Preference-based Monte
Carlo Tree Search for
Multiplayer Domains

Master-Thesis von Julius Stecher
Tag der Einreichung:

1. Gutachten: Prof. Dr. Johannes Fiirnkranz
2. Gutachten: Tobias Joppen

<57 TECHNISCHE
((6—1} UNIVERSITAT
i DARMSTADT

Fachbereich Informatik
Knowledge Engineering

Preference-based Monte Carlo Tree Search for Multiplayer Domains

Vorgelegte Master-Thesis von Julius Stecher

1. Gutachten: Prof. Dr. Johannes Flrnkranz
2. Gutachten: Tobias Joppen

Tag der Einreichunag:

Erklédrung zur Master-Thesis

Hiermit versichere ich, die vorliegende Master-Thesis ohne Hilfe Dritter nur mit
den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die
aus Quellen entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit
hat in gleicher oder ahnlicher Form noch keiner Priifungsbehérde vorgelegen.

Darmstadt, den October 26, 2017

(Julius Stecher)

Abstract

Monte Carlo Tree Search is a common approach for finding approximate solutions in discrete
problem spaces. The basic variant of this algorithm does not require domain knowledge and
has a number of desirable properties that make it well suited for realtime application, such as
the ability to terminate early and still provide useful results even if an optimal solution was not
yet found. MCTS can work both with terminal rollouts as well as heuristic evaluations of non-
terminal states (limited rollout length), the latter generally making use of numeric feedback.
Preference based MCTS aims to not use these values directly, but rather always in context of a
comparison with another feedback value to form a preference. Applying this to a multiplayer
context will result in a preference among available actions in a game state based on the interests
of the particular player conducting the action. The experiments show that the preference-based
approach exhibits inferior performance on the Connect Four domain under the conditions tested.

Contents

1. Introduction
1.1. Motivation v v v e e e e e e e e e e e e e e e e
1.2. Thesis StruCture o o o e e e e e e e

2. State of the art: Artificial Intelligence in Game Playing
2.1, Game Theory v it e e e e e
2.1.1. Formal model forgames
2.1.2. Properties of Multi-player games,
2.2. Bandit-based methods
2.2.1. From one-armed to k-armed bandits
2.2.2. The dueling k-armed bandit problem
2.3. Monte Carlo Tree Search (MCTS) o v i i it e e e e e s e e e e i e

2.3.2. The MCTS algorithm
2.3.3. Algorithm Properties

3. The Connect Four Domain
3.1. Terminal states and win conditions
3.2. Evaluating terminal and non-terminal states
3.2.1. Heuristics for non-terminal states.

4. Experiment setup
4.1. Domain specific parameter tuning L
4.2. Multiplayer eXperimentst e e e e e

5. Interpretation
5.1. Number of possible actionsineachstate
5.2. Number of node updates per single rollout
5.3. High availability of terminal states,
5.4. Quality of the heuristic functions,
6. Conclusion

Bibliography

A. Experiment results

19
20
21
21

25
25
30

41
41
43
43
45
47
49

51

List of Figures

2.1.
2.2.

2.3.
2.4.

2.5.
2.6.

3.1.

3.2.

3.3.

4.1.

4.2.

4.3.
4.4.

4.5.

4.6.
4.7.

4.8.

4.9.

Visualization of the k-armed bandit problem 5
The probability that the true value lies within the confidence interval grows over

TINE . . . o o e e e e e e e e e e e e e e e 7
Visualization of the k-armed dueling bandit problem 8
Visualization of realtime MCTS 14
Visualization of relative MCTS with one-back propagation 15
The first four game tree layers for an example game with 2 (left) and 3 (right)

players (circular turn order). The experiments in later chapters will be based on
atwo-player Setting. e e e 16

Value distribution over 101 equal-width bins for component A before (left) and

after (right) scaling 23
Value distribution over 101 equal-width bins for component B before (left) and
after (right) scaling e 23
Value distribution over 101 equal-width bins for the composite heuristic (A+B)/2,
using the scaled components e 24

50k advances, values given are for UCT C. Configuration with smaller value be-

ginsthe game. e e 26
50k advances, values given are for UCT C. Configuration with larger value begins
the game. e e 26

50k advances, combined wins for values of UCT C. The optimal value for Cis 0.6 26

10k advances, values given are for UCT C. Configuration with smaller value be-
ginsthe game. e 27
10k advances, values given are for UCT C. Configuration with larger value begins
the game. e 27
10k advances, combined wins for values of UCT C. The optimal value for Cis 0.4 27
50k advances, values given are for RUCB a. Configuration with smaller value

begins the game. 28
50k advances, values given are for RUCB a. Configuration with larger value
begins the game. 28

50k advances, combined wins for values of RUCB a. The optimal value for a is 0.3 28

4.10.10k advances, values given are for RUCB a. Configuration with smaller value

begins the game. e 29

4.11.10k advances, values given are for RUCB a. Configuration with larger value

begins the game. 29

4.12.10k advances, combined wins for values of RUCB a. The optimal value for a is 0.2 29
4.13.Results of playing 100 games per rollout limit setting using the composite heuris-

tic. ROB begins the game. Budget of 5-10* advances. Based on table A.1 (see
apPENdiX) e e e e e e e e e e e e e e e 32

4.14.Results of playing 100 games per rollout limit setting using the composite heuris-

tic. RT begins the game. Budget of 5-10* advances. Based on table A.2 (see

appendix) e e e e e e e e e e 32
4.15.Results of playing 100 games per rollout limit setting using the simple heuristic.

ROB begins the game. Budget of 5-10* advances. Based on table A.3 (see appendix) 34
4.16.Results of playing 100 games per rollout limit setting using the simple heuristic.

RT begins the game. Budget of 5 - 10* advances. Based on table A.4 (see appendix) 34
4.17.Results of playing 100 games per rollout limit setting using the composite heuris-

tic. ROB begins the game. Budget of 1-10* advances. Based on table A.5 (see

apPENdiX) e e e e e e e e e e e e e e e 35
4.18.Results of playing 100 games per rollout limit setting using the composite heuris-

tic. RT begins the game. Budget of 1-10* advances. Based on table A.6 (see

appendix) e e e e e e e e e e 35
4.19.Results of playing 100 games per rollout limit setting using the simple heuristic.

ROB begins the game. Budget of 1-10* advances. Based on table A.7 (see appendix) 37
4.20.Results of playing 100 games per rollout limit setting using the simple heuristic.

RT begins the game. Budget of 1-10* advances. Based on table A.8 (see appendix) 37

5.1. Visualization of possible comparisons of two actions in the case of k=2 (a), k=3
(b), k=4 (c¢) and k=7 (d) availableactions 42
5.2. Example of a Connect Four state that both heuristics used in this thesis wrongly
consider as bad for the blue player, in particular due to the theoretical victory
combinations blocked by red in the upper two rows. Blue has already won at
this point due to the double threat (circled). This is not hinted at in the heuristic
evaluation. e 46

List of Figures

List of Tables

4.1.

4.2.

4.3.

4.4.

4.5.

A.l.
A.2.
A.3.
A4,
A.S.
A.6.
A7.
A.8.

Peak results for 5-10% advances and hcomposite- Both batches meeting these criteria
are being considered (covering both cases of either algorithm making the first
move inall games) e 38
Peak results for 5 - 10* advances and hgimpie- Both batches meeting these criteria
are being considered (covering both cases of either algorithm making the first
moveinall games) 38
Peak results for 1-10* advances and hcomposite- Both batches meeting these criteria
are being considered (covering both cases of either algorithm making the first
moveinall games) 39
Peak results for 1-10% advances and ;1. Both batches meeting these criteria
are being considered (covering both cases of either algorithm making the first

move inall games) e 39
Peak results over all eight batches of 2100 gameseach 40
Results for 50000 advances using h,mposice With ROB beginning each game 52
Results for 50000 advances using h,mposice With RT beginning each game 52
Results for 50000 advances using hy;,,,; with ROB beginning each game 53
Results for 50000 advances using hy;,,,; with RT beginning each game 53
Results for 10000 advances using h,mposice With ROB beginning each game 54
Results for 10000 advances using i ,mposice With RT beginning each game 54
Results for 10000 advances using hy;,,,; with ROB beginning each game 55
Results for 10000 advances using hy;,,, with RT beginning each game 55

1 Introduction

A problem requiring successive choices in different states is called a sequential decision problem.
Games that operate in discrete state spaces are a subset of this type of problem that requires a
solution in the form of information about which decision to take in each state. For a computer
agent designed for game playing, these decisions impact the playing strength of the agent and
as such, a well-informed choice is necessary in each single state.

1.1 Motivation

Artificial Intelligence in games has seen a significant boost in playing strength in domains previ-
ously unfeasible for computer play since the description of Monte Carlo Tree Search (MCTS) in
2006 [3]. In particular, it contributes a means of handling games with high branching factors,
deep trees and game states with no easy way to assign heuristic values to (in its generalized,
basic form). As such, MCTS can avoid some of the performance and memory issues that arise
with other forms of tree search on these domains and has a number of interesting properties that
make it feasible for realtime use. Among these is the general lack of requirement for state eval-
uation beyond applying the ruleset for win conditions (if so desired), the tree search approach
closely resembling a best-first method (resulting in asymmetric tree growth favoring promising
areas of the game tree), and possibly most importantly, the ability to terminate at any time and
return an educated guess of the optimal action in the root node. It is because of the latter that
MCTS can provide easily scalable playing strength and make good use of a given computational
or time budget, since unlike an exact solver, it neither terminates on its own nor does it have to
in order to return any usable result at all.

Given two states s; and s,, a preference P(s;,s,) makes a statement about whether s; is more
desirable than s, or vice versa, and as such provides the pure result of a direct comparison [5].
This does not necessarily require numerical information about the quality of either state - in
fact, it may be hard to find an absolute quality metric for states of a given domain, but still
viable to generally form a preference given two states. For example, even a domain expert may
have a hard time to judge the exact value of a car in terms of an amount of currency, but it
may be easier to state with some confidence that a particular car is in better condition, safer, or
attributed more resale value than another. A preference does not necessarily imply the existence
of a numerical rating method, but the latter can be used to obtain preferences. In this case, the
information about the value difference is lost and only the comparison result is preserved. It
can be argued that a loss of information is not always undesirable - in fact, it may be helpful
in avoiding local optimal if the numerical reward function is generally reliable, but plagued by
local noise or other inaccuracies.

1.2 Thesis Structure

A selection of definitions from game theory will be introduced in 2, focusing on multiplayer
game domains. Then, the basic idea behind MCTS in general as well as an existing preference-
based approach to MCTS will be summarized, including the chosen method of adapting both a

realtime UCT-based MCTS configuration as well as the particular preference-based approach to
multiplayer. The multiplayer domain of Connect Four will be formally introduced in 3. Because
both algorithms require parameter tuning, this will be conducted in a fair and balanced way
in 4 before pitting them against each other in a series of experiments. The results on this
particular domain do not show an advantage of the preference based approach, with several
possible reasons given in 5, ranging from domain-specific reasons to generalized statements
about domain properties that may be disadvantageous for a preference-based approach in the
case of MCTS.

2 1. Introduction

2 State of the art: Artificial Intelligence in Game Playing

The following chapter will largely concern itself with a short non-exhaustive summary of rele-
vant existing approaches to artificial intelligence based on stochastic methods and tree search
on discrete domains, based on material from several sources [3] [2] [7] [6].

2.1

Game Theory

Complex games such as Go have been around since ancient times. However, formal research
with a mathematical basis was not widely applied to strategic games before 1944 , when it
effectively first received notable attention with the publication Theory of Games and Economic
Behavior [8]. Game theory is an extension of decision theory with the aim of formalizing the
interaction of multiple agents according to a set of estabilished rules, and as such, a game can
be described by a set of components as follows [3].

2.1.1 Formal model for games

S: The set of all states. Frequently, the cardinality of this set makes enumeration impracti-
cal.

sy € S: The initial state, before any actions have been executed by any agent.

n € N: The number of players. Of specific interest in this thesis is the case n = 2

A: The set of all actions.

A(s) € A: The set of actions available to an agent in a state s € S. Note that some states
s may only allow for a strict subset A, C A of actions, for example a movement action in
a grid world setting rendered illegal due to the destination space being obstructed by a
static obstacle (such as the border of the playing field). Note that only illegal actions are
excluded; an action that would lead to the immediate loss of the active agent may well
be (and usually is) a legal move, as such no information about the expected reward can
be derived from the (non-) availability of an action in a specific state. However, we set
A(s) = 0 for a game-over state (this will be defined later).

transition : SxA — S: The ruleset of the game, formalized by a state transition function
that maps state-action pairs to successor states.

r:S — [0—1]": The reward function. In case of k = 1, a reward is given as a real number.
Within the scope of this thesis, all reward values - both atomar ones as well as individual
components of reward vectors - are assumed to be within the range of 0 to 1.

P :p, with x €(0,1,...,n—1): The agents (players) involved in the game. In addition, we
reserve index : P — {0,1,...,n— 1} as a helper function to map each player to an index
number.

player(s) : S — P: The player whose turn it is in a particular state.

It should be noted that this is essentially a specialization of a generic sequential decision pro-

Ccess

- more precisely, a Markov decision process (MDP) with the additional constraints that

the transition from a state s; via an action a will always result in the same successor state s,

(determinism). In addition, the algorithms used to handle games specified as such in this thesis
will not provide feedback for a transition unless |A(s,)| = O (the successor state is a terminal
state, ensuring that the game ends in a victory for at least one player or a draw for all players),
or the algorithm forces a heuristic evaluation of s, due to specific parameter settings (more de-
tailed description to follow in later sections), assigning an estimated reward vector to a state
that does not yet imply the termination of the game.

2.1.2 Properties of Multi-player games

Competition: A game is called zero-sum if the sum of all components of the reward vec-
tor is constant - usually zero (if the rewards range from -1 to 1) or one (if the rewards
range from O to 1). In a zero-sum game, every victory or rise in reward for one player
equals a loss or lowered reward for at least one other player; specifically, in a two-player
game, zero-sum implies strict competition (as the concept of coalitions can be disregarded).

Information: Can be either perfect (each player knows everything about the game and
can make informed decisions without accounting for unknown variables) or incomplete
(each player may at one or more points during the game be forced to make decisions that
are partially based on assumptions).

Determinism: If the game solely depends on the actions chosen by the players, it is de-
terministic. This is not the case if any randomness (such as dice, ordering of cards in a
stack or actions conducted by a third party) has any influence over the successor state of a
particular state.

Action order: Sequential games will feature actions being applied in a specified order.
This can take the shape of alternating (or circular in case of n > 2 turn order for the
players involved, including reversal of turn order (uno card game) or any arbitrary rules,
as long as the sequence of all actions executed during the flow of the game adheres to a
strict total ordering, e.g. for any two actions a; and a,, either the consequences of a; have
already materialized before a, is executed, or vice versa. A game where this is not the case
would have actions be executed simultaneously.

Discreteness: A game is discrete if execution of actions is not done in real-time, but instead
clearly separated into intervals.

2.2

Bandit-based methods

2.2.1 From one-armed to k-armed bandits

The underlying problem definition of a bandit problem explains its namesake: The classic casino
slot machine one-armed bandit allows merely a single action choice (pulling the arm) which
triggers an event of entirely random reward, without specifically accounting for any additional
properties like the speed of pulling the arm. As such it is a purely random experiment, with

4

2. State of the art: Artificial Intelligence in Game Playing

the defining difference from a (fair) dice roll or coin toss that the player is not told about the
odds, and while they may have been told about the possible reward brackets, this information is
meaningless without knowledge of the underlying probabilities, which would depend on inter-
nal specs of the black-box machine that takes a binary input as trigger (e.g. arm pull or button
press = applying an action) and converts it into a reward feedback.

All by itself, this does not offer the player any choice at all except to eventually stop playing.
However, if there are more than one machine available, each with their own individual odds, the
player is suddenly faced with an interesting problem: any action can now be seen as a choice
between the k available arms. Because the player still does not have any prior information
about the underlying odds of any involved machine, this does not initially make a difference -
the decision of which arm to first pull must still be made on a purely random basis. However, as
the player continues to play the slot machines, they will eventually accumulate experience as to
which machine tends to pay better.

Of course, this is highly unreliable information, but as time passes and a specific arm has been
pulled many times, chances are that some machines turn out to be worse choices compared
to others, and the player will develop a preference for one or more machines (exploitation of
gained knowledge). Of course, this could also be a trap: if a slot machine by chance nets a
high reward once or twice, it may still feature objectively worse odds under the hood, and if
the player narrows down their preference too quickly, they would continue to play that machine
believing this to be in their own best interest, while their expected net reward sum might end up
higher if they continued to occasionally test other machines (exploration). The decision which
bandit to play next is determined by the player’s policy.

T
A
s e R o

Figure 2.1.: Visualization of the k-armed bandit problem

Finding the optimal arm in a k-armed bandit problem

Staying with the previous example, it is easy to see that the optimal expected reward would be
attainable by continuously playing only one machine - the one with the best expected reward
per pull. Naturally, this is a unrealistic, especially considering that the player will begin their
imaginary casino trip with no prior knowledge of the individual odds, and even after playing a
while, will only have a rough, iteratively refined idea of how advantageous a particular machine
is compared to another. The regret is thus the difference of the reward sum obtained by con-
sistently playing the theoretical optimum n times, minus the reward sum actually obtained by
following the player’s policy n times and summing up the rewards. A good policy should never

2.2. Bandit-based methods 5

assign a probability of zero to play any given arm [3], as no individual machine can at any point
be proven to not be the optimal choice, and completely abandoning it for the rest of the casino
session would let regret grow indefinitely and without an upper bound with increasing number
of plays.

Regret growth cannot be ensured to be stopped entirely by any given policy - however, it is the-
oretically possible to limit its growth to a constant factor of O(In(n)) [3], which has spawned
several policies for the solution of the exploration vs exploitation tradeoff problem. For compu-
tational purposes, it is preferable to only rely on the reward history of the individual available
actions, leading to the definition of the Upper Confidence Bound (UCB), more specifically the
UCBI1 variant, which is going to be briefly summarized as follows.

Upper confidence bounds

A simple measure for the quality of a choice is the summed-up reward, divided by the number
of times n; this particular choice has been empirically tested, resulting in the average reward X;
of action i, with X; ; € [0, 1] the result of the experiment number j of action choice i:

X,

n; .
- J
Xi - Z n:
j=0 '

This of course could result in a specific choice irreversibly losing competitiveness, even though it
might have turned out to be the optimal one. However, this exploitation trap can be avoided by
artificially boosting the value of choices with less available data, resulting in the upper confidence
bound that choice i will be optimal [2] [7] [3]:

(2.1)

UCB1 =X, +

. tX :
2 ln(n)zz S 2-In(n) 2.2)

n; 20 n; n;
which is just the average reward (2.1) with an added bonus term that grows logarithmically
while action i is not being tested in favor of other available actions in that state. Of course, the
value obtained for X; is still merely an estimate. Using Hoeffding’s inequation, it was shown

that the probability of our estimate being off by more than |4/ %}"” compared to the actual

(unknown) value u; is lower than or equal to Zni_4 [71 [2], thus decreasing every time action i
is being tested. Applying this formula to a single k-armed bandit problem to select the next arm
being pulled and repeating this process for a sufficiently large number of iterations will thus
make it more likely that the action with the highest assigned value is the objectively best choice,
even though this can never be guaranteed in a finite number of iterations.

Upper confidence bounds for trees

The guarantee of convergence UCB1 can provide for a single k-armed bandit problem only
holds if testing of actions is done in an entirely random, evenly-distributed fashion. As we

6 2. State of the art: Artificial Intelligence in Game Playing

2Inn 2Inn
Mi M1+
n. n.

1 4

[

Figure 2.2.: The probability that the true value lies within the confidence interval grows over time

will see in section 2.3, Monte Carlo Tree Search spans a search tree where each node itself
can be regarded as a k-armed bandit problem, with the resulting tree being a tree of k-armed
bandits. Starting from the root node of that tree, the first actions are thus not selected at
random. Instead, the action selection is initially controlled by a policy meant to handle the
exploration/exploitation tradeoff as described in subsection 2.2.1, with the advantage that the
first couple of actions (as opposed to just the first) are chosen according to the k-armed bandits
of the respective nodes. In the case of MCTS, we will introduce the tree policy in subsection 2.3.2
for this purpose. Depending on the size of the tree, several actions in sequence could be chosen
by this non-random policy. As such, altering the UCB1 formula (2.2) is necessary to preserve the
convergence property; it was shown that adjusting the exploration term by a factor C achieves
that effect, resulting in the UCT formula (Upper confidence bounds for trees [7]):

UCT, =X, +2C\ ln(” Z b4 ac ln(n) (2.3)

Where for C = ﬁ, same-strength convergence was shown [7], although the value for C used

in practice is usually determined empirically. We will later see that a smaller value for C is better
suited for the particular domain and the experiment conditions handled in this thesis.

2.2.2 The dueling k-armed bandit problem

The player in the above example always conducts their experiments in the same fashion: A sin-
gle action is selected for testing, which will return a (numerical) reward that can then be used
to update and refine the knowledge base one step at a time. Then, the experiment is repeated,
this time making an informed choice based on the new information (which may lead to the
same, previously favorable action being tested (exploitation) or a different action being selected
instead (exploration). However, obtaining such a numerical reward, while trivial in the case of
a slot machine payout, is not guaranteed to be a trivial task for all problems, as such a reward
implies a total ordering among evaluated actions. In many cases, it is easier to evaluate which
one of two available outcomes is preferable. Note that such a preference can also be established
based on a numerical reward; in this case, the higher score is going to be seen as preferable
compared to the lower score, but if only this preference is being retained, the information about
the difference between both scores is lost.

This does not necessarily have to be a disadvantage, and can in some cases even be seen as de-
sirable, because inaccuracies in the score returned by an evaluation only matter if they would be

2.2. Bandit-based methods 7

capable of flipping the preference, and most importantly, the effect of outliers in the evaluation
can be reduced. In the casino example, obtaining a high payout at a specific slot machine once
would most likely lead to the player implicitly or explicitly considering it to be the best choice
for several following iterations, even if this was merely the result of one lucky pull. In contrast,
if merely forming a preference among actions, this payout would merely be seen as preferable to
another.

3

Figure 2.3.: Visualization of the k-armed dueling bandit problem

Preference-based machine learning aims to capitalize on this by shifting the focus from evaluat-
ing a single action to evaluating two actions a; and a, at once and regardless of whether this
evaluation interally uses a numerical score, retaining only information about which of both ac-
tions has turned out to be preferable [5]. In our case, we will define a preference of a, over a,
given availability of a heuristic h as h(a;) > h(a,), a preference of a, over a; as h(a;) < h(a,)
and finally, an equality of a; and a, if h(a;) = h(a,). Note that the heuristic in theory applies
to transitions, not states; however, given that we operate in a deterministic setting, the same
action executed in the same state will always yield the same successor state and as such, it is
possible to evaluate a state and assign the knowledge obtained to the action whose correspond-
ing transition resulted in that state.

Unlike the ordering implied by a memorized score, a preference does not make any statements
about the quality of either a; or a, compared to any other available action - if there was a third
available action as, it could be better than both, better than either a, or a, or worse than both,
but to actually assess this, two additional preferences would have to be formed, comparing as
to a; and then to a, separately. As such, the number of preferences to be formed rises quadrati-
cally with the number of possible actions, which can be considered a drawback of the preference
based method as more memory has to be allocated to keeping track of the results, and a single
update will carry less information than with UCT (see chapter 5 for a more in-depth look at this
drawback).

Relative UCB

The result of opting for a preference-based approach in a bandit scenario is the dueling k-armed
bandit problem, where two actions are being tested in a single iteration. Relative UCB (RUCB)
[10] is a technique to apply the approach of upper confidence bounds to the dueling banding
problem making use of preference based feedback. For every action, we now no longer store a
score, but instead the results of direct comparison with any other action in the form of number

8 2. State of the art: Artificial Intelligence in Game Playing

of direct victories. As expected, this results in a quadratic matrix W = [w;;] € QFk with a num-
ber of rows and columns equal to the number of actions available, and an entry w;; denoting
the number of direct comparison victories of action i against action j, with draws (comparison
between action i and action j returned equality) handled by adding 0.5 to both w;; and w;.

This data can then be used to calculate upper confidence bounds in the same fashion as the
UCT formula does for numeric feedback. Again, balancing exploration against exploitation of
accumulated knowledge is desirable; the RUCB formula, much like UCT, is based on a sum of
two terms, respectively accounting for exploitation and exploration. Where the influence of the
exploration term is balanced by parameter C for the UCT formula (2.3), RUCB modifies the
influence of the exploration term with a parameter a. It should be noted that adaption of RUCB
for trees (as UCT (2.3) does for UCB1 (2.2)) can be done simply by changing the range of pos-
sible values of the already existing parameter a from a > 0.5 to a > 0 [6]. While structurally
similar, one defining difference of RUCB compared to UCB/UCT is that the value obtained by
the formula is associated with a pair of non-identical actions as opposed to a single action. This
means that an ordering of actions according to their value is not feasible; instead, we are in-
terested in the set of condorcet winners ¢ defined as the set of all actions that show more than
or equal victories against all other actions individually compared to losses. While the set of
condorcet winners is defined on actual wins and losses, we still need to account for uncertainty
in the form of confidence intervals and as such, in practice define 6 based on a matrix of values
u; ; calculated as per the RUCB formula below (2.4):

(2.4)

where t is the number of experiments conducted on the dueling bandit problem at hand.
This then results in the derived definition of the set of condorcet winners ¢ = {a; € AlVj €
{0,1,...,k—1} : u;; = 0.5} [6]. The process to select two actions to play the bandit problem
with begins with attempting to select the first action based on the above set ¢ of condorcet
winners. If the set contains only one element, that element is chosen, while an empty set means
no action has shown dominance based on the currently available data and any random action
is chosen instead. Lastly, if |¢| > 1, an action is chosen at random from %, with the caveat
that an action that has once been the sole member of the set and subsequently appeared in all
later iterations is given half the total weight, with the rest being distributed equally among the
remaining actions.

Having obtained a first action for the selection process, the challenge is to select a good second
action without relying on an ordering of the individual actions. As the process of selecting two
actions aims to specifically compare how well one fares against the other, a promising challenger
is chosen, again based on the RUCB formula, but this time selecting a; so that argmax;(u;;),
representing the action that scored best in direct comparison with the first selected action. The
procedure as described in [6] is summarized in algorithm 1.

2.2. Bandit-based methods 9

Algorithm 1: Procedure RUCB-SELECT

Data: Node n with associated state s and matrix W = [w;;] € QFk
Result: Pair of actions (a;, a;)

—

Calculate values u; ; based on formula 2.4 with the information from W

6 :={a; €A(5)|Vj€{0,1,..,k—1} :u;; = 0.5}
if |¢| = 0 then

L select a; as random action a € A(s)
else if |¢| =1 then

L select a; by choosing the only element ¢ € ¥
else

if Action b once was single element of € in previous iteration and b € 6 now then

adjust weight of b € € to be half of total
adjust weight of all other actions d € ¢, d # b to share remaining half of total

O O N ua b W

o
(=]

select a; as random action ¢ € 6 using above weights if applicable

—
—

select a; using argmax;(u;;)
return (a;,a;)

[
N

2.3 Monte Carlo Tree Search (MCTS)

The following subsections will provide a short description of basic MCTS and highlight the
differences between the two variants of MCTS that will be used for the experiments in chapter
4.

2.3.1 Why Monte Carlo?

In many practical applications, approximations of theoretical values are sufficiently precise and
can be obtained with relative ease compared to exact solutions. In some cases, such as irra-
tional numbers, it would not be possible to store the theoretical value in a binary data format
at all anyways. Monte-Carlo methods apply in situations where an approximation can be con-
tinually refined by providing more time and processing power (and thus, iterations), with each
step gradually improving the approximation and as such allowing termination at any time to
obtain a value that approaches the theoretical value, with the error diminishing in magnitude
over time. A frequent application for this method in mathematics is approximating integrals [4].

Extending this to game tree search and thus Al has the benefit of allowing to obtain a decent
estimate in reasonable time that is likely to either be optimal or at least usable, as opposed to
having to rely on exact solvers that may not find a solution in the external constraints given,
such as available time or memory. in Comparison, an exact solver, like for instance the A*-
algorithm [9] for solving pathfinding problems, must run to completion before any assumption
can be made about the result, and after completion, optimality is guaranteed. For many practi-
cal applications such as those cited above as well as artificial intelligence in games, an optimal
result is neither realistically obtainable nor always required over a decent approximation while
external constraints (such as computational budget) may be strict. The defining property of a

10 2. State of the art: Artificial Intelligence in Game Playing

Monte Carlo method is random sampling (thus simulation).

2.3.2 The MCTS algorithm

A game as defined in the beginning of chapter 2 can be seen as a space of possible states, ob-
tained by executing legal actions within a state to arrive at a successor state. In a deterministic
scenario, we can rely on a transition function f : SxA — S to generate the single successor state
corresponding to a state-action pair. Because the player agent will at any point in time know
the current state of the game board, this state can be seen as a root state from which a tree of
successor states can be spanned. Notably, each state on its own constitutes a k-armed bandit
problem; as such, the resulting tree is a tree of k-armed bandit problem:s.

Monte Carlo Tree Search (MCTS) is a method to obtain a single promising action given a state;
note that this requires the algorithm to be ran again everytime an agent relying on MCTS is
prompted to execute an action on the game board. This action is obtained by solving the k-
armed bandit problem in the root state of the tree spanned by the algorithm; the rest of the tree
contributes to this informed choice of action by providing increasingly solid guidance before
having to rely on the name-giving Monte Carlo random simulation. Note that the tree spanned
during successive iterations of one single MCTS run usually makes up only a small part of the
entire theoretical game tree spanning from the root state. Within the context of MCTS, root
state denotes the state that the MCTS algorithm was started with; this does not equal the root
state of the game itself except for the very first execution of MCTS over the course of a game.
The following sections will provide a non-exhaustive summary of MCTS where relevant for the
scope of this thesis and as presented in [3] and [6].

MCTS can be divided into iterations, which in turn consist of four phases (selection, expansion,
simulation, backpropagation). Iterations are repeated until the algorithm is terminated, for
example due to running out of resources such as time. Within the scope of this thesis, we assume
this resource to be state advances, e.g. operations of copying a game state and progressing it by
executing one action. An iteration will always be completed in full, e.g. the four phases listed
above will always be executed consecutively. It should be noted that for deterministic domains
such as the one used in later experiments, all game states associated with a single tree node are
semantically equivalent.

Selection: Making use of the tree policy

The tree policy essentially sums up the information about the estimated quality of actions gained
in all previous iterations since the algorithm has been freshly started. Initially, no knowledge is
available, and as such, the selection step simply returns the root node. If there is information
available from previous iterations, however, MCTS is designed to make use of it, while at the
same time not relying too much on this very information - this is where the exploration vs
exploitation problem must be taken care of. As we have seen in chapter 2, both UCT and RUCB
offer solutions for this problem for the k-armed bandit problem and the dueling k-armed bandit
problem, respectively.

2.3. Monte Carlo Tree Search (MCTS) 1

The selection step aims to select one or more actions (depending on the algorithm variant, with
basic MCTS selecting just one action) within a node, starting at the root node of the tree. The
tree is then traversed by following these actions to their respective successor states, and if the
resulting nodes are already expanded in full (which means all their successor nodes are already
part of the known tree described by the tree policy), the selection continues to step further down
the tree. For basic MCTS, since exactly one action is chosen in each node, the selection step will
form a path within the tree, starting from the root node.

Expansion: Growing the tree

After finishing the selection step, we have obtained one or more (depending on the algorithm)
nodes that have successor states not yet part of our tree. We then add one or more nodes (again,
depending on the variant) to our known tree, with the basic variant of MCTS adding exactly
one node to the tree during this step.

Simulation: The Monte Carlo method

The simulation step is where the "Monte Carlo" part of the name of MCTS comes to bear. We
are interested in obtaining a quality estimate of the node(s) we have arrived at, but in the most
basic form of the algorithm, we only know about the rules of the game, but have no way of
evaluating an intermediate game state that does not directly constitute a victory or loss for one
player (or a draw). A single simulation starting from a specific node is executing by continuously
selecting actions according to the rollout policy, which may be entirely random (and is used as
such within this thesis), but does not necessarily have to be. A simulation stops either when
a game state offers no further actions to be taken (game over), or in the case of the algorithm
variants discussed later, a maximum number of actions have been chosen. In the latter case,
a heuristic function is necessary to evaluate these intermediate states. Simulations are started
from newly expanded nodes.

Backpropagation: Updating the tree policy

After conducting the simulation(s), the information is passed back through the tree until it
eventually arrives at the root node. All nodes traversed in this process are then being updated
according to the simulation results. This constitutes an update of the k-armed bandit (or alter-
natively dueling k-armed bandit) associated with each concerned node. As such, the tree policy is
updated with new knowledge, which successive iterations (starting at the selection step again)
can then make use of.

2.3.3 Algorithm Properties

* Anytime: After each iteration consisting of above four steps, MCTS can either commit
to another (full) iteration, or terminate according to a given criterion. If the selection
step makes use of techniques known to converge, such as UCT [7], a larger number of
iterations will result in a better quality estimate and as such, a higher likelihood that the

12 2. State of the art: Artificial Intelligence in Game Playing

action chosen in the root node is the best choice. In contrast, an exact solver will demand
as much processing power or memory as it needs, but will guarantee an optimal solution
when it terminates (and returns no solution at all, not even an estimate, when forcefully
terminated). In realtime scenarios, the anytime property is valuable because it can be de-
termined up-front when a solution is needed at the latest, as long as that solution is not
necessarily required to be optimal.

* Convergence: As listed above, if the tree policy is chosen according to certain criteria, the
tree will converge towards a minimax tree mcts-survey, which knows the optimal choice
in each node of the tree, if the algorithm is given infinite resources. Making use of UCT or
RUCB as tree policy will fulfill this criterion.

* Asymmetric tree growth: Generally speaking, it is worth exploring more promising sec-
tions of the game tree more thoroughly. Simply conducting a breath-first search would not
achieve this goal and may not be feasible for any sufficiently complex domain. Depth-first
search on the other hand may not be viable either and usually is not. MCTS will gather
knowledge (described by the tree policy) according to the exploration vs exploitation trade-
off and as such, grow a game tree that is more likely to carry meaningful semantic value.

* Domain independence: If the simulation step is implemented without a limiter of the
maximum number of actions taken in a single simluation rollout, the algorithm only needs
to evaluate states that do not offer any available actions anymore, and thus only needs to
know whether a terminal state is (one of the) goal states or not. This property is forfeited
by both MCTS variants discussed later, but nevertheless the basic MCTS algorithm can be
applied to any domain where only the essential rules are known beforehand.

Realtime MCTS (RT-MCTS)

The first variant which is going to be applied to the testing domain is realtime MCTS, which
equals the basic version of the algorithm with the addition of allowing the termination of rollouts
(simulations) after a set number of actions have been executed, thus requiring a domain-specific
heuristic to evaluate these states. It should be noted that this already negates the previously
listed domain independence property.

The selection step will select one action in each layer of the tree according to the UCT formula,
playing the k-armed bandit in that node. As such, it can be defined as selecting action a; with

argmax;(UCT;) = argmax;(X; +2C %) in each node. After expansion, a single simulation

will occur in each iteration, and the result used to update the tree policy in every node on the
path back to the root node as with standard MCTS.

Relative MCTS with one-back propagation (ROB-MCTS)

Relative MCTS has a couple of defining differences compared to realtime MCTS, although both
share the possibility of terminating simulations before a terminal state has been reached and as
such, it requires the use of a heuristic function in some cases, too. The first major difference
occurs in the selection step already: Because each node is now treated as a dueling k-armed

2.3. Monte Carlo Tree Search (MCTS) 13

a) Selection b) Expansion

c) Simulation d) Backpropagation

®

Figure 2.4.: Visualization of realtime MCTS

bandit, the tree policy now relies on RUCB instead of UCT, selecting two actions in each node as
described in chapter 2. The result of the selection phase is thus a subtree of the tree defined by
the tree policy.

Note that in this variant of MCTS, if a node has only one unexpanded child, we have to select
that node (to expand the last missing child and not miss out on an unexplored but potentially
good action as per exploration vs exploitation tradeoff), but also provide an action to com-
pare the action that leads to the newly expanded node to, which requires the selection step to
additionally go further down the tree.

A major part of relative MCTS is that multiple simulations occur in a single iteration, one start-
ing from each newly added node. These simulations do not have to begin at the same depth
level and generally will not due to asymmetric tree growth as is innate to MCTS. Once this is
done, results are being propagated back through to the root node, but in the case of filtered
one-back propagation as used here, with the additional twist that each node, after receiving two
simulation results, will only propagate one of them according to its return policy. A return policy
can be seen as a filter being applied in each node to determine which information is allowed
to affect parent nodes; if the return policy is not defined as allowing all results to pass, parent
nodes will thus receive less information, but potentially of higher quality. The return policy used
for the algorithm in later experiments is to simply filter out the loser of the direct comparison
after playing the dueling k-armed bandit and updating matrix W.

Relative MCTS in its basic form would not necessarily have to filter any simulation results, prop-
agating all of them and thus allowing for more and more comparisons to take place (always
comparing each element coming from one child to each element propagated by the second
child). While in theory, this allows for more information to be collected during a single itera-

14 2. State of the art: Artificial Intelligence in Game Playing

a) Selection h) Expansion

c) Simulation d) Backpropagation

[} [}
Y Y

'

Figure 2.5.: Visualization of relative MCTS with one-back propagation

tion, this does not necessarily have to be advantageous in practice. In fact, filtering simulation
results during backpropagation will become important when adapting the algorithm variants to
multiplayer, for reasons that will be explained later.

Multiplayer game trees

One distinct feature of multiplayer games over generalized tree search problems is that there
are multiple interests involved - in a zero-sum game, these interests will aim to actively work
against each other. In this context, it is helpful to talk of plies as opposed to turns or moves -
a ply in a combinatorial two-player game is a turn taken by one of the players, while move is
sometimes ambiguously used to describe an entire round of actions, sometimes using half-move
to refer to a ply (as is the case in chess).

A game tree for a combinatorial game is in essence a directed graph with each node representing
a game state and each edge connecting two nodes n; and n, in one direction representing an
action a € A(n;) so that transition(s;,a) =s, (in this case, a node is associated with one state).
The root of a game tree is the initial state s, € S of the game, whereas the total number of
leaves (nodes n so that deg™(n) = 0) in a combinatorial game amounts to the total possible
unique sequences of actions that can be conducted. It should be noted that game trees quickly
grow to prohibitive sizes even for games of medium complexity, which is one of the motivations
for using MCTS in game Al. As described earlier, MCTS does not commit to a full breath-first

2.3. Monte Carlo Tree Search (MCTS) 15

search, but rather grows a tree asymmetrically, thus spanning a sub-tree or partial game tree.

Such a game tree can be seen as split into layers, where all nodes sharing a specific integer
distance to the root node (measured in the number of actions necessary to each this state from
the root node) belong to the same layer. Each layer corresponds to a ply - whose turn it is
in a specific node is the same for all nodes of that layer if the action order of the game is
sequential. In the two-player domain referenced to later, the turn order is alternating, which is
a special case of a game with any number of players where the turn order is circular. For such
a game with circular turn order, we can build on the definition in subsection 2.1.1 to define
player —index(s,)) = (player —index(s;) + 1)mod(n) for a successor state s, of s;, with n
total players and p, € P (player with index 0) to begin the game. Figure 2.6 shows the first four
plies and associated players for an example game tree with A(s) = 2 for every s € S, specifically
for n = 2 and n = 3 number of players.

Py P,
P, Py
pD pZ

P, Po

Figure 2.6.: The first four game tree layers for an example game with 2 (left) and 3 (right) players
(circular turn order). The experiments in later chapters will be based on a two-player
setting.

Adapting MCTS for multiplayer

While the domain highlighted in the next chapter is a two-player combinatorial game, we would
want the approach to be more general and allow any number of players as well as dropping the
zero-sum requirement. It is suggested to adopt the general idea of the max™ approach [3]: the
numerical reward value is replaced by an n-dimensional score vector, with n being the number
of players. This corresponds to the vector r" defined in subsection 2.1.1. How the individual
components are calculated is a degree of freedom; however, it makes sense to pack all informa-
tion a specific player is supposed to base their decisions on into the single value that corresponds
to their associated component of the reward vector. In the two-player zero-sum case using UCT,
this can be achieved by enforcing a range of [0, 1] for all components as well as 2:01 rp=1
(because the individual components range between 0 and 1 instead of -1 and 1, zero-sum is not
to be taken literally in this case).

Adapting UCT can then be done by calculating the upper confidence bound based only on the
corresponding component of the reward vector [3], which can be determined based on the
player p whose turn it is in that node. Building on the defintion of UCT (see subsection 2.2.1)

16 2. State of the art: Artificial Intelligence in Game Playing

and assuming that the result of the play j of action i is still encoded as X; ;, but now delivered

in vector form, this results in the multiplayer UCT formula as follows:

’j’

e
5 (Xij) l

UCT, = R ST Ve M (2.5)

n; n;

(X; ;), refers to the component of the vector corresponding to the particular player in question
as described above. In a similar fashion, when relying the preference-based approach of RUCB,
we can conduct our comparisons based only on the corresponding component of both result
vectors. Assuming that two reward vectors p and r are to be compared in a node, associated
with actions a and b respectively, and s is the unique state corresponding to the node, we first re-
trieve the corresponding index i with player —index(s) and then form a preference P(a,b) =a
if p, > r;, P(a,b) = b if p; < r; and a non-preference otherwise. The result of that comparison
is then used as before to update matrix W (see subsection 2.2.2).

An interesting aspect of relative MCTS is that the return policy is a degree of freedom in the con-
figuration of the algorithm. The basic approach is a return policy of propagating all simulation
results unfiltered, thus increasing the number of comparisons as the backpropagation phase of
relative MCTS approaches the root node and in every node, comparing each member of the set
of results propagated by the first action with each member of the set of results propagated by
the second action. The implementation from [6] which the multiplayer environment used for
the later experiments is built upon already includes other return policies which have a common
property of only allowing one simulation result to be propagated further back. This means that
each node will receive two results, compare them, and propagate only one according to its re-
turn policy. As such, the number of comparisons in each node does not increase and is always
one. While this drastically reduces the information gained in each iteration of relative MCTS,
the assumption is that for some domains, it can be useful to limit information this way.

In fact, as preliminary experiments have shown, this is the case for two-player Connect Four,
and it is possible that this would hold true for other multiplayer zero-sum games as well. The
reasoning is that if the return policy is chosen so that only the winner of the direct comparison
in a node is propagated further, this results in a backpropagation process that is semantically
sound. The simulation itself, in this case based on a random rollout policy, is not guaranteed
or even likely to represent a semantically interesting game (this is the case for both single- and
multiplayer problems, as random choice of action is rarely the best possible strategy). However,
when propagating results back through the known tree where the selection phase is governed
by the non-random tree policy, it may make sense to cut backpropagation paths to the root node
that are unlikely to correspond to an actual game being played. When a node filters the result
that it would deem unfavorable in direct comparison, then its parent node cannot be misled by
involving that specific result in its own comparison.

For instance, consider a crafted scenario where in each state, a player can either move left or
right (A = left,right and A(s) = AVs € S). Additionally assume that p, will always wish
to go left, while p; will always prefer to go right, and that the choice of action in the first
few states is of great significance for the evaluation of any state further down. In that case, it
would be unlikely to observe a game where left or right were chosen twice in a row (in two

2.3. Monte Carlo Tree Search (MCTS) 17

successive plies), assuming that both players aim to play according to their own best interest.
A backpropagation path that takes such a route back to the root node would then potentially
confuse the decision making process in that node. Essentially, a return policy such as only
allowing the winner of the comparison to proceed in the backpropagation step of relative MCTS
has the potential to make the propagated results more relevant, at the cost of reducing the
number of comparisons in each node to one.

18 2. State of the art: Artificial Intelligence in Game Playing

3 The Connect Four Domain

Connect Four is a combinatorial game and as such, discrete, deterministic, zero-sum, sequential
and perfect information. These properties make it lend itself well to serving as a multiplayer
domain for Al research in general and MCTS methods specifically, as there a manageable yet
nontrivial number of possible actions in each state (at most seven, minus one for each filled
column) and a simple ruleset, but the resulting game tree can still be rather complex. In accor-
dance with the formal definition found in [3] and as summarized in chapter 2 for a game with
these properties, Connect Four can be described as follows:

e Game board and states: The board is a 7-column, 6-row matrix B = T7*®, where
T = {empty}U{token,:p € P} denotes the possible values (player tokens or empty
space) a single entry may assume, effectively giving each player a set of tokens sharing
a color or similar identifier that does not discriminate between tokens of the same player,
but does identify them belonging to one unique player. S is the set of all possible board
configurations that can be reached from the initial state; for every possible s € S, there is
exactly one corresponding game board configuration, which serves as an exhaustive de-
scription of that state instance (as all necessary other information, such as which player
has last executed an action and thus who is next in line can be determined from the board
alone in a two-player scenario). Each instance of a game board represents a unique state.
An upper bound for the number of possible states in a two-player game of Connect Four is
thus |S| < |T|”® = 3*?, however this number is not accurate as it contains invalid states,
such as those with empty fields below one or more player tokens in the same column.

* Initial state s, € S: Before the first action is executed, the game board will only consist of
empty fields, and as such is represented by empt y”’*®.

* Actions: An agent may choose between one of up to seven columns, resulting in an
action set A = q,,...,aqs, With each element corresponding to the respective column in-
dex i € {0,...,6}. Actions can be assumed to be mapped to columns via a function
target — column : A — {0,...,6} that maps any action a; to column i for formal mod-
eling purposes.

 State transition function: transition : SxA — S: Assume the board is represented by the
state S.yprene = b; j with i € {0, ...,6}, j € {0, ..., 5} and the agent p = p(scyrenc) € P chooses
an action q; € A. In addition, for i € {0, ...,6} and j, k,[€ {0, ...,5} we define

, j, ifVk>j:b;Fempty and VI <=j:b;; =empty
target —depth(i) = "1 otherwise

19

Then the game board ¢; ; with i € 0,...,6 and j € 0,...,6 of the corresponding successor
state s,,,, = transition(s,a) following an execution of action a € A(s) with the game
board of s stored in b; ; is determined unambiguously by

b

tokeNyiayer(s,.,,)» if 1 = target—column(a) and j = target —depth(i)
Ci .= nex
b otherwise

i,j>
* Possible actions A(s) C Ain a state s € S: Any incomplete column can be played. A column

i is incomplete if and only if target —depth(i) # —1, effectively requiring the column to
still have at least one free space.

3.1 Terminal states and win conditions

Above definition shows that a game is completed (it has arrived at a terminal state) after 42
turns at the latest, because at that point all columns are stacked (complete) and no further free
space is available, thus the game state cannot advance anymore. This alone would not make
for a very interesting game yet, as connect four is supposed to provide players with a means of
achieving victory (and victory can be achieved earlier than 42 turns into the game). Namely, the
win condition victory,(s) for any specific player p € P in a state s € S is to have an uninter-
rupted vertical, horizontal or diagonal group of four tokens (subsequently referred to as series
of four) belonging to that player on the field.

It is easy to see that either exactly one player emerges as victorious within 42 turns, or the game
ends in a draw after exactly 42 turns; in both cases, the game being played can be described as
a series of states and actions (sy, ay), (s1,a;), ..., (s;) where Vi >0 : s; = transition(s;_;,a;_1),
terminal(s,) and Vi < t : “terminal(s;). In the latter case, no player has managed to meet the
win condition before all columns are complete and thus offer no further possibility of generating
a series of four tokens associated with any player. In the former case, victory must have been
achieved by the last action executed on the game board filling a previously empty space with a
token that connects to three other tokens of the same player allegiance, forming a series of four.
In this case, a victor has been determined, and the game ends regardless of whether all columns
are complete or not.

However, since for any given state s € S, each action a € A(s) will only add one token to the
game board, and executing an action a € A(s) in a state s € S implies that s itself did not
constitute a terminal state (thus all token groups amount to a size of three or less and there is
at least one incomplete column), it is not possible for more than one player p to meet the win
condition win,(s,ey,) With s, = transition(s,a) for any a € A(s) and p € P. To summarize,
each state s € S is either a nonterminal state with Yp € P : =victory,(s) and [(A(s)| > 0, or a
terminal state if the previous conditions are not met. A terminal state will be associated with
either exactly one winner or none at all (ending the game in a draw, in which case |(A(s)| =
0).

20 3. The Connect Four Domain

3.2 Evaluating terminal and non-terminal states

Plain Monte Carlo Tree Search does not require anything other than evaluating terminal states,
given that a rollout will only end when no further action can be executed. However, both major
MCTS variants in this thesis make use of numerical feedback in one way or the other - either for
direct use as a numerical reward in the UCT formula in the case of realtime MCTS, or to form
a preference (and retain only the preference) in the case of preference-based MCTS. In general,
it would be sufficient for the evaluation of terminal states to assign (from the perspective of a
specific player) a value of one to a victory, zero to a loss, and 0.5 to a game-over state that ends
in a draw.

However, for preference-based MCTS in particular, it can be advantageous to form a preference
concerning two different game-over states that both carry the same end result for a particular
player: usually, a more immediate, less distant victory is better than a victory far into the future
(especially considering that when using a random rollout policy as is the case here, a long
simulation trajectory will inherently be less reliable and is less likely to represent a realistic
game). Similarily, a loss in the distant future is less grave than an immediately threatening loss.
A draw will always only occur when the entire game board is filled with tokens, and as such,
can always be treated the same way. For all other (non-terminal) cases, which may occur when
limiting the simulation length, a heuristic must then be used. As such, we can estabilish this
basic evaluation function for a specific player p € P given a heuristic h, and for all states s € S,
where d(s) is the distance in game turns from the initial game state, and ¢ > O:

1.0—¢-d(s), if victory,(s)

0.0+¢-d(s), if victory,(s) for any player q € Bq #p

evaluatey(s) =)))
0.5, if terminal(s) and —victory,(s) for all players q € P

h,(s), otherwise

The value of € > 0 should be chosen small enough so as to only tie-break preferences, but not
alter the preferences imposed by the heuristic function where it is required.

3.2.1 Heuristics for non-terminal states

As noted in chapter 2, the difference between realtime MCTS and plain MCTS is that simulations
can be stopped once the chain of actions taken according to the rollout policy hits a maximum
value, even if a terminal state has not yet been reached at that point. This property of realtime
MCTS also applies to the variant of relative MCTS used for later experiments. As such, heuristics
for intermediate states of the Connect Four are required. It should be noted that it is generally
nontrivial to find good or even just usable heuristics for some domains, including most multi-
player games. We will later highlight this problem in the specific case of Connect Four in chapter
S.

For the creation of heuristics for the experiments, two components have been drafted, based on
relatively simple ideas that supposedly carry semantic value for this particular domain. Because

3.2. Evaluating terminal and non-terminal states 21

UCT requires values to be within the [0, 1] range, we make liberal use of generous upper bounds
to ensure this, which will however lead to values averaging closely around 0.5. While this does
not endanger the convergence property of UCT, it reduces convergence speed. This problem
will be tackled later on in chapter 4. Because the domain at hand is a two-player combinatorial
game, we also want to make use of the zero-sum property, even though the multiplayer MCTS
implementation would not necessarily require this to be the case.

* Component A: Victory in Connect Four requires a horizontal, vertical or diagonal line of
four tokens belonging to the same player. As such, assuming a 7+6 game board, there are a
total of 69 theoretically possible victory combinations for each player: 6-4 horizontal rows,
7 - 3 vertical rows, and 4 - 3 - 2 diagonal rows. A value between 0 and 1, centered around
0.5, can then be created by summing up all remaining theoretical victory combinations for
the player in question and subtracting the same value calculated for the other player, then
dividing that value by (69 - 2) and adding 0.5. A remaining theoretical victory combination
is a horizontal, vertical or diagonal series of four game board tiles that all either contain a
token belonging to that player, or are empty. Component A is stand-alone and as such can
be used to form a heuristic on its own.

* Component B: We now traverse all 42 tiles of the game board. If a specific tile is empty,
we check if placing a virtual token at this position would form a series of four for either
player (disregarding if that would correspond to a valid game move), which means that a
series of three with at least one free end position was already in place. Such a series of
three is known as a threat; because generally, the player that begins the game will prefer
even threats (with a free end point in the lowest row or going up multiples of two from
there) and the other player preferring odd threats even threats are valued double for the
first player (and odd threats double for the second player). A generous upper bound (that
will never be reached) is thus 84 for the threat score of a specific player (42 game board
tiles, times two). Component b is then formed by subtracting the opponent threat score
from the player’s threat score, dividing the result by 84 and adding 0.5, in a similar fashion
as this was done for component a. This component however evaluates all states that do
not have a threat for either player (which is the case for most early states) as 0.5 and as
such, it should only be used as an additional component a composite heuristic.

Because of the generous upper bounds used in above calculations, the values will close to 0.5 in
both cases. To better visualize this and help find a solution, the values obtained in practice by
using component A and B as isolated heuristics have been logged over the course of 100 games,
where the algorithms in play were not of particular importance but instead the focus was on
obtaining data for the values of components A and B as they occur in practice (every state was
evaluated on creation). These values (ranged between O and 1) have then been binned into
101 bins of width 0.01 and plotted in figure 3.1 for component A and figure 3.2 for component
B. It is immediately apparent that the value distribution is closely centered around the neutral
midpoint at 0.5 as predicted.

22 3. The Connect Four Domain

Value distribution of component A over 100 games Value distribution of component A over 100 games after scaling

1.5.107 8-10°
c £
4 ; 2 6-10°
& 10 2
» 2
€ c 6
S ‘S 4-10
2 g
6 ©
£ 5-10 &
a 2.108
0 0
0 0.5 1 0 0.5 1
Value of component A (binned, equal-width, width=0.01) Value of component B (binned, equal-width, width=0.01)

after scaling

Figure 3.1.: Value distribution over 101 equal-width bins for component A before (left) and after (right)

scaling
Value distribution of component B over 100 games Value distribution of component B over 100 games after scaling
3.107 2.5.107
< 7
s £ 2.10
2 2.107 g ,
2 @ 15.10
£ c
2 K ,
5 7 £ 10
8 10 g
™ M/\A
0 0
0 0.5 1 0 0.5 1
Value of component B (binned, equal-width, width=0.01) Value of component B (binned, equal-width, width=0.01)

after scaling

Figure 3.2.: Value distribution over 101 equal-width bins for component B before (left) and after (right)
scaling

The process to increase the spread across the permissible range (and thus help UCT converge
faster) is as follows: From the above data and for each of these components, the minimum value
val,,;, and maximum value val,,,, are extracted. Recall that in chapter 3 we have defined ter-
minal loss states to at maximum evaluate at 42 - € and win states to at minimum evaluate to
1—42- €. Given that terminal states are supposed to always be valued lower (in the case of
losing terminals in the perspective of a specific player) or higher (for winning terminals) than
intermediate states, the values for components A and B are ultimately supposed to be within
the range of (42-¢€, 1—42-€). We can then calculate a scaling factor x;.q;is for components A
and B in the following way: First, the larger difference from 0.5 given both extreme obtained
values is calculated (dif f = max(|val,q, —0.5|,[valy,;, —0.5]). Then we determine X;jinq SO
that dif f xx = 0.5—42 - €. The resulting values based on above simulation are x, = 2.63 for
component a and x; = 5.2 for component b. From there, we obtain a4 = (a—0.5) - x, + 0.5
and b, q.q = (@—0.5)-x,+0.5. Lastly, in the (unlikely) case that these values exceed our desired
range of (42-€,1—42-¢) (e = 0.001 was used in this case), the values are capped, however
this rarely occurs in practice at all.

3.2. Evaluating terminal and non-terminal states 23

Value distribution of (A+B)/2 using scaled versions of A and B over 100 games

107

7.5-10°

5108

Data points per bin

25108

0

0 0.5 1
Value of (A+B)/2 using scaled versions of A and B (binned, equal-width, width=0.01)

Figure 3.3.: Value distribution over 101 equal-width bins for the composite heuristic (A+B)/2, using the
scaled components

We then define the heuristic hg;,,;, to merely use the value of component A, and hypmposice @S
the arithmetic mean of components A and B. A reward vector is then formed by calculating the
heuristic value from the perspective of each player and assigning the i-th vector component to
the value obtained for player p;. Note that other ways of combining the two basic components
(whereas component B should not be used on its own) are possible, however the arithmetic
mean without additional weighting of either component featured the least empty bins and was
thus chosen. The value distribution of h,ppsice @s seen in figure 3.3 covers a wide range of non-
empty bins and thus is more likely to not funnel most values into a few particular values, which
was originally a problem given the discreteness and granularity of the domain (see figures 3.1
and 3.2, where the upscaling amplifies the effect).

24 3. The Connect Four Domain

4 Experiment setup

Recall that Connect Four is not necessarily a fair game (3); as such, for all following experiments,
whenever two algorithm configurations play a series of games against each other, it must be
ensured that the same number of games is then played with reversed colors (and as such, each
algorithm begins the game exactly as often as it is being assigned the second move). Two
computational resource budgets (10000 and 5 - 10* state advances) and two heuristics (Rgimpte
and h.opmposice)have been tested; recall that a state advance is spent everytime a successor state
is calculated, and that rollouts (during the simulation phase) thus make up for the majority of
computational resource usage. Two algorithms were considered, namely realtime MCTS with
UCT as well as relative MCTS using RUCB and backpropagation with a return policy that only
permits the winning trajectory to be propagated further. Before these are pitted against each
other in a multiplayer scenario, we first want to empirically determine optimal values for their
parameters C and a, respectively.

4.1 Domain specific parameter tuning

In practice, the value chosen for the UCT parameter C depends on the domain at hand and is
frequently determined and adjusted manually [3]. In this section, an optimal parameter for
both UCT C (out of 10 equidistant values from 0.2 to 2, including) and RUCB a (out of 10
equidistant values from 0.1 to 1.0, including) on the domain at hand will be selected. Because
a higher computational budget may mean that assigning a higher weight to exploration has
beneficial effects, the optimal parameter will be determined independently for the two examined
budgets of 1-10% and 5 - 10* state advances. In addition, fairness is ensured by testing each
combination of two parameter values twice, with the algorithm configuration using the smaller
value beginning the game 100 times, and configuration the algorithm using the larger value
beginning the game for a second set of 100 games. The optimal parameter for one budget class
is then determined by summing up the first and second series of 100 games for each combination
of both parameters and selecting the parameter value that, all things considered, won the most
games against all other parameter values. The rollout length across all tuning experiments was
chosen to be 5, in order to approximate a setting with realistic numbers of terminal rollouts vs
nonterminal rollouts.

The format of the following result tables is always the same: on the left, a table is shown with
the entry (x,y) corresponding to how many times x won against y, and (y,x) showing the number
of victories of y against x over the course of 100 games. In cases where these two values do not
sum up to 100, the remainder were draws. The rows are then summed up to obtain the number
of total victories a specific parameter value has scored against all others. This is then repeated
by reversing the player index (after always allowing the smaller value to conduct the first move,
the larger value gets the first move afterwards) and formatting the results in a new figure for the
second series of 100 games between any two values. The total results are then summed up and
plotted in a third figure, with the parameter value scoring the highest total number of victories
being selected for the subsequent experiments.

25

vPO|P1> (02 04 06 08 1.0 12 14 16 1.8 20 c | wins

0.2 72 8 71 76 79 70 82 84 85 0.2 |700 800

0.4 21 74 71 72 76 82 77 81 84 04 |638

0.6 16 12 82 71 80 80 77 82 90 0.6 |590 @ 600

0.8 24 10 10 67 60 66 68 71 76 0.8 [452 S 400

1.0 21 12 17 20 46 60 68 68 50 1.0 [362 =

12 13 10 16 27 32 48 53 57 61 | [12 |[317 S 200

1.4 20 6 7 23 28 37 52 58 49 1.4 |280 0

16 12 8 16 19 26 36 34 41 47 1.6 239 020406081.01.21.41.6 1.8 2.0
1.8 11 5 9 12 26 29 34 45 48 1.8 [219

2.0 10 8 7 13 35 31 41 40 42 20 |227 Parameter C for UCT

Figure 4.1.: 50k advances, values given are for UCT C. Configuration with smaller value begins the

game.
vPO|P1> |02 04 06 08 1.0 12 1.4 16 18 2.0 c | wins
0.2 21 34 27 31 37 38 38 46 38 | |02 |310 500
0.4 42 15 33 31 50 48 50 63 63 | |04 |395
0.6 24 60 15 41 43 62 67 61 75 | |06 |448 P :gg
0.8 31 47 68 31 47 44 61 54 57 | |08 |440 =
1.0 27 39 38 55 46 47 49 58 64 | |10 |423 = 200
1.2 20 25 31 33 35 43 51 55 53 12 |346 E 100
1.4 17 18 18 33 31 37 50 51 64 | [14 [319 0
16 12 21 18 25 35 25 33 54 55 | |16 |28 ¥ o¥ o® P AP RV X \PRF P
1.8 14 20 24 26 26 30 31 34 49 | |18 |254
2.0 12 20 19 28 24 25 25 32 34 20 |219 Parameter C for UCT

Figure 4.2.: 50k advances, values given are for UCT C. Configuration with larger value begins the game.

Cc Wins
02 [1010 1250
04 1033 1000
0.6 1038 © 750
0.8 |892 =
10 |785 5 0
12 |663 e 250
14 |599 0
16 |517 NSNS EN IO IVIN IR N
1.8 |473
20 446 Parameter C for UCT, combined

Figure 4.3.: 50k advances, combined wins for values of UCT C. The optimal value for C is 0.6

The results of parameter testing for UCT C and a budget of 5- 10* advances is displayed in
figures 4.1 and 4.2, the former containing the results for the algorithm configuration making
use of the smaller parameter value beginning each game, and the latter for the reverse case of
the larger of both values in a matchup being assigned the first ply. There is a visible difference
between both approaches, showing that at a budget of 5 - 10* advances, beginning the game
does indeed constitute a small advantage, given that the larger parameter values score more
total wins if each series of 100 games between two UCT based MCTS variants has the variant
with the larger value of C begin the game compared to vice versa. Where in the case of allowing
the algorithm associated with the smaller value to begin the game, C = 0.2 scores the highest
number of total wins, the best parameter values lie in the range of C = 0.6 to C = 1.0 for the
reverse case. Summed up in figure 4.3 are the combined results of both tests, with a parameter
value of C = 0.6 scoring the most wins and thus being selected for subsequent experiments for
the UCT- based MCTS variant in the case of a budget of 5- 10* advances.

26 4. Experiment setup

vPO|P1> (02 04 06 0.8 10 12 14 16 18 20 c | wins

0.2 47 51 58 56 67 68 67 73 70 02 |s57 600

0.4 47 50 65 63 61 70 70 67 86 04 |579

0.6 35 42 57 48 54 66 66 70 62 06 |500 @ 400

0.8 32 22 34 47 54 51 59 55 61 08 |415 S

1.0 38 31 35 36 47 44 48 41 48 1.0 |38 3 200

12 26 32 33 37 38 51 41 49 45 12 (352 S

14 25 21 24 40 45 41 48 50 50 14 (344 o

1.6 28 24 23 30 39 39 38 42 49 16 [312 0.20.4060810121.4161.820
1.8 22 26 10 30 46 36 31 46 43 18 (290

2.0 21 9 25 27 35 37 41 36 43 20 o7 Parameter C for UCT

Figure 4.4.: 10k advances, values given are for UCT C. Configuration with smaller value begins the

game.
vPO|P1> 0.2 04 06 08 1.0 12 14 16 18 2.0 C Wins

0.2 38 43 46 54 55 60 54 66 55 0.2 471 600

04 51 33 52 58 54 48 78 72 63 04 509

0.6 42 52 43 51 55 63 64 65 71 0.6 506 @ 400

0.8 31 35 45 52 58 52 65 59 61 0.8 458 E

1.0 29 30 37 37 65 60 61 65 56 1.0 440 4_9 200

1.2 30 41 32 27 35 48 51 56 50 1.2 370 lg

14 23 32 29 37 30 41 46 44 50 1.4 332 0

1.6 26 16 27 27 29 33 40 46 38 1.6 282 0.20.4060.81.01.21.41.61.820
1.8 16 19 26 32 27 39 44 41 48 1.8 292

2.0 26 26 20 27 24 32 40 40 39 2.0 274 Parameter C for UCT

Figure 4.5.: 10k advances, values given are for UCT C. Configuration with larger value begins the game.

c Wins
0.2 1028 1250
0.4 1088 1000
0.6 |1008 ”
08 873 £ 750
=
1.0 (808 = 500
Ed
12 [722 2 250
14 |676 0
16 |594 oV o 0P T AR WY AT LAY S
1.8 582
2.0 548 Parameter C for UCT, combined

Figure 4.6.: 10k advances, combined wins for values of UCT C. The optimal value for C is 0.4

Figures 4.4 and 4.5 show the results of parameter testing for a budget of 1-10* advances with
the smaller value beginning all matchups (4.4) and the same repeated, but with the algorithm
configuration using the larger of two values in a matchup being assigned the first ply (4.5).
The combined results are summarized in figure 4.6 for the C parameter of UCT and a budget
of 1-10* advances. The optimal parameter within this setting is found to be C = 0.4, which
is a comparatively small weight for the exploration term. However, the parameter appears to
be relatively stable, given that the (discrete) results approximate a curve with a single global
maximum. It is also notable that the difference between the two setups with assignment of the
first ply to the smaller respectively larger value is not as visible as in the case of 5-10* advances.
This may be because of generally more noise in the results as the computational budget of 1-10%
advances is comparatively small. In addition, it should be noted that the optimal value for C is
larger (0.6 vs 0.4) if the computational budget rises. This can be explained by a greater viability
of exploration if the computational budget is more forgiving.

4.1. Domain specific parameter tuning 27

vPO|P1> |01 02 03 04 05 06 07 08 09 1.0 o | wins

0.1 33 35 33 36 34 49 40 38 39 | |01 [337 500

0.2 38 48 52 47 43 48 51 51 46 | |02 |424

0.3 44 23 40 50 46 52 51 46 49 | |03 |40t o 00

0.4 46 31 30 40 43 44 42 40 53 0.4 |369 é 300

0.5 35 30 32 35 45 41 44 42 47 | |05 |351 = 200

0.6 44 29 39 31 36 39 45 51 40 | |06 [354 2 100

0.7 29 27 25 29 40 39 43 44 46 | |07 [322

0.8 44 30 25 40 36 31 31 38 49 | |08 |34 0.10.20.30.40.50.6 0.7 0.8 0.9 1.0
0.9 40 27 34 40 39 29 32 36 47 | |09 |324

1.0 43 30 37 28 31 41 34 28 35 1.0 |s07 Parameter O for RUCB

Figure 4.7.: 50k advances, values given are for RUCB a. Configuration with smaller value begins the

game.
vPO|P1> 01 02 03 04 05 06 07 08 09 1.0 0 | wins

0.1 26 30 31 39 30 33 30 24 32 01 [275 400

0.2 52 36 29 29 30 37 45 37 42 0.2 [337

0.3 50 39 37 41 39 36 42 43 49 03 (376 «» 300

0.4 44 44 39 36 39 51 36 42 47 04 |378 é 200

05 37 43 38 39 38 28 44 37 37 0.5 |341 =

06 45 46 35 43 40 3 40 32 36 | (06 (383 e 100

0.7 37 37 36 38 46 42 31 34 41 07 |342

0.8 41 33 39 40 35 34 44 36 42 0.8 344 0.10.20.30.40.50.60.70.809 1.0
0.9 39 42 35 38 33 51 41 49 41 09 [369

1.0 51 32 32 28 37 48 40 38 46 1.0 |352 Parameter O for RUCB

Figure 4.8.: 50k advances, values given are for RUCB a. Configuration with larger value begins the
game.

o Wins
0.1 612 800
0.2 761
03 777 g 600
04 747 =
= 400
0.5 692 =
I
0.6 707 ﬁ 200
07 664 0
0.8 |668 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.9 693
1.0 659 Parameter (L for RUCB, combined

Figure 4.9.: 50k advances, combined wins for values of RUCB a. The optimal value for a is 0.3

After covering all cases for both budget sizes for the C parameter of UCT, the same must be
repeated to determine an optimal value for the a parameter used by RUCB. The only constraint
is @ > 0 [6]. For 5-10* advances, the results are displayed in figure 4.7 for allowing the
configuration associated with the smaller of two values in a matchup to make the first move
in the same fashion as it was done for UCT. Figure 4.8 shows the same results for the reverse
case, with the combined results displayed in figure 4.9. Compared to the C parameter of UCT,
the decision in favor of a specific parameter value is much less apparent; this is likely explained
by the generally higher budget requirements of RUCB (see later explanations in chapter 5) and
thus a more noisy outcome compared to UCT within the same budget (which would apply even
moreso for a smaller computational budget). The optimal value of RUCB a was ultimately
selected as a = 0.3 for a budget of 5- 10* advances.

28 4. Experiment setup

vPO|P1> |01 02 03 04 05 06 07 0.8 09 1.0 o Wins
0.1 36 43 51 45 47 47 48 44 37 0.1 398
0.2 46 41 45 55 49 51 46 45 48 0.2 426
0.3 45 38 40 43 45 53 52 50 47 0.3 413
04 34 38 35 50 39 49 40 50 49 04 384
0.5 33 34 40 31 43 43 48 41 40 0.5 353
0.6 33 41 41 42 43 43 45 40 41 0.6 369
0.7 43 37 29 29 48 48 50 43 53 0.7 380
0.8 34 35 32 40 37 34 40 45 46 0.8 343
0.9 46 35 35 38 42 41 42 34 43 0.9 356
1.0 38 31 39 31 37 37 37 37 3 1.0 320

Total Wins

500
400
300
200
100
0
0.10.20.30.4050.60.70809 1.0

Parameter O for RUCB

Figure 4.10.: 10k advances, values given are for RUCB a. Configuration with smaller value begins the

game.
vPO|P1> (01 02 03 04 05 06 07 08 09 1.0 o Wins
0.1 39 40 45 38 37 39 43 46 38 0.1 365
0.2 40 44 49 42 48 46 54 53 41 0.2 417
0.3 40 40 53 46 45 51 48 54 46 0.3 423
0.4 33 35 31 42 40 46 46 39 58 04 370
0.5 41 40 40 39 33 55 52 47 40 0.5 387
0.6 45 36 35 42 49 44 48 37 49 0.6 385
0.7 45 36 26 36 29 40 45 47 41 0.7 345
0.8 40 30 38 41 29 34 40 41 38 0.8 331
0.9 36 29 33 45 42 44 42 44 50 0.9 365
1.0 39 37 37 31 45 33 38 44 32 1.0 336

Total Wins

500
400
300
200
100

0
0.10.2030.4050.60.70.80.91.0

Parameter (L for RUCB

Figure 4.11.: 10k advances, values given are for RUCB a. Configuration with larger value begins the
game.

O | Wins
0.1 763
0.2 843
0.3 836
0.4 754
0.5 740
0.6 754
0.7 725
0.8 674
0.9 721
1.0 656

Total Wins

1000
750
500
250

Parameter (O for RUCB, combined

Figure 4.12.: 10k advances, combined wins for values of RUCB a. The optimal value for a is 0.2

The final step is to also determine a for the smaller budget of 1-10% advances, with the results
displayed in figure 4.10 (smaller value begins game) and figure 4.11, again summing up the
total number of victories for all considered values in figure 4.12, revealing the optimal parameter

setting for the budget of 1-10% advances to be a = 0.2.

4.1. Domain specific parameter tuning

29

4.2 Multiplayer experiments

Two algorithms are being tested against each other; realtime MCTS using UCT (RT) and relative
MCTS using RUCB and one-back propagation (ROB). The experiments conducted are split in
eight major batches, based on all eight possible combinations of the following three binary
frame choices:

¢ Computational budget: 1-10* and 5 - 10* state advances per turn
* Heuristic used for terminal states: A1 VS Reomposite
* Assignment of the first ply in all games: RT begins vs. ROB begins

Each of these eight batches consists of a total of 2100 games, letting the two algorithms play 100
games of Connect Four against each other over 21 different settings for the maximum simulation
length, with the maximum rollout length RL,,,,. € {2,4,6, ...,42}. Because even the initial state
of a fresh game of Connect Four is bound to reach a conclusion over the course of 42 plies,
this is a sensible choice for maximum value, given that at that point simulations are effectively
unlimited. In addition, the parameter values as empirically determined in the previous section
are being used. This means that for all batches using 1-10* advances as computational budget,
C = 0.4 for UCT and a = 0.2 for RUCB, and for 5 - 10* advances, C = 0.6 and a = 0.3. This
section will display the results in graphical form, with the corresponding result tables listed in
the appendix. The following statistics have been gathered during the course of the experiments:

* Game results: The number of wins for either agent, as well as the number of draws, over
100 games.

* Terminal rate TR,,,: The macro average terminal rate over 100 games, and as such the
ratio of terminal simulations vs. non-terminal ones. For each game out of the series of 100
games, a terminal rate is calculated; the macro average for the entire series is then formed
by averaging these 100 per-game averages.

* Rollout length RL,,,: The macro average rollout length that occurred over all 100 games,
calculated in a similar fashion as the terminal rate.

* Game length GL,,,: The average game length across 100 games.

Figure 4.13 shows the results of all 2100 games played using hqpnposice> @ budget of 5 - 10*
advances and the preference-based MCTS variant (ROB) beginning each game. At first glance
it is easy to see that regardless of simulation length setting (horizontal axis), the UCT-based
approach wins the majority of games. However, the difference is generally smaller if lower sim-
ulation lengths are being chosen. The performance of ROB peaks at a simulation length limit
of 8, with 34 wins (and 61 losses as well as 5 draws). Especially when reducing the simulation
length further, the variance appears to increase, which is shown by the peak occurence of total
draws at a simulation length limit of 4 and 24 draws. Interestingly, the win rate of ROB remains
in line with the neighbouring limit settings of two and 6 at 24 wins, while the extra draws ap-
pear to be at the cost of the win rate of RT-MCTS. This may well be due to generally unreliable
games at such short limits, but nevertheless can be observed, also explaining the peak in average
game length at 37.5 plies (right vertical axis). After the peak at a limit of 8, the performance of
ROB then quickly deteriorates both in win count as well as forced draws, with RT beginning to
dominate more clearly until a rollout limit of 20 and more is reached, after which RT wins the

30 4. Experiment setup

vast majorit of games.

The linear trends for the win rates of RT and ROB further show that a rising rollout length limit
benefits RT and in this case both diminishes the wins scored by ROB as well as the number of
draws, which begin to approach zero. The average rollout length slowly rises up to that same
point and then stays more or less constant at a value of 3.9. This rollout length limit of 20 also
marks a point where most rollouts end in terminal states. However, consider that due to the
structure of the domain at hand and the MCTS process, both the macro average rollout lengths
as well as the macro average terminal rates are not to be taken too literally - while the plot-
ted curve may suggest that almost all simulations end in terminal states, this is not universally
true, because both late iterations and (most importantly) late calls to MCTS when the game
has progressed very far distort both of these numbers considerably (see also the more detailed
explanation in chapter 5 concerning these two values), which applies to all following batches.

The results of the experiment batch of 2100 games with identical settings, but reversed assign-
ment of the first move in every game is shown in figure 4.14. Interestingly, ROB appears to be
starting stronger with 45 wins (vs 51 losses and 4 draws) at a simulation length of two. How-
ever, it is again important to point out that the reliability of the results is likely to be especially
low with such a low simulation horizon. This theory is supported by the high average game
length of 36.2 plies for this series of 100 games, suggesting that both algorithms are more con-
cerned with preventing immediate losses, thus inflating the game length, while unable to plan
ahead much. Once the simulation length limit is set to be larger than four, similar results to the
reverse batch shown in figure 4.13 occur, with the average game length quickly stabilizing and
RT taking the dominant lead. Where in the previous batch, ROB managed to peak at 34 wins
over 100 games at a simulation length of 8, this is no longer the case here, scoring 20 wins in
the otherwise same setting and then losing performance faster, again stabilizing at a low win
ratio of about 10 to 15 wins per 100 games. This is likely due to RT being assigned the first
move in this batch and thus shows that Connect Four may offer an advantage to the beginning
player. In fact, assuming perfect play on both sides, it was proven [1] by Victor Allis that the first
player can force a win in at most 41 plies. This of course is not entirely relevant to MCTS, given
that both algorithms are probably far from perfect play regardless of setting, but nevertheless
the observation that the performance of ROB drops faster compared to the previous batch may
be due to RT making the first move in all games.

Figure 4.15 displays results for the same computational budget, assigning the first move to ROB
again, but this time using the simple heuristic hy;,,;, using only component A. Of particular
interest is that the results (again with the exception of the potentially noisy first series of 100
games) show less of a trend plotted over the simulation length limit (with no visible perfor-
mance trend from a lenght limit of 4 and above). The slight improvement in winrate ROB was
able to show when using the composite heuristic R ympsice iS DOt Visible anymore. This does not
match the intuition that RT-MCTS using UCT would benefit more from a complex heuristic than
ROB, as in this case it estabilishes dominance almost immediately. However, this may well be
due to the complex heuristic not necessarily being better (see chapter 5 for some observations
concerning the heuristic functions used). The average game length only stabilizes after a rollout
length limit of 12 and above, with the other results otherwise being comparable to the previous
batches. The win rate of RT still shows a slight upwards linear trend with increasing rollout
length, however this (as well as the minimal downwards trend of ROB) is likely due to the out-

4.2. Multiplayer experiments 31

50000 advances per game turn using the composite heuristic, ROB begins game

o 100 — = ROB wins
S 40 = e RT wins
o =)

° S draws
E 80 E TR avg
E 30 RLavg
(] .

2 o GLav
E 60 A % g
o \/ o

[7] [+]

®

< 20 E

g 40

£ — 10 2

= 20 o

S g

o : I\ N A — o
_E Wy ~~ Y g,

3 0 0 <

0 6 12 18 24 30 36 42

Maximum rollout length RL max

Figure 4.13.: Results of playing 100 games per rollout limit setting using the composite heuristic. ROB
begins the game. Budget of 5 - 10* advances. Based on table A.1 (see appendix)

50000 state advances per game turn using the composite heuristic, RT begins game

" 100 = ROB wins
.é 40 "E, ¢ RT wins
3 y 8 draws
E 80 N E TRavg
£ 30 © RLavg
(] N

E 60 / = GlLavg
o 1]

o / o

(7] [+]

= 20 g

2 40 A\ g

i =

£ 10 2

o

f [1°]
3 B A~ /n\-——n__.__"A“ m

= 0 0 <

=

0 6 12 18 24 30 36 42

Maximum rollout length RL mayx

Figure 4.14.: Results of playing 100 games per rollout limit setting using the composite heuristic. RT
begins the game. Budget of 5 - 10% advances. Based on table A.2 (see appendix)

32 4. Experiment setup

lier result for a rollout length limit of 2.

The next batch of experiments is also the last batch to make use of the computational budget of
50000, now assigning the first move to RT in each game again and using the simple heuristic,
with the results plotted in figure 4.16. It is unclear whether the lack of deviation from the rest
of the results at a rollout length limit of two is due to RT being assigned the first move in every
game, allowing it to score 71 wins out of 100 games at that setting, or whether this is again
due to variance. Ultimately though, there is barely any visible linear trend left, with RT outper-
forming ROB with at minimum 71 wins (at rollout length 2) to at maximum a whole 91 wins
at rollout length 24. Similarities to previous batches arise with the average game length being
notably higher at lower simulation length limits.

The following four batches mirror the same structure as the first four, except setting the com-
putational budget to 1 - 10* advances in all cases. The results of the first batch using the lower
budget is shown in figure 4.17, using h,mposic. and allowing ROB to make the first move. A no-
table difference to the corresponding batch with the same settings, but a higher computational
budget, is more variation in the cumulative outcome of each series of 100 games. For instance,
the number of wins for RT not only exhibits variance for lower rollout length limits (from 51
wins at rollout length limit 2 to 71 wins at rollout length 4 and again back to 62 wins at rollout
length 6), but this behavior continues for the rest of the individual series of 100 games. For a
simulation length limit of 32, RT wins a whole 97 games out of 100, however neither of the
neighbouring rollout settings mirrors this (87 wins at a limit of 30 as well as 89 wins at a limit
of 34). This higher variation of outcome is the case across the entire batch, suggesting that
1-10* advances are a comparatively small budget that does not allow either variant of MCTS
to stabilize and assigns a lot of weight to the random factor native to the algorithm. However,
the general superiority of RT is still mirrored clearly in this batch, as well as the linear trend
favoring RT even more with rising simulation length limit.

Figure 4.18 shows the results for the 2100 games played with the same settings as the previous
batch at 1-10% advances and using hcomposite> Dut allowing RT to move first in every game.
Again, the lower stability of the results across multiple rollout limit settings compared to 5 - 10*
advances becomes apparent. Most notably, at a rollout length limit of two, RT scores 82 wins
out of 100 games, whereas it merely won 51 out of 100 games with reversed turn order prior-
ity. This could be assumed to be due to the first-ply advantage now being assigned to RT, but
comparing the results of the series of 100 games at a rollout length limit of 4 (the next step
up) has RT winning 71 out of 100 games when it is not being assigned the first move in every
game, compared to only 59 wins with the supposed first-move advantage. As such, these results
cannot be used to show a first-move advantage. An unique result of this batch is that for a
rollout length of two, the average game length is very low (23.5 plies). This is in fact the lowest
average across 100 games in the entire set of experiments and shows that many of these games
likely have been lost due to grave mistakes on the part of either algorithm during the early part
of several games. Closer inspection reveals that indeed, a few games in this series of 100 have
ended less than 10 plies into the game, with ROB entirely failing to block its opponent’s first
attempt at building a winning combination. ROB appears to be more prone to such error at very
low budget settings; the interpretation in chapter 5 offers several explanations for why ROB
appears to be hit even stronger by a lack of computational budget on this domain, resulting in

4.2. Multiplayer experiments 33

50000 advances per game turn using only the win chances heuristic, ROB begins game

100 = ROB wins
40 * RT wins
draws
80 r TRavg
/\/ 30 RLavg
GL avg
60

20

40

”0 \ 10

Number of wins/draws & percent terminal rollouts
Avg. game length and macro avg. rollout length

0 6 12 18 24 30 36 42

Maximum rollout length RL max

Figure 4.15.: Results of playing 100 games per rollout limit setting using the simple heuristic. ROB
begins the game. Budget of 5 - 10* advances. Based on table A.3 (see appendix)

50000 advances per game turn using only the win chances heuristic, RT begins game

o 100 = ROB wins
E 40 '.E’ « RT wins
© M b draws
= LN A N -

g% e S v 3 TRay

2 o GLavg

g 60]

e o

(7] (3]

[1°]
- 20 g

2 40 2
3 £
2 10 &

2 20— o
° \.\.\ //\ E

-]

& s — . P - — o

o _ J ~— . .

-E =L R 2= 2

2 0 0 <
0 6 12 18 24 30 36 42

Maximum rollout length RL max

Figure 4.16.: Results of playing 100 games per rollout limit setting using the simple heuristic. RT begins
the game. Budget of 5- 10* advances. Based on table A.4 (see appendix)

34 4. Experiment setup

10000 advances per game turn using the composite heuristic, ROB begins game

o 100 = ROB wins
.g 40 '.E, e RT wins
= j =
o k) draws
S 80 d ,\/\\/' % TRayg
E . 30 ° RLavg
Q 60 (]
8 / o
[7] Q
(]
< 20 -E
w
% 40 S
5 g
(] c
£ 10 2
)
[" ®
E g
3 0 0 <
0 6 12 18 24 30 36 42

Maximum rollout length RL max

Figure 4.17.: Results of playing 100 games per rollout limit setting using the composite heuristic. ROB
begins the game. Budget of 1-10% advances. Based on table A.5 (see appendix)

10000 advances per game turn using the composite heuristic, RT begins game

100 = ROB wins

e NN

"N pupay
60 \

v

* RT wins
draws
TR avg
GLavg

20

Avg. game length and macro avg. rollout length

Number of wins/draws & percent terminal rollouts

40
10
20 / _—‘\
vl/\y/.“—n—g\/)\n\." ,--”’\“I
0 0
0 6 12 18 24 30 36 42

Maximum rollout length RL max

Figure 4.18.: Results of playing 100 games per rollout limit setting using the composite heuristic. RT
begins the game. Budget of 1 - 10% advances. Based on table A.6 (see appendix)

4.2. Multiplayer experiments 35

an outlier value for average game length, especially considering that a rollout length limit of
two was unreliable in all previous experiments just as well.

The last two batches cover the case of using hy;,,,,;, With a budget of 1- 10* advances. The results
of assigning the first move in every game to ROB under these conditions are shown in figure
4.19. Similar to the results using the same heuristic, but in a context of 5 - 10* advances, the
performance of ROB is low across the entire batch, suggesting that even though hy;,,,; purpose-
fully omits the element of threats from its score, UCT may generally favor purely considering
the remaining win chances on this domain compared to the composite heuristic.

The last batch reverses the turn order one last time while keeping the settings of using hg;pp.
with a budget of 1-10% advances, showing the results in figure 4.20. Most notably, the aver-
age game length at a rollout length limit of 2 is particularily high, which interestingly is also
the case of a limit of 4. However, as the previous three batches have already shown, not too
much weight should be assigned to the batches using the lower of both budgets. Nevertheless,
this contrasts the results with the same settings, but using A omposice> @5 shown in figure 4.18,
where the rollout limit of two has shown a much lower average game length (23.5 vs 36.5). It
is unclear whether this is due to the different heuristics being used, or whether both outliers
merely mark two extreme ends of essentially the same interpretation - a high randomness dur-
ing gameplay, with the extreme low result due to games lost very early and the extreme high
result due to games played without much foresight. The low number of draws (9) suggests that
the latter may not be the case, but even a series of 100 games may not be enough to arrive at
a solid conclusion given that the computational budget of 1-10* advances appears to simply be
too low for ROB in particular.

A summary of peak results for the combined two batches using 5 - 10* advances and hcomposite
(figures 4.13 and 4.14) is shown in table 4.1. Note that for this table as well as the following
ones, neither terminal rate nor rollout length are included, as the former always peaks at max-
imum rollout length limit settings and the latter generally only exhibits significant growth up
to a simulation length limit of 20, after which it fluctuates within a small margin. RT scores
the highest number of victories in configurations with longer maximum rollouts, namely 28 and
38 (with 94 wins out of 100 each). The generous limit goes hand in hand with high terminal
rates (0.997 and 0.999, but consider the explanation for the seemingly high values and rapid
growth given in chapter 5) and comparatively long rollout lengths (3.9 and 3.7), with the aver-
age game length (30.8 and 32.6) hinting at games not being won purely out of chance as the
game board begins to fill up completely. The opposite is true for ROB, which performs best at a
minimal rollout length limit of two, also leading to long games (36.2 plies on average) as both
algorithms are unable to simulate ahead much and rely on shorter-sighted action choices. The
longest games (37.5) are found in the same configuration (rollout length limit 4, ROB is given
the first plies in each game) as the highest number of draws (24), hinting at a subset of games
playing out without much foresight.

The two batches (based on figures 4.15 and 4.16) using 5 - 10* advances combined with hgimpie
are being summarized in terms of peak wins for either player, peak draws and longest average
game length in table 4.2. Unlike in the case of 1 - 10* advances shown later, there are no real
differences based on the heuristic function used as far as peak results are concerned: RT wins

36 4. Experiment setup

10000 advances per game turn using only the win chances heuristic, ROB begins game

w 100 = ROB wins
5 40 £ «RT wins
=) =)

2 /\ N A B
E 80 Jl - E TR avg
E 30 ° RLavg
g g, GL avg
< 60

: / o

2 3

< 20 £

2 40 i

©

3 g

2] c

£ 10 @

2 20 o

s M / E
E 7 —— N :

E 4

0 6 12 18 24 30 36 42

Maximum rollout length RL max

Figure 4.19.: Results of playing 100 games per rollout limit setting using the simple heuristic. ROB
begins the game. Budget of 1-10* advances. Based on table A.7 (see appendix)

10000 advances per game turn using only the win chances heuristic, RT begins game

100 = ROB wins

(2]

.g 40 -,,g * RT wins
3 /\/\/\//____\/',< 5 draws
s 80 —— 5 TRay
£ v o 9
£ \/ \/ 2 2 RLave
: g Glav
c 60

o

[7] (%)

©
- 20 -E
7]
40

- B

] c

§ 07 =2

- 20 A g

Q —,
£ —— ~J ~ ! %

>
E 0 0 <
0 6 12 18 24 30 36 42

Maximum rollout length RL pax

Figure 4.20.: Results of playing 100 games per rollout limit setting using the simple heuristic. RT begins
the game. Budget of 1-10* advances. Based on table A.8 (see appendix)

4.2. Multiplayer experiments 37

Table 4.1.: Peak results for 5- 10* advances and hcomposite- Both batches meeting these criteria are being
considered (covering both cases of either algorithm making the first move in all games)

RL,, firstply ROBwins RT wins draws TR,,, RL,,, GLg,,

Max. RT wins 28 ROB 6 94 0 99.7 3.9 30.8
38 ROB 6 94 0 99.9 3.7 32.6

Max. ROB wins 2 RT 45 51 4 53.7 1.0 36.2
Max. draws 4 ROB 24 52 24 64.4 1.7 37.5
Max. GL,,, 4 ROB 24 52 24 64.4 1.7 37.5

Table 4.2.: Peak results for 5 - 10* advances and hgimpie- Both batches meeting these criteria are being
considered (covering both cases of either algorithm making the first move in all games)

RLq, firstply ROBwins RT wins draws TR,,, RLg,, GLgy,

Max. RT wins 34 ROB 7 93 0 99.9 3.8 31.0
Max. ROB wins 2 ROB 27 55 18 51.6 1.1 36.5
Max. draws 2 ROB 27 55 18 51.6 1.1 36.5
4 ROB 8 74 18 64.3 1.8 37.4

Max. GLg,, 4 ROB 8 74 18 64.3 1.8 37.4

the most games at a high rollout length limit of 34, with most simulations ending in terminals
(0.999) and the game length being unremarkably average (31.0), whereas ROB favors a rollout
length limit (2) for both players that is too low to allow for meaningful simulation. Again, there
are notable similarities between the configurations with peak ROB wins and those with peak
draws, with the top configuration for ROB wins doubling as one of two top configurations as
far as draws are concerned, and all of these showing very long average game lengths (36.5
and 37.4; the latter also being the configuration with highest average game length, at a rollout
length limit of 4).

The top results for either player’s win count, the draw count and the average game length for
1-10* advances and hcomposite> taking into account both concerned batches (which again differ
only in assignment of the first play) are summarized in table 4.3; as such, this refers to figures
4.17 and 4.18 both. As expected, the configuration yielding the highest number of RT wins
across these two batches allows for much longer simulations (RL,,,, = 32) than the configu-
ration allowing for relative peak performance of relative MCTS with filtered backpropagation
(ROB), which performs best at a very small limit of two. This observation also holds for the ter-
minal rate (TR,,,) where the configuration with the most RT wins exhibits a much higher rate
(0.999) than the best configuration for ROB (0.466) across these two batches. All of the peak
results are part of the experiment batch allowing ROB to draw first. The configuration with the
most ROB wins is also one of two with the highest number of draws (15) and a low averaged
rollout length (1.2) as well as showing the longest average game length at 34.9; another con-
figuration with the same number of draws occurs at a rollout length limit of 4. These limits are
comparatively small and will not allow MCTS to plan ahead much, which suggests that a rela-
tively good (albeit still inferior) performance of ROB relies on unfavorable conditions for both
algorithms and thus more on chance. The long average game length and ROB never actually
scoring more wins than RT in any configuration appear to support this observation, whereas RT
manages to express a solid performance with the best performing configuration allowing it to

38 4. Experiment setup

Table 4.3.: Peak results for 1-10* advances and hcomposite- Both batches meeting these criteria are being
considered (covering both cases of either algorithm making the first move in all games)

RL,, firstply ROBwins RT wins draws TR,,, RL,,, GLg,,

Max. RT wins 32 ROB 3 97 0 99.9 4.3 31.5
Max. ROB wins 2 ROB 34 51 15 46.6 1.2 34.9
Max. draws 2 ROB 34 51 15 46.6 1.2 34.9
4 ROB 14 71 15 57.5 2.0 30.9

Max. GLg,, 2 ROB 34 51 15 46.6 1.2 34.9

Table 4.4.: Peak results for 1-10* advances and hgimpie- Both batches meeting these criteria are being
considered (covering both cases of either algorithm making the first move in all games)

RL,, firstply ROBwins RT wins draws TR,,, RL,,, GLg,,

Max. RT wins 12 ROB 7 93 0 85.3 3.9 29.8
Max. ROB wins 2 ROB 21 53 26 42.8 1.3 35.1
12 RT 21 74 5 86.4 3.7 30.0

Max. draws 2 ROB 21 53 26 42.8 1.3 35.1
Max. GLg,, 2 RT 16 75 9 46.4 1.2 36.5

score 97 wins out of 100 games.

Similar results occur when looking at peak results (shown in table 4.4) for the two batches
(figures 4.19 and 4.20) swapping h.omposite fO Rgimpi. under otherwise same budget condi-
tions (10000 advances), although in this case the top performance of RT occurs at a rollout
length limit of only 12, like one of the two configurations with peak ROB victories (although
interestingly, the top performance of ROB occurs when RT begins each game, and vice versa).
ROB also scores the same number of wins (21) in a second configuration with a rollout length
limit of two, as in the previous two batches. Again, the best configuration in terms of RT
wins shows a high terminal rate (0.853), but one of the two configurations with relative peak
performance for ROB has a slightly higher terminal rate (0.864), whereas the other configu-
ration (with a limit of two) clocks in at 0.428. Again, the maximum number of draws (26)
are achieved in one of the two configurations that also shows peak ROB performance at a roll-
out length limit of two and ROB being assigned the first ply in each game. Again at a limit of
only two, but with RT beginning each game, the longest average game length (36.5 plies) occurs.

Combining the results of tables 4.1, 4.2, 4.3 and 4.4 in table 4.5, the most surprising result is that
the globally best performing configuration in terms of RT wins at 97 out of 100 (10000 advances,
hcomposite> ROB begins) has ROB begin each game, while the reverse is true for the global peak
result for ROB wins (45 wins, using 5 - 10* advances, hcomposite> and allowing RT to move first).
It is unclear whether this is simply due to the relative instability of the results, or whether in
this experiment setup, the first ply can also be seen as a disadvantage, although the generally
fluctuating number of wins, losses and draws would suggest the former. Other observations are
less surprising: RT plays its best series of 100 games in a setting with generous rollout length
limits (32), but limited budget (10000 advances), while the reverse is true for ROB (limit of
2 and 5 - 10* advances). Possible reasons for this behavior based on the differences of both

4.2. Multiplayer experiments 39

Table 4.5.: Peak results over all eight batches of 2100 games each

RL,q, firstply ROBwins RT wins draws GL,,, heuristic budget
Max. RT wins 32 ROB 3 97 0 31.5 hcomposite 10k
Max. ROB wins 2 RT 45 51 4 36.2 hcomposite 50k
Max. draws 2 ROB 21 53 26 351 hgmpe 10k
Max. GLq,, 4 ROB 24 52 24 375 Rgmposice 50K

algorithms are explained in chapter 5. The highest number of draws (26) to ever occur in
and a budget of 1-10* advances as well as a low rollout lenght
limit of only two, which is not surprising given that these combined settings are unlikely to
allow for meaningful execution of either MCTS variant, thus letting more games end in a draw
by filling up the game board with semi-random moves, although it should be noted that the
longest average game length is achieved in a configuration with 5 - 10* advances and hcomposites
but again a low rollout length limit (4).

a series of 100 uses h

simple

40

4. Experiment setup

5 Interpretation

Summing up the results of the previous chapter, the non-relative UCT based MCTS variant won
the majority of games playing Connect Four against the preference-based MCTS variant making
use of RUCB. The following sections aim to provide an array of possible explanations for this
behavior by highlighting domain specific properties and their effects on the playing strength of
the algorithms. Although the listing order of these possible explanations should not be seen
as order of importance, the first two sections depend only on the (average) number of actions
k for any particular domain, and as such are particularily important for domains with a high
branching factor. Because one of the original motivations for MCTS specifically was handling
such domains [3] where exact solvers or other forms of tree search are not feasible, this can
be seen as a potential weakness of the preference based approach in the context of MCTS in
general.

5.1 Number of possible actions in each state

The domain Connect Four allows anywhere between one to seven legal actions in each game
state. It should be noted that for most states, especially those within the first half of the game,
most of these seven theoretically available actions are also available in practice due to an action
only becoming unavailable whenever a column is filled. An UCT based method will aim to sort
the actions available in each state by an (absolute) quality metric - in this case, the upper confi-
dence bound. Each update of a node during the process of MCTS backpropagation will update
the quality estimate of one action out of k total available actions in that state. It is easy to see
that this scales linearily with number of actions, and domains with large numbers of actions will
not result in an unwieldy tree policy.

A preference-based approach to action selection does not offer the same scalability. It was
shown [6] that preference-based MCTS yields better results than all UCT based variants on the
(singleplayer) 8-puzzle domain. The 8-puzzle consists of nine tiles, eight of the occupied by
numbered tokens, and each state being defined by the position of these tokens, with the goal of
reaching a previously defined state. A legal action in the 8-puzzle domain moves one of the up
to four tokens that are (non-diagonally) adjacent to the empty tile into said tile. If the empty
tile is in the middle of the 3x3 board (1 out of 9 cases on average), there are k = 4 tokens that
can be moved; if the empty tile is in one of the four corners of the board, only k = 2 actions
are possible, otherwise k = 3 (4 out of 9 cases on average both). This results in an average of
(4%2+4%3+1%x4)/9 ~ 2.67 actions available in a single state of the 8-puzzle.

If k = 1, no preference can be formed. For k = 2, exactly one comparison between actions is
possible; for k = 3 and k = 4, 3 respectively 6 comparisons can be made (the maximum number
of comparisons possible in a single state of the 8-puzzle). For Connect Four, this number is much
higher - in the worst case of k = 7, the total number of comparisons (and thus preferences) is 21.
In the general case, the number of preferences in the context of k actions (k > 1) is (k? —k)/2

or alternatively Zi:ll k, resulting in quadratic growth. Figure 5.1 visualizes the rapid growth

41

of possible comparisons for cases k = 2 through k = 4 (minimum and maximum number of
actions for an 8-puzzle state, respectively) as well as k = 7 (maximum number of actions in
Connect Four). Note that when filtering trajectories to only allow the winner of a comparison
to be propagated back, each RUCB node will make exactly one such comparison per update. As
such, the information gain per single update of a node rapidly diminishes with greater k.

a) b) c) d)

X

=2 =3 =4 \

k=7

Figure 5.1.: Visualization of possible comparisons of two actions in the case of k=2 (a), k=3 (b), k=4
(c¢) and k=7 (d) available actions

42 5. Interpretation

5.2 Number of node updates per single rollout

As seen in chapter 2, a defining feature of preference based MCTS is the spanning of a selection
subtree instead of a selection path, as well as the simultaneous addition of two new nodes to the
list of known children of one selected node (= a leaf in the selection subtree). This will result in
multiple rollouts per single iteration of MCTS; in the first iteration, this number is two, but sub-
sequent iterations will on most domains begin a rapidly growing number of rollouts. Recall that
we are using state advances as a measure of "cost" (as opposed to time) and as such, conducting
rollouts uses up the majority of computational resources given to the algorithm before it stops
initiating another iteration.

MCTS with UCT will make use of a selection path during the selection phase, and only add a
single new node to the known tree (as defined by the tree policy) per iteration. This also results
in a single rollout, which is then used to provide a node update to each node along the selection
path. As such, for the cost of one rollout, multiple nodes receive a node update. The important
root node is updated once per rollout. Relative MCTS, after committing to multiple rollouts per
iteration, will also update multiple nodes during the backpropagation process (the nodes that
are part of the selection subtree). The selection subtree of relative MCTS will generally contain
more nodes than the selection path of MCTS with UCT. However, the number of nodes updated
on average per iteration does not grow as fast as the number of rollouts per single iteration.
Assuming that relative MCTS has, in one particular iteration, conducted m rollouts, and that the
length (and thus cost in state advances) of a single rollout is on average comparable, it can be
assumed that UCT-based MCTS would on average spread these m rollouts across roughly i ~ m
iterations with exactly one rollout each. However, in each iteration, the selection path is formed
anew; this means that over the course of these i iterations, a node could be part of the selection
path more than once. In fact, the root node - arguably the most important node, given that the
final action selection after termination of the algorithm will be based on the tree policy in the
root node - is updated every single time. In contrast, relative MCTS will use up the computa-
tional resources required by these m rollouts within a single iteration, but a node can only be
part of the selection subtree or not in that particular iteration, and will thus only be updated
once at maximum assuming a return policy that only allows a single trajectory to be propagated
further after each comparison. This also applies to the root node, which only receives a single
node update per iteration, regardless of the number of rollouts.

Each node update in relative MCTS with one-back propagation compares two actions. Given
that the number of possible comparisons grows quadratically with number of actions (see above
subsections) and that on average, fewer nodes receive a node update per single rollout, the algo-
rithm thus requires a considerably higher number of state advances to make up for the reduced
information gain compared to non-relative realtime MCTS on domains with a high number
of actions. Combining the above two points can be seen as a structural domain-dependent
weakness.

5.3 High availability of terminal states

In theory, a simulation ending in a terminal state benefits UCT over RUCB, because the reward
value (or the components of the reward vector in the case of multiplayer) is located at the

5.2. Number of node updates per single rollout 43

lower and upper extremes of the permitted value range of O to 1. This helps the UCT formula
converge faster, and given that no heuristic insecurity is involved in the evaluation of such a ter-
minal state, the value is highly reliable. In contrast, one of the theoretical advantages of RUCB
is that inaccuracies in the heuristic evaluation of a state do not matter as long as the preference
formed based on the heuristic values is likely to be correct and as such, a domain where termi-
nal states are not commonly available would potentially be more suited for the preference-based
approach. It can be argued that Connect Four has a high availability of such states, given that
the game tree has a maximum depth of 42 plies, and that terminal states can be found in the
tree as early as 7 plies into the game (assuming the player who began the game was able to
construct a row or column of four without being interrupted).

Recall that in chapter 4, a high raw percentage of simulation results were based on terminal
states, with even short simulation lengths resulting in more than half of all simulation results
being of terminal nature. However, it must be noted that these raw numbers likely overstate the
influence of terminal states (this also applies to the average rollout length). This is particularily
because of two reasons:

e Late iterations within one run of MCTS: With successive iterations, the tree as known
by the tree policy continually grows asymetrically. This of course means that even when
the simulation length is limited, the tree will eventually grow into regions that feature pre-
dominantly terminal nodes within reach of short simulations. Because such late iterations
still have some number of state advances left if the limit has been set high enough in the
beginning, and simulations will terminate much earlier at this point, this results in a high
raw number of total simulations, thus overrepresenting the terminal situations in the cal-
culation of the average per whole game. However, the tree growth in earlier simulations is
more likely to have been steered by nonterminal states.

* MCTS being called on late game stages: MCTS will be called anew, with the full com-
putational resource budget and an empty tree, everytime an agent is prompted to decide
a move on the actual game board. However, the tree will be spanned from the game state
currently present on the board, and associate this state with its root node. Because the
full state advance budget is available (like with any call to MCTS), but the tree is spanned
from a state that may already be only a few plies away from game over in all cases, this
again results in a large number of very short terminal situations that distort the calculation
of the average number of terminal states across the entire game. However, the game is
either usually already decided at this point, or if it is not, then one of the agents will have
estabilished a lead either by chance or by high playing strength in earlier plies. As such,
the simulations that occur at this point, while greater in number than their predecessors
due to reasons mentioned above, will have a lower influence on the outcome of the actual
game.

In summary, the ratio of terminal states should not be taken at face value, but rather as a general
view into how higher simulation limits will naturally increase this ratio (up to 100 percent if the
simulation length equals the maximum game length in plies, since then every single simulation
is guaranteed to at least end in a draw, if not a victory for either player). However, it must
nevertheless be stated that terminal states are much more readily available than for example in
the singleplayer domain of the 8-puzzle, which does not structurally force terminal states at all

44 5. Interpretation

(and typically artificially forces a loss if the win condition has not been met within a budget of
100 moves).

5.4 Quality of the heuristic functions

The theoretical advantage of preference-based methods builds upon the property of reducing
the influence of noise in the heuristic evaluations by only memorizing the results of a direct
comparison rather than the values involved (or the absolute difference between two values).
However, this builds upon the core assumption that if h(a) < h(b), it is reasonable to assume
P(a,b) = b and vice versa. While this does not have to universally hold true, it may be suffi-
cient if this is generally the case, or if P(a, b) = b is a reasonable assumption at the very least
when h(a) < h(b). Generally speaking, preference based methods are better suited for domains
where the ordering implied by a heuristic function is somewhat likely to be reliable even if the
actual values are not.

An example for domains that exhibit above property are single-agent pathfinding problems in
an n-dimensional discrete space, assuming that local optima do not constitute high spikes or
peaks in the problem landscape. For such problems, a heuristic can take the form of air
distance or a similar metric that will exhibit some variance based on the topography of the
problem, but probably tend to produce better values for states (nodes) that are a low number
of discrete moves away from one or more target states. It should be noted that such problems
usually can be solved with the help of A* [9] or similar exact solvers making use of the same
heuristic because it is admissible and as such never overestimates the distance to the target state.

Multiplayer domains usually do not have the luxury of high quality heuristic functions, unless
making use of extensive lookup tables using expert evaluation of particular states to generate
their values. In fact, in the case of Connect Four, several examples have come up during the
course of the experiments where a state has been found to be rated as highly undesirable for a
particular player while in practice, that player not only was only a few plies away from a victory
state, but they had already ensured their victory at that point (assuming no gross misplays).
Figure 5.2 shows an example of such a state. Because the red player has blocked all eight the-
oretical rows of four in the upper two rows of the game board (visualized by the green lines),
and the number of threats is otherwise mostly balanced (3 and 2 threats for blue and red re-
spectively), the reward vector returned for this state by the composite heuristic is (0.41,0.59),
with the first component being associated with the blue player. However, at this point, blue
would have already won the game. By playing a token in the second column from the left (id
1), victory in the following turn would be guaranteed regardless of whether red would attempt
to block the first threat.

As such, it cannot be assumed that even if h(a) < h(b), P(a,b) = b would be a reasonable
assumption, much less so if the value difference is smaller. Thus, the preference based approach
is deprived of one of its major selling points as the noise in the heuristic evaluations often
extends beyond localized problematic areas of the search space. Finding working heuristics for
multiplayer games that take into account all of the intricacies is a non-trivial task and likely to
require either a high investment in memory or computational resources (or both), thus voiding

5.4. Quality of the heuristic functions 45

==
a0
H_EEN
N
N
HCEEN

Figure 5.2.: Example of a Connect Four state that both heuristics used in this thesis wrongly consider
as bad for the blue player, in particular due to the theoretical victory combinations blocked
by red in the upper two rows. Blue has already won at this point due to the double threat
(circled). This is not hinted at in the heuristic evaluation.

the motivation for limiting rollouts, as seeking out terminal states would then possibly be both
faster and more reliable.

46 5. Interpretation

6 Conclusion

In the Connect Four multiplayer domain for two players, the preference-based approach of
relative MCTS with one-back propagation has not been able to secure an advantage over regular
UCT. A variety of possible reasons for this outcome have been highlighted. Namely, the quadratic
growth of possible comparisons (and thus preferences) with rising number of actions available
within a single state poses a problem for relative MCTS, which makes use of the RUCB formula.
This causes the information gain from a single node update to be less significant than in the
case of UCT, which at all times will update the absolute quality estimate for a single action
once per update, thus maintaining a list with linear growth. In addition, UCT- based MCTS
will on average update more nodes per unit of computational resource than relative MCTS. The
difference is particularily drastic in the case of the important root node, which after termination
will be consulted to determine the final action choice for the agent. Because the root node only
updates once per iteration (generally for UCT, as well as for RUCB if using a return policy to
only propagate one trajectory per node), and relative MCTS will expend far more computational
resources within a single iteration (requiring a theoretically unlimited number of simulatenous
rollouts compared to a single rollout in the case of UCT), this results in less node updates in
addition to lower information gain per update for any node. Both of these issues are of structural
nature and a result of the domain (and similarily structured other domains) at hand. In addition,
the problem of finding heuristics that provide a semantically solid ordering of states even if they
are allowed to have localized noise is non-trivial for the Connect Four domain. The results
suggest that the preference-based approach is not well suited for domains with a large number
of actions (high branching factor) but shallow (game-) trees (terminal state availability), as
well as domains where the unreliability of heuristic evaluations extends beyond local optima,
although this would be too broad of a statement to prove based on the available data.

47

Bibliography

[1] Victor Allis. A knowledge-based approach to connect-four. the game is solved: White wins.
Master’s thesis, Vrije Universiteit, 1988.

[2] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Mach. Learn., 47(2-3):235-256, 2002.

[3] Cameron Browne, Edward Powley, Daniel Whitehouse, Simon Lucas, Peter I. Cowling,
Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon
Colton. A survey of monte carlo tree search methods. IEEE Transactions on Computational
Intelligence and Al in Games, 2012.

[4] Michael Evans and Timothy Swartz. Approximating Integrals via Monte Carlo and Deter-
ministic Methods. Oxford University Press, 2000.

[5] Johannes Fiirnkranz and Eyke Hiillermeier. Preference Learning. Springer-Verlag New York,
Inc., 1st edition, 2010.

[6] Tobias Joppen. Préferenzbasierte monte carlo baumsuche. Master’s thesis, Knowledge
Engineering Group, TU Darmstadt, 2016.

[7] Levente Kocsis and Csaba Szepesvari. Bandit-based Monte-Carlo planning. In European
Conference on Machine Learning, 2006.

[8] John Von Neumann and Oskar Morgenstern. Theory of Games and Economic Behavior.
Princeton University Press, 1944.

[9] Stuart Jonathan Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pren-
tice Hall, 2009.

[10] Masrour Zoghi, Shimon Whiteson, Rémi Munos, and Maarten de Rijke. Relative upper
confidence bound for the k-armed dueling bandit problem. CoRR, abs/1312.3393, 2013.

49

A Experiment results

51

Table A.1.: Results for 50000 advances using hymposie With ROB beginning each game

RL,.. 2 4 6 8 10 12 14 16 18 20 22

ROBwins | 24 24 28 34 32 26 23 15 12 9 7
RT wins 66 52 65 61 63 70 77 83 86 91 91

draws 10 24 7 5 5 4 0 2 2 0 2
TRy 53.4 64.4 716 77.2 83.8 87.7 913 94 962 97.4 98.4
RLg,q 1 17 23 28 31 34 36 37 36 39 38
GLgyy 348 37.5 351 33.9 346 334 319 32 316 309 31.9
RL,. 24 26 28 30 32 34 36 38 40 42

ROB wins | 14 7 6 7 12 7 11 6 11 11
RT wins 84 92 94 92 88 92 89 94 87 88

draws 2 1 0 1 0 1 0 0 2 1
TR,y 99 994 99.7 99.8 999 99.9 99.9 999 99.9 100
RLyy, 39 38 39 38 39 37 37 37 38 38

GLgyq 314 324 308 31 303 322 33.1 326 32 32

Table A.2.: Results for 50000 advances using Ao 0sice With RT beginning each game

RL,.. 2 4 6 8 10 12 14 16 18 20 22

ROB wins | 45 36 31 20 15 13 15 10 12 9 5
RT wins 51 58 60 75 80 81 81 85 81 83 89

draws 4 6 9 5 5 6 4 5 7 8 6
TR, 53.7 64.3 70.8 77.6 823 87.7 909 939 958 97.3 98.3
RLg,, 1 18 24 29 34 34 37 39 4 39 41
GLa,,g 36.2 34.3 30.7 299 29 30.5 29.1 299 29.5 30.1 30.2
RL, . 24 26 28 30 32 34 36 38 40 42

ROBwins | 9 6 5 10 8 8 7 7 16 7
RT wins 85 82 85 84 87 85 88 84 77 84

draws 6 12 10 6 5 7 5 9 7 9
TRy 99 994 99.6 99.8 999 999 999 99.9 99.9 100
RLgyg 4 41 42 41 42 4 42 3.9 4 4
GLgy, 30.8 31.3 30.5 299 296 29.7 30 30.9 303 314

A. Experiment results

Table A.3.: Results for 50000 advances using hy;,,,,; With ROB beginning each game

RL hax 2 4 6 8 10 12 14 16 18 20 22
ROB wins | 27 8 11 8 17 17 12 19 12 12 9
RT wins 55 74 72 80 77 79 88 80 88 88 89
draws 18 18 17 12 6 4 0 1 0 0 2
TR,y 51.6 643 729 79.6 84.3 88.1 91.6 944 96.1 97.4 984
RLgy, 1.1 1.8 22 26 3 34 35 35 38 3.9 3.9
GLyy, 36.5 374 363 353 34 332 316 324 31 313 314
RL hax 24 26 28 30 32 34 36 38 40 42

ROB wins | 11 8 8 8 11 7 9 10 7 7

RT wins 88 91 92 92 89 93 90 89 93 91

draws 1 1 0 0 0 0 1 1 0 2

TR,y 99.1 99.4 99.7 99.8 999 99.9 99.9 999 99.9 100
RLg,, 3.7 4 38 38 38 38 38 39 39 3.7

GLyy, 324 30.3 303 303 31.3 31 31.7 31 30.8 3347

Table A.4.: Results for 50000 advances using hy;,,,;. with RT beginning each game

RL ax 2 4 6 8 10 12 14 16 18 20 22
ROB wins | 22 18 16 12 7 12 17 10 12 7 7
RT wins 71 74 73 81 85 80 76 78 82 86 84
draws 7 8 11 7 8 8 7 12 6 7 9
TR,yg 54.2 649 729 76.2 822 87 906 939 96 97.2 98.3
RLg,, 1 1.7 23 29 33 36 38 38 39 41 42
GLgyy, 351 328 346 299 295 29 30.2 309 308 30 303
RL .« 24 26 28 30 32 34 36 38 40 42

ROB wins | 4 11 8 6 S5 12 8 10 9 11

RT wins 91 84 88 90 86 85 87 80 83 83

draws 5 5 4 4 9 3 5 10 8 6

TR,y 98.9 994 99.7 99.8 999 99.9 999 999 100 100

RLgyqe 42 39 42 42 41 4 42 39 41 41

GL 29.6 31.2 299 298 309 304 29.5 31.7 29.8 30.1

avg

53

Table A.5.: Results for 10000 advances using hymposice With ROB beginning each game

RL,.. 2 4 6 8 10 12 14 16 18 20 22

ROB wins | 34 14 25 25 20 14 13 12 21 20 13
RT wins 51 71 62 73 75 82 81 86 77 80 86

draws 15 15 13 2 5 4 6 2 2 0 1
TRy 46.6 57.5 66.4 72.9 80.5 856 89.7 92.7 95 96.8 97.9
RLg,q 12 2 28 33 36 39 4 41 43 43 44
GLgyy 349 309 32.6 309 325 31.6 31.1 29.9 30.6 30.1 31.2
RL,. 24 26 28 30 32 34 36 38 40 42

ROB wins | 10 8 13 10 3 9 15 17 7 8
RT wins 86 90 85 87 97 89 84 81 90 89

draws 4 2 2 3 0 2 1 2 3 3
TR,y 98.7 99.2 99.5 99.8 999 99.9 999 999 99.9 100
RLyy, 45 4.3 4 44 43 42 42 45 43 43

GLgyq 31.6 314 30.7 304 315 31.8 31.8 299 31.1 30.6

Table A.6.: Results for 10000 advances using ho,0sice With RT beginning each game

RL,.. 2 4 6 8 10 12 14 16 18 20 22

ROB wins | 12 33 26 26 15 16 6 11 14 9 12
RT wins 82 59 64 69 78 75 90 86 83 86 82

draws 6 8 10 5 7 9 4 3 3 5 6
TRgyyg 504 60.7 69.4 754 80.1 85.6 88.9 93.2 952 96.7 97.8
RLgyg 1.1 19 25 31 35 39 42 39 43 44 43
GLgy, 23.3 29.7 295 289 28 295 26.8 28.7 29.7 28.3 289
RL 0 24 26 28 30 32 34 36 38 40 42

ROB wins | 11 11 7 12 10 8 9 12 14 9
RT wins 83 85 89 80 85 86 87 79 80 85

draws 6 4 4 8 5 6 4 9 6 6
TRgyq 98.8 99.2 995 99.8 999 99.9 999 99.9 99.9 100
RLg,q 45 43 45 44 42 44 43 42 43 43

GLgyg 309 29.6 28.3 291 31 29.1 28.6 29.7 29.1 28.3

A. Experiment results

Table A.7.: Results for 10000 advances using hy;,,,,; with ROB beginning each game

RL, .. 2 4 6 8 10 12 14 16 18 20 22
ROB wins | 21 15 17 19 12 7 17 10 8 12 12
RT wins 53 75 76 72 84 93 81 87 90 87 86
draws 26 11 7 9 4 0 2 3 2 1 2
TRgyq 42.8 57 659 75.8 79.8 853 894 93.2 949 96.6 97.9
RLaUg 1.3 2.3 2.7 3 3.7 39 42 41 4.3 4.4 44
GLg,, 35.1 325 323 334 31 29.8 306 32 304 29.7 29.6
RL, .y 24 26 28 30 32 34 36 38 40 42

ROB wins | 18 14 15 15 16 15 12 14 7 16

RT wins 80 85 85 83 80 83 86 84 92 81

draws 2 1 0 2 4 2 2 2 1 3

TRgyq 98.7 99.2 99.6 99.8 999 999 999 999 100 100

RLgye 43 44 43 43 42 45 43 44 43 43

GLa,,g 314 30.1 30.6 30.5 322 306 31.3 319 31.6 31.2

Table A.8.: Results for 10000 advances using hy;,,,;. with RT beginning each game

RL,0x 2 4 6 8 10 12 14 16 18 20 22
ROB wins | 16 16 13 9 13 21 15 8 9 8 11
RT wins 75 68 77 83 79 74 78 88 83 91 84
draws 9 16 10 8 8 5 7 4 8 1 5
TRy 46.4 59.1 676 749 80 86.4 88.8 92.7 95 96.7 97.9
RLgyq 1.2 2 26 31 36 37 41 41 43 44 44
GLgy, 36.5 33.1 289 289 29.7 30 29.7 285 29.1 28.7 30.2
RL, 0y 24 26 28 30 32 34 36 38 40 42
ROBwins | 7 17 10 8 13 11 7 14 12 9

RT wins 92 81 85 87 85 85 86 81 85 86

draws 1 2 5 5 2 4 7 5 3 5

TRy 98.6 99.3 99.6 99.8 99.9 999 99.9 99.9 99.9 100

RLgyq 43 43 43 43 44 44 45 43 43 44

GL 28.2 30.4 28.8 29.3 30.5 29.6 28.6 294 29.3 295

avg

55

	Introduction
	Motivation
	Thesis Structure

	State of the art: Artificial Intelligence in Game Playing
	Game Theory
	Formal model for games
	Properties of Multi-player games

	Bandit-based methods
	From one-armed to k-armed bandits
	The dueling k-armed bandit problem

	Monte Carlo Tree Search (MCTS)
	Why Monte Carlo?
	The MCTS algorithm
	Algorithm Properties

	The Connect Four Domain
	Terminal states and win conditions
	Evaluating terminal and non-terminal states
	Heuristics for non-terminal states

	Experiment setup
	Domain specific parameter tuning
	Multiplayer experiments

	Interpretation
	Number of possible actions in each state
	Number of node updates per single rollout
	High availability of terminal states
	Quality of the heuristic functions

	Conclusion
	Bibliography
	Experiment results

