from
the previous layer. Besides this, training becomes also harder and takes longer time compared
to shallow neural networks and perceptrons.

The reason why these neural networks are called feedforward, is the information flows from
the input layer direction towards the output layer through the intermediate computations. The
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Figure 2.6: Gradient Descent Algorithm Illustration

simplest form of learning algorithm with feedforward neural is called perceptron, input and out-
put layers do not learn the representation of the data, because they are predetermined unlike
the hidden units. When feedforward connections have feedback connections, they are called
recurrent neural networks. Another type of specialized feedforward neural network is convolu-
tional neural networks, which specifically used for object recognition tasks. We describe some
of these deep neural network types in the further sections.

2.4.2 Optimization Algorithm Gradient Descent

Learning of deep neural networks requires gradient computation of many complex functions,
similar to any other machine learning algorithm. Besides the gradient algorithm, one needs to
specify an optimization procedure, a cost function and a neural network model. The algorithm
tries to find the best parameters for network with minimum cost. The figure 2.64 represents
the cost space. The areas with red color has the highest cost, while blue regions has the lowest
cost. The optimization algorithm tries to find the path down from the point of the highest cost
to the regions where the cost is lowest. Therefore, y-axis, we have the cost J(θ ) against the
parameters θ0 and θ1 on x-axis and z-axis respectively. However there are certain challenges
with optimization of the algorithms, such as vanishing or exploding gradient problem. Some-
times gradient signal is too small. Therefore, algorithm cannot converge to the global optima.
Similarly, when gradient signal is too strong, and bigger steps are taken, again algorithm cannot
converge. Since it keeps bouncing around the curvature of the cost valley, overshooting the
correct path. It is not always straightforward to find the global optima. Hence, there are many
variations of gradient descent algorithm. Some other variations are vanilla gradient descent,
gradient descent with momentum, AdaGrad (Adaptive Stochastic (Sub)Gradient) and ADAM
(Adaptive Momentum).

Gradient descent algorithms can be roughly classified as two methods; full batch gradient
descent algorithm, and stochastic gradient descent algorithm. Full batch gradient descent algo-
rithm the parameters are updated after the use of the full batch of the input data, while with
the stochastic gradient descent algorithm, the parameters are updated only after whole dataset
is used. We discuss one of gradient algorithm, which is back-propagation algorithm, and its
modern generalizations in the next section.
4 Adapted from http://cs231n.github.io/neural-networks-3/#sgd
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2.4.3 Backpropagation Algorithm

Backpropagation is learning procedure for networks neurone-like units [39]. The backprop-
agation algorithm repeatedly adjusts the weights of the connections based on the difference
between the actual output vector, and the desired output vector. The algorithm uses the partial
derivative of the error of the neural network with respect to each weight [1], in order to min-
imize the difference between two vectors. The process of modification of each weight, starts
from output layer and last hidden layer connection, and propagates through each layer until it
reaches the input layer. Therefore, it is called backpropagation algorithm. Using these partial
derivatives, and the change of the value of the weight, networks weights are adjusted to reach
the local minimal. In other words, if the derivative is positive the error is increasing. When the
weight is increasing, then backpropagation algorithm adds a negative value of partial derivative
to the weight in order to minimize the error. Similarly, if the derivative is negative, then it is
directly added to the weight. The basic idea of the backpropagation learning algorithm is the
repeated application of the chain rule to compute the influence of each weight in the network
with respect to an arbitrary error function E [37] as follows:

∂ E
∂ wi j

=
∂ E
∂ si

∂ si

∂ net i

∂ net i

∂ wi j

where wi j is the weight from the neuron j to neuron i, si is the output, and net i is the weighted
sum of the inputs of the neuron i. Once the partial derivatives for each weight is known, the
aim of the minimizing the error function is achieved by performing a simple gradient descent:

wi j(t + 1) = wi j(t)− ε
∂ E
∂ wi j

(t)

The choice of learning rate ε, scales the derivative and effects the time needed until convergence
is reached. If the learning rate is too small, too many steps are needed to reach an acceptable
solution. On the other hand, too big value possibly leads to oscillation, preventing the error to
fall below a certain threshold value. In order to cope with this problem another variable called
momentum parameter is added. However setting the optimum value of momentum parameter
is equally hard as finding the optimal learning rate value.

2.4.4 Activation Function

Feedforward networks have introduced the concept of a hidden layer, therefore activation func-
tion is needed in order to compute hidden layer values. In simple words, activation function
calculates the sum of weighted inputs from the previous layer of the network, adds the bias
value of the neuron to it, and then decides whether the neuron should be fired or not. The
most popular activation functions are logistic function 1

1+e−x , tanh() function, and The Rectified
Linear Unit (ReLU) function f (x) = max(0, x). The ReLU makes the network converge faster,
and it is resilient to the saturation. Therefore, unlike logistic and hyperbolic tangent function,
it can overcome with the vanishing gradient poblem. General idea with activation functions is;
their rate of change is greatest at intermediate values, and least at extreme values. Therefore,
it makes it possible to saturate a neuron’s output at one or other of their extreme values [13].
Second useful property is that they are easily differentiable.
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2.4.5 Cost Function

Another important design aspect of deep neural network training is the choice of cost function.
A cost function is a measure of how good a neural network did with respect to it’s given training
sample and the expected output. It is a single value which determines how good the overall
neural network scored. Sometimes the term loss function is also used for the cost function, but
loss function is a usually a function defined on a data point, prediction, and label to measure
the penalty, whereas cost function is more general term. Therefore, loss function is for one
training example, while cost function is for the entire training set. Cost function can be defined
in terms of neural network’s weights, biases, input from the training sample and the desired
output of that training sample. Some popular cost functions are mean squared error (MSE),
mean absolute error (MAE), and mean absolute percentage error.

2.4.6 Learning Rate

Learning rate determines how quickly or how slowly the parameters of the neural network are
updated. Learning rate should be decided upon the architecture, and the nature of the problem.
Gradient descent algorithm updates the networks’ parameters according to the learning rate
decided upon. Therefore, it should be carefully selected. Since small or big of learning rate
results in either vanishing or exploding gradient problem, which were previously discussed in
the previous section. Usually, one can start with a large learning rate, and gradually decrease
the learning rate as the training progresses. This is called adaptive learning rate. The most
common learning rate schedulers are time based decay, step decay, and exponential decay [4].
The formula for time based decay is l r = l r0/(1+kt) where l r, k are the hyperparameters, and
t is the iteration number.

2.5 Deep Learning

Deep learning allows computational models that are composed of multiple processing layers
to learn representations of data with multiple levels of abstraction. These methods have dra-
matically improved the state-of-the-art in speech recognition, visual object recognition, object
detection, and many other domains such as drug discovery, and genomics. Deep learning dis-
covers intricate structure in large data sets, by using the backpropagation algorithm to indicate
how a machine should change its internal parameters that are used to compute the representa-
tion in each layer from the representation in the previous layer. Deep convolutional nets have
brought about breakthroughs in processing images, video, speech and audio, whereas recurrent
nets have shone light on sequential data such as text and speech.

In the next subsections we will discuss some of the popular deep neural networks, such as;
convolutional neural networks, autoencoder and long short-term memory.

2.5.1 Convolutional Neural Networks

Convolutional networks are specialized kind of neural network useful for processing data which
is grid-like. Time-series data as a 1-D grid samples, and image data as 2-D grid of pixels can be
used with convolutional neural networks. This type of neural network mainly used for image
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Figure 2.7: Convolutional Neural Network Architecture, adapted from [2]

recognition classification, and employs a mathematical operation called convolution which is a
specialized kind of linear operation, in place of general matrix multiplication in at least of the
the layer of the network. The second important term about convolutional neural networks is
pooling. While convolution and pooling layers together acts as a feature extractors from the
input.

A typical convolutional neural network consists of three stages. In the first stage, the network
layer performs convolutions in order to produce a number of linear activations. In the next
stage which is also referred as detector stage, the produced linear activations run through a
nonlinear activation function. At the last stage, pooling function modifies this output. This
order of operations can be repeated many times till the output layer.

In the next sections we will be discussing how convolution, ReLU and Pooling works.

Convolution

The primary purpose of convolution operation is to extract features from the input data.
The convolution operation preserves the spatial relationship between data points and the small
squares of the input data.

In case of an image as an input to the convolutional neural network, the image can be con-
sidered as matrix of pixel values. In order to simplify the example we will consider an image
with size 5 X 5 whose pixel values are either 0 or 1. Another matrix 3 X 3 which is called filter
or kernel or feature detector is slided over the image and it computes the dot products. This
matrix is called convolved feature or activation map or feature map. This operation results in
different convolved features with every different input image and filter. Sliding the filter over
the image captures local dependencies in the input image.

The size of the feature map has three parameters; depth, stride, and zero-padding. Depth of
the feature map corresponds to the number of filters used for the convolution operation. Each
different filter is used to detect different features. Second parameter stride corresponds to the
size of the filter, which is slided over the input matrix. For example, if the stride is 2, means the
filters jumps 2 pixel at a time as they are slided. Larger stride results in smaller feature maps.
The last parameter zero-padding is used for borders of the input image. While applying the
filter, sometimes additional zeroes needed to be added to the border. This procedure is called
wide convolution. When zero-padding is not used, the convolution is called narrow convolution.
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Figure 2.8: ReLU Operation

ReLU (Rectified Linear Unit)
ReLU also called activation operation, is used after every convolution operation in order to

introduce non linearity. Since convolution operation is only an element wise matrix multi-
plication, the function ReLU is used in order to introduce non-linearity without affecting the
convolutional layer operations. Because convolutional neural networks should learn mostly
non-linear real world data, and convolution is a linear operation. There are other non-linear
operations such as tanh and sigmoid function. Earlier these functions are used instead of ReLU,
but ReLU has been found to perform better, and make the learning faster in most of the sit-
uations. ReLU simply changes the negative activations into 0, while applying the function
f (x) = max(0, x) to the incoming data. Figure 2.8 5 describes the ReLU function with an
example.

Pooling
Pooling layer also called downsampling layer, combines the outputs of neuron clusters at

one layer into a single neuron in the next layer. Pooling function is also called subsampling
or downsampling, which reduces the dimensionality of each feature map while leaving only
the most important features. A pooling function in the figure 2.9 6 replaces the output of the
previous operation at a certain location, with a summary statistics of the nearby outputs. This is
called spatial pooling, and it can be max, min, average or sum pooling. In case of max pooling,
based on the defined spatial neighborhood, the largest element from the rectified feature map
within that window is taken. Similarly, average pooling calculates the average value of the
cluster of neurons at the previous layer. Max pooling has been shown to work better for most of
the situations.

In particular pooling function makes the input representations (feature dimension) smaller
and more manageable. Since the number of parameters in the network is reduced, it con-
trols the overfitting. Network becomes more invariant to the small transformations, distortions
since max/average value is taken in a local neighborhood. This provides higher accuracy while
detecting the objects in images, independent of where they are located in the image.

5 Adapted from https://www.embedded-vision.com/platinum-members/cadence/

embedded-vision-training/documents/pages/neuralnetworksimagerecognition
6 Adapted from https://cambridgespark.com/content/tutorials/convolutional-neural-networks-with-keras/
index.html
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Figure 2.9: Illustration of Max Pooling Operation

Fully Connected Layer
The fully connected layer of convolutional neural network is a traditional Multi Layer Percep-

tron (MLP). Since every neuron within a layer is connected to the every other neuron in the
next layer, this type of neural network is called ”Fully Connected”. The high-level features of
the input are used at fully connected layer, in order to classify the input into various classes. At
the output of this layer, there are same number of neurons as the number of possible outcomes
based on the training dataset. The Softmax function takes a vector of arbitrary real-valued
scores, and squashes it to a vector of values between zero and one, in a way that sum of all
probabilities are one.

Dropout Layers
Dropout Layer’s main functionality is avoiding overfitting problem. Overfitting problem oc-

curs when the network performs poorly with unseen examples, although it performs well with
training data. This layer drops out some random set of activation simply by setting to zero. The
idea of dropout is simplistic in nature. In other words, some random connections of the neural
network becomes redundant, and therefore network is forced to learn the features, instead of
memorizing the training data. This makes sure that the network does not get too fit to the
training data [44]. Therefore, this layer is only used during training, and not during the testing.

2.5.2 AutoEncoder

Autoencoder is a type of neural network, which attempts to represent the input by trying to
copy its input to its output. It consists of two parts; an encoder function h = f (x), and a
decoder function r = g(h), which produces a reconstruction. Autoencoder model is forced to
learn the data by approximately, rather than perfectly copying the input. In other words, they
are forced to learn only the most important information from the input data. Figure 2.10 7 has
the diagram of an autoencoder, where X is the input, and X̂ is the reconstructed output. In
this way autoencoders generalizes on the training data, and retrieves useful properties of the
dataset. Autoencoders traditionally used for dimensionality reduction, or feature learning. Mod-
ern autoencoders are used for generative modeling. Similar to traditional feedforward neural
networks, autoencoders can be trained using minibatch gradient descent, following gradients
computed by back-propagation. Another learning algorithm recirculation may be used for train-

7 Adapted from https://iksinc.wordpress.com/2016/07/07/autoencoders/
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Figure 2.10: Diagram of an Autoencoder

ing, which is an algorithm based on comparing the activation of the neural network with the
original input and reconstructed input.

Autoencoders can be mainly categorized into undercomplete and regularized autoencoders.
Undercomplete autoencoders tries to capture useful features of the input data, while trying to
copy the input at output layer. When autoencoder’s code dimension is less than the input dimen-
sion, the autoencoder is called undercomplete. On the other hand, this type of autoencoders,
would fail to learn the salient features of the input data, in case of too high capacity. Second type
of autoencoder is regularized autoencoders, which can also has subtypes of sparse, denoising
and contractive autoencoders. Unlike undercomplete autoencoders, regularized autoencoders
are able to learn useful features even though the model is overcomplete, and nonlinear. Instead
of just keeping the encoder and decoder shallow and the code size small, the use of loss function
helps the model to overcome the shortcoming of undercomplete autoencoders. These models
are good at learning high-capacity, overcomplete encodings of the input without a need for a
regularization of the encodings.

One of the example of regularized autoencoders is sparse autoencoders whose training crite-
rion involves a sparsity penalty, in addition to the reconstruction error. Common use case for
sparse autoencoders is classification tasks. Sparsity penalty can be thought as a regularization
term added to a feedforward network which copies the input to the output, in other words a
feedforward neural network with unsupervised learning objective. The second one is called
denoising autoencoder which adds the penalty to the cost function, and learns from input data
by changing the reconstruction error term of the cost function. Denoising autoencoder tries to
correct the corrupted input rather than trying to copy at the output layer.

2.5.3 Long Short-Term Memory

Long Short-Term Memory (LSTM) is a specific type of recurrent neural network type for process-
ing sequential data introduced by [20]. LSTM works well with long sequences and sequences
with variable length as well. RNNs and LSTMs are successfully applied to sequence prediction
and classification problems. The LSTM has a special structure containing the memory block,
allowing them to store the temporal state of the network [40]. Input gate allows the input
information flow structure within each memory block, output gate controls the flow of activa-
tions into the next layers of the network. The LSTM networks has gained importance due to its
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Figure 2.11: Diagram of a LSTM cell, adapted from [40]

superior performance, compared to regular recurrent neural network for overcoming the van-
ishing gradient problem. Thanks to LSTM’s special units which are called memory blocks in the
recurrent hidden layer, it can recall or forget an input from the multiple time steps before. The
LSTM memory blocks contain memory cells with self-connections which can store the temporal
state of the network. Besides this these connections there are special multiplicative units which
controls the flow of information. Input gate controls the flow of the input activations into the
memory cell. Output gate controls the output flow of cell activations into the rest of the net-
work. The figure 2.11 shows the input gate as it , output gate ot , and forget gate ft . The earlier
architecture of LSTM block contains an input, and output gate. Afterwards a forget gate is added
to the memory block [14]. This addition prevented LSTM models to process continuous input
streams that are not segmented into subsequences. Therefore, forget gate works as a scaler for
the input, before it adapts the input according to the internal state of the cell, while forgetting
or resetting the cell’s memory. Lastly, modern LSTM architectures contain peephole connections
between its internal and the gates in the same cell. In this way, it can learn precise timing of the
outputs [15].
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3 Related Work

In this section, the three main model categories, a brief review of existing ANN approaches
to blood glucose level (BGL) prediction studies, and insulin sensitivity assessment models are
presented. Due to differences of dataset and architectures used in the studies, it is hard to make
direct comparison between them. Therefore, we will be providing dataset details and learning
algorithm types used along with the architecture of the models.

In the next section we continue with presenting our static insulin sensitivity calculation
method, and show the comparison of the static insulin sensitivity with basal rate.

3.1 Blood Glucose Prediction Models

In the study of [34] blood glucose prediction models, techniques are discussed within three
categories, namely; physiological models, data driven models and hybrid models. Since phys-
iological models are time consuming, and require previous knowledge, less time consuming
models take advantage of machine learning techniques. On the other hand, data-driven mod-
els completely rely on non-physiological formulations. Hybrid models take the simplest forms
of physiological models to process meal, and insulin metabolism. This outcome fits into the
data-driven model to predict the future blood glucose level.

Since there is a compromise between accuracy of the prediction and prediction horizon, ma-
jority of the studies use the prediction horizon which varies between 15 min to 120 min. The
most common prediction horizon is 30 min. Generally increased prediction horizon leads to a
model with the less prediction capability.

Prediction of continuous blood glucose value is more popular than classified outcome. In
other words, decision is; whether the model should learn to predict continuous values of BG
which is the regression problem, or the model should map the outcome into some predefined
classes which is a classification problem.

3.1.1 Physiological Models

Physiological models are used to simulate the BG metabolism in the form of compartment mod-
els used to describe the directly immeasurable processes. This type of models requires previous
knowledge about the characteristics of insulin and glucose metabolism. Hence, several phys-
iological parameters have to be adjusted before the simulation. This approach usually has
submodels for digestion, and absorption dynamics of the intake carbohydrates, exercise, and
insulin absorption feeding the main model which outputs the prediction of the BG level. Figure
3.1 has an overview structure of physiological models. In the diagram, meal intake (CHO) data
used as an input to the model which simulates digestive system of human body. The next model
uses exercise data in order to simulate exercise behavior of human body. The last model uses
insulin intake for simulating the insulin mechanism of human body. The outputs from all these
three models used as an input to the main physiological model in order to predict the blood
glucose level.
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Figure 3.1: Diagram of physiological models, adapted from [34]

Physiological models also further divided into two categories based on the complexity. One of
them has few actions and parameters, in order to capture the most important characteristics of
glucose and insulin metabolism; so called minimal models. Unlike minimal models, the second
type comprehensive models involve all the present information in the physiological system.
Hence, comprehensive models allows simulating the metabolism of diabetic patient, and also
retrieving the response. The most popular proposals for this model in literature are; [22], [9],
and [5].

3.1.2 Data-Driven Models

Neural networks (NN) and Autoregressive Models (AR) are common examples of non-
physiological models which are known also as data driven models. Non-physiological mod-
els only depend on CGM data, insulin, food intake, and few other inputs. Even though many
models use more additional inputs, [24] suggests to use just cgm data as an input. There are
other studies such as [53] also discuss about not to including the carbohydrate, and injected in-
sulin information. Data-driven models use many machine learning algorithms; such as artificial
neural network models, genetic algorithm models, grammatical evolution models, multi model
approaches, Gaussian mixture models (GMM), regularized learning, reinforcement learning,
random forest, Kalman filters, and support vector models. Figure 3.2 has an overview structure
of data-driven models. In the diagram meal intake (CHO), continuous glucose measurement
data (CGM), and insulin intake (I) are directly used as an input to the data driven model. The
model gives output the predicted the blood glucose value.

Since there are so many techniques are available, it makes possible to experiment by mix-
ing different techniques, and to increase accuracy of the model. Therefore, identifying a
single technique as a most popular one is not possible. However the most popular models
are divided roughly into five categories in the work of [34], which are namely; autoregres-
sive and autoregressive with moving average (ARMA), other approaches(ARX-ARMAX), ANN
technique, multi-model/mixed techniques, and others with AR-ARMA with additional external
inputs (ARX-ARMAX). Models based on AR and ARMA use time series in order to derive future
glucose concentration as a linear function of previous cgm values. ARX-ARMAX also considers
external signals such as meal information and insulin plasma.
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Figure 3.2: Diagram of data-driven models, adapted from [34]

Figure 3.3: Diagram of hybrid models, adapted from [34]

3.1.3 Hybrid Models

Hybrid models usually use a physiological model followed by a data-driven model, in order to
predict blood glucose value or the indication of hypo/hyperglycemia risk. Data-driven model
learns the relationship between the physiological model’s outcome and future outcomes. Result-
ing output could be either the number of classes or predicted blood glucose value. Since hybrid
models use physiological model, this type of model takes advantage of meal information and
insulin absorption mechanism. Hence, increasing the accuracy of the prediction of the overall
model. Figure 3.3 has an overview structure of hybrid models, which is mixture of physiological
model followed by a data driven model with exact inputs, and the final output of blood glucose
level prediction.

The most popular hybrid prediction model for modeling the meal/glucose absorption is the
Dalla Man meal model together with the Lehmann and Deutsch model. Berger’s model is the
most popular model, when the information about the insulin therapy is used.

3.2 Insulin Sensitivity Assessment Models

A person who is insulin-insensitive needs more insulin in order to lower the blood glucose level
than a healthy insulin-sensitive person. In other words, a person who has insulin resistance is
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more insensitive to the insulin. Within this thesis, we will be using the term insulin sensitivity
rather than insulin resistance.

According to [19], hyperinsulinemic euglycemic clamp (HEC) is well known reliable standard
for the measurement of insulin sensitivity. However this method is expensive in terms of time
and money. Therefore, other methods for quantification of insulin sensitivity using the oral glu-
cose tolerance test (OGTT) are proposed in order to develop insulin sensitivity indices. In the
work of [19], these indices are grouped into two, namely; indices calculated by using fasting
plasma concentrations of insulin and triglycerides, and indices calculated by using plasma con-
centrations of insulin and glucose obtained during 210 minutes of a standard (75 g glucose)
OGTT. Homeostasis Model Assessment (HOMA-IR), and Quantitative Insulin Sensitivity Check
Index (QUICKI) examples of the group where indices calculated by using fasting plasma concen-
trations of insulin and triglycerides. Within the next sections, we will briefly talk about different
models used for insulin sensitivity calculation.

3.2.1 HOMA-IR (Homeostasis Model Assessment-Insulin Resistance)

This method was introduced by [25], and used to assess insulin resistance and beta-cell function
from basal (fasting) glucose and insulin concentrations. HOMA calculates the insulin sensitivity
by simple mathematically-derived nonlinear equations, using the relationship of glucose and
insulin dynamics. Simplified version of this equation uses fasting blood samples, and divides
the insulin-glucose product by a constant.

3.2.2 QUICKI (Quantitative Insulin Sensitivity Check Index)

QUICKI is a variation of HOMA equations which derives mathematical transformation of fasting
blood glucose and plasma insulin concentrations empirically. [19] states that; QUICKI uses the
fasting values of insulin (microIU/ml) and fasting plasma glucose (mg/dl) concentrations as in
HOMA calculation. It is considered to be providing estimation of insulin sensitivity for obese
and diabetic subjects better than HOMA-IR.

3.2.3 FGIR (Fasting Glucose/Insulin Ratio)

[48] discusses that FGIR is correlated with the insulin sensitivity index calculated from the fre-
quently sampled iv glucose tolerance test with tolbutamide using the minimal model computer
program.

3.2.4 Glucose Clamp Technique

This technique is also quantifying method insulin secretion and resistance.[11] and [23] use
glucose clamp technique in their studies. It is used to measure either how well an individ-
ual metabolizes glucose, or how sensitive an individual is to insulin. Hyperglycemic clamp
and hyperinsulinemic clamp are the two main techniques used. The hyperglycemic clamp re-
quires maintaining a high blood glucose level by perfusion or infusion with glucose. This way it
measures how fast beta-cells respond to glucose. The hyperinsulinemic clamp requires insulin
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perfusion or infusion in order to maintain a high insulin level in order to assess how sensitive
the tissue is to insulin. The hyperinsulinemic clamp is also called euglycemic clamp, meaning a
normal blood glucose level is maintained.

3.3 ANN Approaches

In this section, we will review some of the existing ANN approaches. There are studies doing
experiments different types of data (real or synthetic), different models (machine learning or
simulation). We also mention the downsides of the different approaches when mentioned in the
study.

In the work of [41], Elman recurrent ANN is used to predict future blood glucose values.
The network is designed and trained using MATLAB. It consists of 95 neurons in the hidden
layer. The network uses the input parameters including insulin, diet, exercise, BG levels, and
other factors. A recurrent type of neural network was chosen for its superior performance in time
series prediction problems. For the training and testing the ANN, clinical data were sourced from
two patients. This data is derived by taking regular BG level readings using finger prick blood
tests. Besides this, the diary entries recording information is also used. The problem mentioned
with this study was the lack of data due to the less number of patients willing to participate in
the study. The accuracy of the meal data records done by patients are also mentioned to be not
accurate enough.

In an another work done by [29] a simulation model is used. The model was based on two
submodels. One of the model is a three compartmental model describing short- and long-acting
insulin effects on the glucose-insulin metabolism of a Type-1 diabetes patient. Another model,
the compartment model for glucose absorption from the gut is used. Similar to [41] a recur-
rent ANN is used and trained using a real-time recurrent learning algorithm. The data from
the carbohydrate metabolism model used as inputs to make the blood glucose level prediction.
Dataset consists of Type-1 diabetes patient’s record which contains 69 days of measurements.
The measurements include blood glucose levels at breakfast, lunch, dinner and bedtime, insulin
injections, and food intake. The results were quoted as an RMSE between the short term pre-
diction of the ANN, and the actual data derived from the patient. This derived data is not used
during ANN training. In the paper it is suggested that usage of additional patient information
would improve the model performance. This additional data is data relating to sex, age, other
diseases, and years of diabetes. Because this type of data helps to describe the patient more
specifically and more in detail. In addition to these the data relating, the physical exercise was
also considered as an important factor affecting the accuracy of the blood glucose prediction
model.

In the other work of [31], compartment model and neural network system similar to their
work reported in [29], is used. This model was used to predict blood glucose level of four
children with Type-1 diabetes. The output got from the compartment model (for insulin intake
and glucose absorption from the gut) was provided to an artificial neural network model, along
with the most recent blood glucose level. In this work, recurrent artificial neural network is
used. The network trained using a real-time recurrent learning algorithm and backprogation
algorithm which is a feed-forward variety. The blood glucose level interstitial readings used
in this experiment. This data is taken from the CGM measurements which is done every 5
minutes over a period of days. Besides the cgm readings, insulin and meal intake data were
also recorded. The RMSE was used for the comparison of the predicted blood glucose level of
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the artificial neural network model and the actual data record of the patient for that day. The
patient data used for comparison is not used during the training of the neural network. For every
patient, a corresponding artificial neural network model is used. Both the real-time recurrent,
and the feedforward type of neural networks showed the similar performance. However real-
time recurrent neural network is preferred due to its better weight adaptation capability when
new input is supplied.

Artificial neural network with compartment model is also used in the work of [52] which
is developed in previously mentioned [29], and [31]. This model is able to advise an insulin
dose additionally. In other words, it is closed-loop system which combines the artificial neural
network model with the compartment model in order to predict the short-term blood glucose
level. The predicted blood glucose level is used as an input to another nonlinear predictive
controller which gives the recommended level of insulin doses its output. The data provided to
the model is derived from a mathematical model, which is intended to describe patients with
Type-1 diabetes, with a sampling rate of 3 minutes. According to the results of the study, the
developed closed-loop system can control blood glucose levels when realistic meal intakes are
along with used.

In the next study we are looking into [35], which used artificial neural networks generated
from the NeuroSolutions software package for predicting the blood glucose level for a duration
of a 50 to 180 minutes. These generated neural networks are time-lagged feed-forward type,
and are trained using the backpropagation algorithm. The dataset is derived from 18 patients
with Type-1 diabetes. Patients were using devices capable of continuous glucose measurement
at a sampling rate of 1 to 5 minutes over a period of 3 to 9 days. Besides the cgm measurements
electronic diary is used in order to record the insulin dosages used by the patients. In addition
to this, an electronic diary is used by the patients to record insulin dosages, carbohydrate intake,
hypo/hyperglycaemic symptoms, lifestyle (activities and events), and emotional states. For the
training of the networks datasets from 17 patients, for the testing dataset from the 18th patient
are used. Results are evaluated with a performance metric mean absolute difference (MAD%)
between the ANN prediction and the output from the CGM. According to the results, study
reports that the predictions are more accurate for normoglycaemic and hyperglycaemic blood
glucose level ranges than those in the hypoglycaemic range. The lack of hypoglycaemic events
in the training dataset is stated as a possible reason in the study. Because of the few examples
of such events, neural network predicts hypoglycaemic blood glucose range poorly. Another
result obtained from the study is, increase in predictive length results in a decrease in predictive
accuracy.

In another study done by [36], a feed-forward, fully connected multilayer perceptron with
3 layers is used. Blood glucose measurements within 20 minutes is used as an input which
sourced from 15 patients wearing continuous glucose monitors. The glucose monitors measures
the blood glucose with sampling frequencies ranging from 1 to 5 minutes. The training sets
included both hypoglycaemic and hyperglycaemic events. Three ANNs were trained to predict
15, 30, and 45 minutes into the future, for a 24-hour period. The results were reported as an
RMSE of the difference between the ANN prediction and the data from the patient which was
not used during the training. The RMSE error was 0.56, 1.00, and 1.5 mmol/L for the prediction
horizon of 15, 30, and 45 minutes respectively. In the study it is mentioned that, only using past
cgm data as the input to the ANN, is a limiting factor of the performance of the neural network
prediction. Therefore, it was suggested that besides the cgm data, additional input data, such
as meal intake and insulin dosage, could improve the model’s prediction performance.

34



Another study done by [8], used Marquardt algorithm to train an artificial neural network.
The model makes blood glucose level predictions based on expected insulin doses, carbohydrate
intake, and exercise. In the study, a mobile phone application takes input data in order to predict
future glucose levels. The application intends to help to patient to adjust the carbohydrate
intake, and maintain steady normoglycemia. Besides these, application is capable of storing
previous blood glucose level measurements, insulin doses, carbohydrate intakes, and exercise in
its own database and sending it via 3G connection to an endocrinologist. The paper states that,
this feature allows the endocrinologist to better control the blood glucose level of a particular
patient. Future work by the group will involve the development of the network to predict
glucose levels 1 and 2 hours after the consumption of a meal, as well as predicting the amount
of insulin necessary to control the blood glucose level of the patient.

In this section we summarized different approaches for predicting blood glucose level with
artificial neural networks. The other studies also with similar approaches, which are not men-
tioned in this section are [21], [46], [47], [30], [33], [16], [50], [12], [45] and [3].
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4 Data Resources

The data set we use provides the main interesting data for the diabetes therapy. Most of the pa-
tients uses the insulin pump which produces data giving information about continuous glucose
measurement, bolus value, basal value, exercise information, hearth rate, and location. In the
next sections, we discuss features of OpenDiabetesVault Framework and data resource for our
static insulin sensitivity calculation and neural network model.

4.1 OpenDiabetesVault Framework

The OpenDiabetesVault framework allows gathering, importing, processing, exporting and visu-
alizing. It supports several devices for data import. Medtronic CSV, Freestyle Libre CSV, Google
Fit CSV, Sony Smartband 3 SWT12 database dumps are supported for data import. Every im-
porter works in two stages; parsing and interpretation. A parser reads values from one data
point and converts it into the internal data format. The interpreter annotates data points and
does very basic filtering on a data series. It also adds semantic implications (e.g. when a pump
suspend is read, the interpreter would add a basal value 0). Data can be exported to our csv data
format. Also, a compressed (deflate), and signed format is available odv which is basically a zip
archive with the csv file and signature file. Furthermore, slicing information which is produced
by the DataSlicer can be exported as csv for the plotting script. For the visualization of the data
the odv-CSV data, the plotting script using matplotlib from a separate project can be used.

4.2 Vault Database

bgValue: Provides the blood glucose values. Blood glucose value is measured out of freshly har-
vested blood from a finger. It can be considered as the ground truth however the measurement
tolerances are very low.

cgmValue: Provides the continuous glucose measurement (cgm) data from a sensor placed on
the skin. The sensor uses the cell liquids to measure the glucose level. Naturally this value can
not be considered as the same as the blood glucose value, since the system calculates this value
from the cell liquid. To achieve the close value with cgm, the different systems use different
adjustment methods. Some are self calibrating, some are manually calibrated and provide a
raw value, displayed in the data set as cgmRawValue. Besides this, all systems have in common,
that measured values have a time delay of around 15 to 30 minutes. The values are mostly
reliable, but sometimes the calibration is not accurate. For this reason, the cgmValue should be
rated by the given blood glucose level.

cgmAlertValue: Provides cgm values, which have attracted some attention by the patient. The
different systems have different mechanisms to provide current values to the patients. Some use
audio alert systems and other have to be manually triggered to output the current value.

bolusCalculationValue: Provides blood glucose values for the insulin dose calculation. This is
usually a copy of the bgValue or the cgmValue. The patient knows this value for sure.

basalValue: Provides the basal insulin value. Basal insulin value is the insulin amount required
for the basic energy delivery system which is the energy usable for the cells. This corresponds
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to the insulin amount to stabilize the blood glucose to an optimal value when the patient does
not do any physical activity and does not eat anything. This value is empirically generated and
might differ within every patient. Therefore, it can be considered partly correct. Some technical
details regarding the status are provided at basalAnnotation. The values are accurate in time
and amount.

bolusValue: This value provides the bolus insulin value for every meal containing carbohy-
drates. Patients with diabetes should take corresponding amount of insulin for their every car-
bohydrates containing meal intake. The amount of the insulin should be taken by the patient,
is calculated by the insulin pump with a programmable translation rule which is determined
empirically. Thus, this value should not be considered completely correct. Even though there
are many insulin types, we do not consider all of them. We only consider the one called "rapid-
acting" type. It has no instant effect, rather after 15-20 minutes. Its effect almost linearly
decreases over 3 hours.

bolusAnnotation: Bolus insulin can be applied as a bulk portion or as a square wave over a
given time. How the insulin is applied is stored in, with the given time in minutes for square
wave types. The amount and time point of the value is perfectly accurate.

mealValue: It provides the data for consumed carbohydrates by the patient. Therefore, patient
has to use the pump to calculate the needed insulin. Patient might calculate this value before,
after or both before and after the meal. Thus, this value should be considered with +/- 20
minutes time drift. In particular the meal intake for fixing the hypoglycemia (low blood glucose)
value are not completely accurate since the value of the meal is estimated by the patient, rather
than the insulin pump. In case of constant wrong estimation, the pattern can be also considered
as reliable for the specific patient.

pumpAnnotation: It provides some technical information about the insulin pump. If the data
varies from the usual flow, that is an indication of a technical issue usually. Some pump events
are pump rewind, pump fill, pump fill interpreter, pump suspend, pump unsuspend, pump
reservoir empty and pump unknown error.

exerciseTimeValue: It provides the information the exercise duration in minutes. It is mea-
sured by the Google activity framework reverse geocoding. It also allows manual entry from the
patient. The resource used for exercise time value is stored in exerciseAnnotation. The possible
entry values are manual, other, walk, bicycle, and run. The correctness of data is not really
critical, since the exact influence of exercise information on diabetes is not completely known
and it varies within every patient. Therefore, exercise entries with a duration lower than 20
minutes can usually be ignored.

heartRateVariabilityValue: It provides heart rate variability value which is measured by a Sony
Smartband 2. This value can be considered accurate. Until now it is not proven whether this
information relates with diabetes related data or not. Apart from the heart rate variability data,
stress is a known factor which has effect on diabetes therapy which is proposed by Sony.

sleepAnnotation: It provides information whether the patient is awake or sleeping. It is mea-
sured by Sony Smartband 2, and is nearly correct, but boundaries between sleep and awake
cycles might be different from the actual by +/-20 minutes.

locationAnnotation: It provides location categories which is based on the measurement from
the Google Maps reverse geocoding with including automatic tracking. Possible location cat-
egories are; transition (the patient is in move between transitions), home (the patient is at
home), work (the patient is at work), food (the patient is at a location for eating), sport (the
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patient is at a location for sport), other (the patient is not in transition but no other category is
recognized).

4.3 Static Insulin Sensitivity Calculation

In the previous chapter, other methods for calculating insulin sensitivity are discussed. In this
section we will present our technique for assessment of static insulin sensitivity using the dataset
derived from the vault database. Our calculation roughly consists of 3 main stages; finding time
series with the bolus event, discarding the series which does not comply to our criteria and
finally calculating the static insulin sensitivity value. Figure 4.1 has detailed steps of our model.

We begin with determining the all bolus events. Based on the location of the bolus event,
we retrieve sub time series containing events 2 hours before and after. This process is done for
every bolus event detected. Later, we check each sub time series whether they contain another
bolus event within maximum half hour afterwards from the original time stamp of the bolus
event. If such bolus event is found, then these found bolus event values are summed up and
saved back to our bolus event value. If found bolus events are not in this half hour range the
sub timeseries is discarded.

In the second stage of our calculation, the cut time series are further filtered. Each timeseries
is checked whether it includes any meal, exercise or bolus sqare event. The timeseries containing
any of these events are again discarded. We continue with the remaining set, and look for the
first cgm event after our bolus event’s time stamp with a predefined delay. We used 15 minutes
for the predefined delay. This delay is used due to the reaction time of the insulin injection.
Finally we save the last cgm measurement belonging to this time series. Insulin sensitivity
factor is calculated as follows:

f irstcgm− lastcgm
bolusv alue

.

If the difference f irstcgm− lastcgm is positive, the value is valid for static insulin sensitivity
calculation, otherwise again it is discarded. The valid differences are divided by bolus amount,
which gives us the static sensitivity factor.
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Figure 4.1: Static Insulin Sensitivity Calculation Flowchart
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5 Experiment Setup

We now briefly describe our experiment setup. The aim of the experiments can be roughly
divided into two main categories. First of all, we aim to show whether our static insulin sensi-
tivity calculation correlates with the basal rate or not. Secondly, we want to find out whether
this newly generated feature can contribute to blood glucose level prediction when used as an
additional feature. Figure 5.1 shows the architecture of our model. In the next chapter, we
explain how we find an answer for these two main questions.

Static insulin sensitivity factors together with corresponding timestamp which is calculated
over the vault database is used for basal rate verification. For every hour of a day there are
multiple sensitivity values retrieved. The count of data points for each hour of the day can be
seen in the top of the plot in the figure 6.7 which are aligned with the hours of the day. For the
plots we used matplotlib.

Our overall prediction model is a hybrid model consisting of a physiological model and a data-
driven model. The static insulin sensitivity calculation model is a physiological model since it
obtains values using predefined assumptions and based on pure mathematical formula. Artificial
neural network model is type of data-driven model. Our data driven model uses input features
from vault database and the static insulin sensitivity factor. Our neural network model is a one-
dimensional convolution neural network. For this model, python Keras library with tensorflow
backend is used.

Time series data retrieved from vault database preprocessed and simplified before it is used
as an input to our convolutional neural network model. In the next section, we explain how the
preprocessing of the database is done.

5.1 Preprocessing of Dataset

The time series are preprocessed before used in the prediction model. The features are used
either used as discrete values or one-hot encoded. We summarize the procedure in the table 5.1.
The column Relevance is used to group the similar features. The column Sub types contains

Figure 5.1: Architecture of our hybrid model
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similar features according to the relevance. If the features in the sub types are merged into
another new field, its name is given under the column Merge Info. Otherwise, the time series
are not changed (mentioned with -). The column Usage is used in order to state whether the
time serie is used as it is (discrete), one-hot encoded or not used in our model at all (mentioned
with -).

The features basal profile, basal manual, and basal interpreter are merged into new time
series called basal. Meal bolus calculator and meal manual are merged into another feature
called meal. Sleep light, sleep rem and sleep deep are merged under new field called sleep.
The other features; bolus normal, bolus sqare, glucose cgm and dm insulin sensitivity are used
as it is. Glucose cgm alert, cgm sensor finished, cgm sensor start, cgm connection error, cgm
calibration error, pump rewind, pump prime, pump suspend, pump autonomous suspend, pump
unsuspend and sleep are converted into one hot encoded vector before it is used as input. The
rest of the time series ignored and not used in our model.

The input data is parsed as a matrix with total number of 3990264 rows and 5 columns. Each
column has different features and rows are increasing with the same direction of time step. We
divided our dataset into two sets; training and test set, where training set corresponds to 0.5,
test set 0.25 and validation set 0.25 of dataset.

Relevance Sub types Merge Info Usage
Basal basal profile, basal manual, basal interpreter basal discrete
Meal meal bolus calculator, meal manual meal discrete
Sleep sleep light, sleep rem, sleep deep sleep one-hot encoded
Bolus bolus normal, bolus sqare - discrete
Glucose glucose cgm - discrete

Glucose
glucose cgm raw, glucose cgm calibration,
glucose bg manual, glucose bolus calculation,
glucose elevation 30

- no

DM Insulin Sensitivity dm insulin sensitivity - discrete

CGM
glucose cgm alert, cgm sensor finished,
cgm sensor start,cgm connection error,
cgm calibration error

- one-hot encoded

CGM cgm time sync - no

Pump
pump rewind, pump prime, pump suspend,
pump autonomous suspend, pump unsuspend - one-hot encoded

Pump

pump fill, pump fill interpreter,
pump no delivery, pump untracked error,
pump reservoir empty, pump time sync,
pump cgm prediction

- no

Exercise
exercise manual, exercise other, exercise walk,
exercise bicycle, exercise run, - no

Heart rate heart rate, heart rate variability - no
Stress stress - no

Location
loc transition, loc home, loc work, loc food,
loc sports,loc other, other annotation - no

Table 5.1: Summary of preprocessing of Vault Database
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6 Experiments

In this chapter we mainly describe experiments done with our prediction model. Firstly, we ex-
plain our prediction model in more detail. We will compare our experiment results which were
run with different parameters. We want to know whether static insulin sensitivity calculation
value improves the overall model prediction or not. In order to find out that, we trained our
convolutional neural network model, with and without static insulin sensitivity feature, while
keeping the rest of the parameters of the network fixed. In the following paragraphs, we de-
scribe our experiments in which we trained our model with different window sizes, number
of epochs, and different prediction horizons. We make two types of forecasting; multivariate
one-step and multivariate multiple-step. In the next section, we explain the CNN model in more
detail.

6.1 Convolutional Neural Network Model

We use convolutional neural network from sequential Keras model consisting of two convolu-
tions and two pooling layers. We apply is one dimensional convolution operation. Unlike image
recognition tasks where input data is three dimensional, our timeseries data is two dimensional.
The difference between one dimensional and two dimensional convolution operation is; one
dimensional filter’s height is fixed to the number of input time series, and it can only slide along
the window dimension. Since the input time series do not have any spatial or ordinal relation-
ship between them, we are looking for patterns that are invariant with respect to the subsets of
the time series. We use deep neural network since a neural network without a hidden layer is
only sufficient for modeling a linear function. Inside a deep convolutional network, each hid-
den layer is responsible for extracting some set of useful features. These features are used by
the next layer hierarchically and becomes more abstract in the next layer. We aim our network
model to learn right filters capable of deriving such abstract features of the glucose metabolism
from the input data. Therefore, we choose a convolutional neural network with two hidden
layers. In order to introduce non-linearity ReLU operation is applied after convolution. Each
convolutional layer is followed by a pooling layer, which reduces the dimensionality of the input.

We want to capture the meaningful features of blood glucose and insulin metabolism dynamics
of a diabetes patient via the CNN model for better forecasting. Meal intake is one of the most
important factors affecting the blood glucose level. Therefore, we want our model to learn
characteristics of patients blood glucose and insulin metabolism dynamics within each meal
time. In order to achieve this we have to divide the input data in smaller sets which corresponds
to the three main intervals of a day; morning, evening, and night. Therefore, we have to decide
upon meaningful window size and batch size. Window size is the number of time series values
used to predict the next one. Batch size is the value used for the number of inputs taken by the
network to before it updates its internal parameters. For deciding upon the meaningful window
size and batch size for our prediction, we had to make certain assumptions.

First of all, we assume that the patient is having meal three times a day on a regular basis.
Secondly, we roughly estimate the number of cgm measurements as 600 per day. If our dataset
did not have missing values and if each measurement was done with the same time stamp, every
column (corresponding to different feature) would be synchronized. Therefore, we would not
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need to interpolate each column of the dataset. In this scenario window size of 200 would be
enough to represent morning, evening and night periods of a day.

Unfortunately in our case, our dataset has missing values, and no column is synchronized
with each other which makes the decision process more difficult. In order get rid of the missing
values and make our training possible, we had to interpolate each column of the dataset. Con-
sequently, in our case, we need to approximate the number of time steps which corresponds to
200 continuous measurement. Due to missing values of each column we decided upon much
bigger window size would be required.

While with a larger batch there is a significant degradation in the quality of the model, as
measured by its ability to generalize. While smaller batch size allows more frequent updates
after each propagation, it allows network to train faster. On the other hand the smaller batch
size causes the gradient descent algorithm to estimate the gradient less accurate. In this case,
network might not able to converge to a global optimum. Considering these factors we decided
to use 2000 for the batch size.

6.1.1 Filter Length and Number of Filters

For our convolutional neural network, we had to decide on the parameters such as; filter length,
number of filters, and network depth. Smaller kernel size produces more feature maps and
allows model to perform more accurate. Additionally, it results in faster training. We have 4
features in total. Considering these factors, we use kernel size of 4 in our first convolutional
layer. Kernel size is also called number of filters. Number of filters are directly related with
the number of columns of the output shape of the neural network. Bigger the filter length
allows to gather more information, but also this might lead overfitting due to more parameters.
Therefore, smaller filter lengths which are stacked in the network has more advantage than
having one large filter. Considering this factor, we used filter length of 5. Filter length effects
the number of rows of the output shape of each convolutional layer. The figure 6.1 shows the
architecture of a CNN with 4 filters, each has length of 5. Since the filter with length 5 slides
over the input with dimensions (None, 50, 4), one step at a time and produces output with
(None, 46, 4). In this figure "None" keyword represents the number of samples which can be
given as input to the network with the dimensions (50, 4), which can be considered as a matrix
with 50 rows, and 4 columns. Here each column has one value from each feature; bolus sqare,
glucose cgm, meal bolus calculator and basal. The row number 50 corresponds to the input
window size. Similarly, second convolutional layer takes the input with dimensions (None, 23,
4) and produces output with dimensions (None, 19, 4) after applying the filters with length 5.

Each pooling layer, does the operation of max pooling and reducing the dimension x of the
input by factor of 2 where the input has a shape of (z, x, y). This layer takes two inputs from
the input vector, discards the smaller value and passes the greater value to the next layer. As it
can be seen from the figure 6.1, each max pooling layer reduces the input with shape (None,
46, 4) and (None, 19, 4) by factor 2 and outputs with dimensions (None, 23, 4) and (None, 9,
4) respectively.

We use ReLU as an activation function. The input data given to this layer as an input has a
shape of length of window size and number of input series. A pooling layer which downsamples
the output from this layer by using max pooling operation is used. The following layer, another
convolutional layer with the same parameters is used. Similarly, this convolutional layer is
followed by another maxpooling layer. Finally, a dense layer, another layer which consists of
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Figure 6.1: Multistep Prediction CNN Model with input window size 50 and predicted timesteps
9

perceptrons is used. This layer has a linear activation function and outputs the predicted values.
The linear activation function is the simplest activation function, this function f (x) = x simply
passes the input without any modification.

The model is evaluated with error metric MAE and a loss function in terms of MSE. We use
these metrics for comparing different trained models. The errors in the tables correspond to
the multiple input-multiple output model. We preferred 10 epochs for the training with longer
window size. Each epoch means that the training algorithm does a complete pass over the entire
dataset total 10 times. In the next sections, we discuss the prediction results and performances.

6.2 Multivariate One-Step Prediction

In this section, we summarize the results from our CNN model which predicts one step future
value. We also compare one-step prediction results of two different CNN models trained with
and without static insulin sensitivity value. Therefore, we use window size of 50, 100, and 500.
We used 10 epochs and batch size of 2000. This showed us that increasing the window size
of one-step prediction model, does not contribute to the performance of the prediction, on the
contrary increases the training time considerably. Experiments with different window sizes of
50, 100 and 500 are summarized in the tables 6.1, 6.2, and 6.3. During the training, number of
epochs is fixed to 10. The best performance is achieved with the window size of 100.

We extracted 1000 time steps long actual blood glucose level, predicted without static insulin
sensitivity. Behavior of the predictions can be seen in the figure 6.2. In this plot is also can
be seen, how two predictions are close to each other and the actual value. However one-
step prediction does not give insight about the future behavior of blood glucose level, even
though prediction error is very low. Hence, we made another model which is capable of multiple
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CNN Model loss MAE val_loss val_MAE
with Static Insulin Sensitivity 1.8199 0.6687 10.0022 1.4774
without Static Insulin Sensitivity 2.2711 0.7879 12.0884 1.6721

Table 6.1: Comparison of Multivariate One-Step Prediction with and without Static Insulin Sensi-
tivity value (window size 50, number of epoch 10, batch size 2000)

CNN Model loss MAE val_loss val_MAE
with Static Insulin Sensitivity 1.4143 0.6199 8.0298 1.4363
without Static Insulin Sensitivity 1.3647 0.5179 8.5898 1.2114

Table 6.2: Comparison of Multivariate One-Step Prediction with and without Static Insulin Sensi-
tivity value (window size 100, number of epoch 10, batch size 2000)

step forward forecasting capability, with given several (window size) measurements of previous
blood glucose levels.

6.3 Multivariate Multiple-Step Prediction

In this section, we summarize the result of the multi-step prediction CNN model. We trained
four different models with window sizes 50, 100 and predicted future steps 9, 19, 22, 44. Each
models’ performance result is summarized in table 6.4. As we increase the predicted time-steps,
prediction error increases. The results in table 6.4 shows the prediction error of total four
features; bolus sqare, glucose cgm, meal bolus calculator and basal.

For the visualization of the predictions, we made a plot from each model 1−4 in the table 6.4.
In the figures, the input timeseries and the following timesteps are chosen from separate test
set, which is not used during the training. When there are many missing values in the dataset
after the preprocessing, the values are not varying much. Therefore, it makes the prediction
unrealistic. Even though such test timeseries gives us prediction much closer to the actual
values, we are interested in the part which is closer to the real life situation. Hence, the portion
which we used for the illustration of the prediction is especially taken from dataset where there
is not much interpolation.

In the figures 6.3, 6.4, 6.5, and 6.6 predicted time-steps are shown in red. The model with
9 time-step prediction window, approximately corresponds to 15 minutes of prediction horizon.
The second with 19 predicted time-steps, corresponds to 25 minutes of prediction horizon. Third
model with 22 predicted time-steps corresponds to 35 minutes of prediction horizon, and the
last model with 44 timesteps corresponds to 1 hour of prediction horizon approximately. For
the approximation of prediction horizons from the timesteps, we counted each blood glucose

CNN Model loss MAE val_loss val_MAE
with Static Insulin Sensitivity 1.7289 0.7293 9.8728 1.5246
without Static Insulin Sensitivity 3.2356 1.0809 19.3925 1.9252

Table 6.3: Comparison of Multivariate One-Step Prediction with and without Static Insulin Sensi-
tivity value (window size 500, number of epoch 10, batch size 2000)
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Figure 6.2: Plot for Actual and Predicted Blood Glucose Levels of 1000 time steps

Model Number Input Window Size Time Steps Predicted loss MAE val_loss val_MAE
1 50 9 10.3113 1.0729 70.4468 2.7346
2 50 19 12.064 1.1515 83.2704 3.0644
3 100 22 29.5713 1.3807 213.7033 4.3906
4 100 44 40.0762 1.6637 280.4602 5.3311

Table 6.4: Performance Evaluation of Multivariate Multi-Step Prediction with different prediction
time steps (number of epoch 10, batch size 2000)

Figure 6.3: Model 1: Input window size 50, and 15 minutes prediction horizon (time-steps 9)
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Figure 6.4: Model 2: Input window size 50, and 25 minutes prediction horizon (time-steps 19)

Figure 6.5: Model 3: Input window size 100, and 35 minutes prediction horizon (time-steps 22)
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Figure 6.6: Model 4: Input window size 100, and 1 hour prediction horizon (time-steps 44)

measurement with minimum 1.0 mg/dL difference in the timeseries as 5 minutes. According to
the results, we conclude that the model performs worse where the blood glucose value drops
sharp, compared to other places where blood glucose level is more stable. In the next section
we discuss about the static insulin sensitivity calculation model’s results, and we evaluate the
relation of it with the basal rate. We also evaluate our overall model considering this relation.

6.4 Evaluation of Models

We used two methods to verify the applicability of calculated static insulin sensitivity factors.
First, we compare our finding with the basal rate. The figure 6.7 shows the boxplot of sensitivity
values for every hour of a day. There are multiple values retrieved for each hour of a day. We
removed outlier values from the plot. The red step line represents the median of each sensitivity
boxplot. For readability purpose basal rate boxplots are not shown in the plot, instead lower
and upper quartile of basal rate are represented with blue step lines.

According to the figure 6.7 we do not see correlation between the static insulin sensitivity val-
ues and the basal rate. In order to have a concrete results we calculated the correlation values.
Correlation coefficient is used to measure the strength of a linear association between two vari-
ables. The value C(X , Y ) = 1 means a perfect positive correlation and the value C(X , Y ) = −1
means a perfect negative correlation between variables X and Y . For the correlation calculation
following formula is used where X and Y represents the data of two different variables:

C(X , Y ) =

∑

i(x i − x̄)(yi − ȳ)
q

∑

i(x i − x̄)2
q

∑

i(yi − ȳ)2

The correlation coefficients which are in the table 6.5 shows us that there is neither positive
nor negative correlation between average insulin sensitivity factor and average basal rate and
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Figure 6.7: Boxplot for Static Insulin Sensitivity Verification with Basal Rate

C(X,Y) Correlation coefficient
C(Avg Basal Rate, Avg Insulin Sensitivity) -0.0683446
C(Median Sensitivity, lower quartile of Basal Rate -0.2455060
C(Median Sensitivity, upper quartile of Basal Rate) -0.0497927
C(Median Sensitivity, median Basal Rate) -0.2438207

Table 6.5: Correlation coefficients for Insulin Sensitivity and Basal Rate Verification

between median insulin sensitivity and upper quartile of basal rate. However there is some
negative correlation between median insulin sensitivity and lower quartile of basal rate, and
between median sensitivity and median basal rate.

In the experiments with one-time step prediction, we got similar results with different window
sizes. While prediction with window size 100 has better performance without the static insulin
sensitivity feature, the other predictions with window size 50 and 500, we see that the model
with the static insulin sensitivity feature performed better. Besides these, it is hard to conclude
about the contribution of this additional feature, since the error rates are very close to each
other. Besides, we see constant increase in the error rate of models when larger prediction
horizon is used. On the other hand increase in the input size is decreasing the error rate.

We calculated the MAE and MSE of predicted blood glucose levels individually using the
package of Scikit Learn metrics.mean squared error and metrics.mean absolute error functions.
Regression error metrics MAE and MSE of predicted Blood Glucose levels are summarized in the
table 6.6.
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Model Type MAE MSE
Prediction with SSC 2.236405 35.746923
Prediction without SSC 2.533498 36.845206

Table 6.6: Error rates of Blood Glucose prediction
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7 Conclusion

In this thesis, we presented a novel approach for static insulin sensitivity calculation in order to
make a better prediction of blood glucose levels of diabetes patients. With this approach we aim
to minimize the risk of hyperglycemia, and consequently reducing the harmful complications of
the disease. In our experiments, we have verified that our static insulin sensitivity calculation
neither correlates with basal rate, nor brings significant improvement to the blood glucose level
prediction model, when used as an additional feature. This clearly indicates that the findings of
the two experiments are compatible with each other.

7.1 Summary

Throughout the thesis, we explained necessary background information for understanding the
disease diabetes mellitus, machine learning basics together with artificial neural networks, and
deep learning. Afterwards, we covered state-of-the-art methods used in the literature regarding
blood glucose prediction with different approaches. We categorized these models into three
types; Physiological Models, Data-Driven Models, and Hybrid Models. We introduced data re-
sources used in the experiments, and how the experiment is setup.

We have done our experiments with the calculation of static insulin sensitivity with a personal
clinical data from a diabetes patient. We used basal rate to verify the correctness of our novel
approach for static insulin sensitivity. The result of correlation coefficients of the average of basal
rate versus average insulin sensitivity clearly shows us that there is neither negative nor positive
correlation between the basal rate and static insulin sensitivity. Afterwards, we used a one
dimensional convolutional neural network to predict future blood glucose levels of the diabetes
patient. We made multivariate one time-step, and multivariate multiple time-step predictions.
We made another experiment to find out the effect of static insulin sensitivity model, when it is
used together with our neural network model. We trained two neural networks with and without
static insulin sensitivity values along with patient’s data. Our experiments results showed us
there is no significant performance difference between two models.

7.2 Future Work

We discuss the possible ideas for further research, which we did not have time to attempt during
our experiments due to time or scope reasons.

Firstly, quality of the dataset could be enhanced. Other methods for dealing with missing data
could be tried. We have interpolated missing value within each column/feature. For example
within the parts where too many fields are missing, complete row can be removed. However
this might result in a much smaller dataset and consequently might lead to a poor generalization
of the model. Another technique for dealing with missing values is replacing the missing fields
with mean value. Other methods such as replacing with zero or a dummy variable would not be
suitable in our case. Close inspection of dataset characteristics would be helpful for the decision
process, which is also time consuming task.
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We mention another possible improvement with preprocessing of the dataset. We used the
input data without applying any normalization. When there is huge difference between the
independent features in the training dataset, the feature with huge range dominates the other
features. In order to avoid this, and allow each feature to contribute to the model fairly, in-
put features are scaled. Applying normalization sometimes reduces the training time and also
improves the convergence of the optimization algorithm. Some normalization techniques are
Z-score normalization (standardization) and Min-Max scaling. However, there is no certain rule
that normalization definitely contributes to the performance of the model. Therefore, it should
be decided according to the nature of the dataset.

We did not change the number of filters of the CNN, and the depth of the network, and the
filter length during the experiments in order to truly observe the effect of static insulin sensitivity
feature. In order to achieve better predictions, these parameters can be tuned further. We only
used the features; bolus sqare, insulin sensitivity, glucose cgm, meal bolus calculator, and basal
in our experiments. Even though we mentioned binary alert features such as cgm and pump
related in the section 5.1, we did not use them in our experiments. These values can be included
to the model as a future work.
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