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Abstract 

 

This bachelor thesis proposes a general purpose predictive maintenance (PdM) system which is based 

on real-time sensor data and can evaluate the state of industrial appliances and machinery. Detecting 

potential failures can, therefore, decrease unpredicted downtime. The proposed architecture for a PdM 

system is a modular solution that can be applied to any system regardless of the use case. This is 

achieved through an evaluation of already existing PdM systems and gathering of non-use-case-

dependent requirements. This thesis also evaluates possible technologies that can be used in the 

implementation of the PdM architecture and proposes an optimal solution for its implementation.  

Since sensors tend to generate a large amount of data the Hadoop ecosystem was chosen as the most 

suitable big data solution.    
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1. Introduction 

 

Predictive Maintenance (PdM) has established itself as an invaluable tool for reducing the cost of 

unplanned failures in many industries. Through constant observation of machinery and appliances 

usually by sensors monitoring different components or environmental variables, predictive 

maintenance allows us to detect first symptoms of degradation or loss in efficiency.  

The basic function of a predictive maintenance system is to evaluate the state of a system based on its 

behavior and predict when and which component could be faulty. Based on this evaluation, the PdM 

system or a maintenance expert can then schedule a replacement for said part with the consideration 

that the ideal most cost-effective time for a replacement is right before the failure.  

Predictive maintenance is an improvement of the classical run-to-failure maintenance, where a part is 

only replaced when faulty. This could cause unpredicted down times, stop production and severely 

increase the cost since unplanned maintenance tends to be up to three times more expensive. [20] 

An alternative is using preventative maintenance, where maintenance is scheduled based on the mean-

time-to-failure statistic for all machines of a particular classification. [20] Mean-time-to-failure 

indicates the probability for failure as time passes after the initial installation. Mean-time-to-failure has 

the form of a bathtub curve, which indicates the two potential times, when the likelihood for a fault to 

occur are particularly high are right after installation and after a certain period of operation time. In 

preventative maintenance, parts should be replaced before the second increase in the probability for 

faults. This, however, implies that perfectly functional parts would be exchanged, which is not a cost-

effective solution and a problem that predictive maintenance solves by adequately evaluating the state 

of a system and only performing maintenance when necessary. [20] 

An important aspect when it comes to the core functionality of a PdM system are the prognostic and 

diagnostic functions. The prognostic function handles the question of when a system would experience 

a performance degradation beyond the threshold that is acceptable and the diagnostic function asks 

why such a fault has occurred and aims to find the root cause or responsible component behind it. 

The data from the observed machinery can be gathered in several ways. The simplest is by adding 

sensors to the system based on what variables need to be observed. The methods vary depending on 

the observed system and can cover electricity consumption analysis, thermography, ultrasonics, 

tribology along with environmental variables like temperature and humidity. The choice of observed 

variables is critical when designing such a system and also determines what sensors are needed. 

Industry 4.0 represents the concept of a next generation manufacturing where machines are 

interconnected in order to make use of the advancements in information analytics. This next industrial 

revolution is expected to be triggered by the Internet, which facilitates connecting machines through 

large networks into Cyber-Physical-Systems (CPS). The integration of software into the industrial 

process can aid in an autonomous optimization and management of product service needs. Smart 

factories are nowadays focused on improving machine performance through interaction with 

surrounding systems [24]. PdM is a key concept in that process. 

Мachine learning is another important concept as it is being increasingly often used in PdM systems. 

Machine learning is the process of gathering knowledge from data through training with examples.  

In the field of PdM, there is an increasingly large amount of data that can be gathered. Machine 

learning provides a method for generating information from it. This allows systems to improve with 

experience and thus refine models for predicting outcomes of questions based on gathered knowledge.  

There are two types of algorithms in machine learning: supervised and unsupervised learning. 

Supervised learning algorithms work with labeled training data. Every example of training data has 
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corresponding input and output object. A form of supervised learning, for example, is classification. 

[19] 

In unsupervised learning the algorithm is supposed to find a pattern in unlabeled data. In this type of 

machine learning, there isn’t a predetermined right or wrong outcome. The goal is instead to find what 

patterns are being discovered. It is used for example in data clustering. [19] 

Which type of machine learning is appropriate is decided by the output that should be produced. 

Machine learning is used in practice for spam detection, in stock trading, robotics, and e-commerce. 

[19] 

The remainder of this thesis is organized as follows. Section 2 reviews related research on the topic 

and Section 3 provides a classification of the different types of PdM systems. Section 4 describes the 

requirements for a generic centralized PdM system. Section 5 describes the proposed architecture that 

implements those requirements. Section 6 gives an overview of possible technologies for implementing 

that architecture and evaluates which are most suitable for the use case. Finally, Section 7 suggests 

future work and Section 8 presents conclusions. 
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2. Related Work 

 

This section introduces related projects in the field of PdM. It gives an overview of how PdM can be 

implemented in different industries and how the specific use cases influence the design of the 

maintenance system. the architecture and components of the maintenance system. 

 

2.1. PreData  

 

This thesis is written in collaboration with Accso GmbH as part of the PreData project. The goal of the 

project was creating a prototype of a big data PdM system for Industry 4.0 that is implemented for the 

use case of monitoring a refrigerator. The prototype used Estimote [30] and BlueUp [31] sensor 

beacons for monitoring key variables. A RaspberryPi is used as a gateway for communicating with the 

server. The prototype uses Hadoop along with HBase and OpenTSDB for data storage. This thesis 

focuses on providing a reference architecture for future projects in the field of PdM. More information 

can be found in [29]. 

 

2.2. DB Cargo 

 

DB Cargo uses predictive maintenance to constantly monitor the state of their locomotives. [23] The 

data is then compared to data gathered immediately before a fault occurred. Within a Proof of 

Concept, the sensor data was analyzed in order to produce a heat map indicating the location of 

locomotives whose sensor data indicates a potential fault. The data is transmitted in fixed intervals, 

whose frequency can also be changed by the user. 

 

2.3. SIMAP 

 

The use of predictive maintenance for wind turbines is particularly convenient since most modern 

wind turbines already have sensors installed in them. One such system that relies on the use of these 

sensors is SIMAP [11].  

It uses the gathered data to evaluate each component of the wind turbines in a Health Condition 

Assessment Module as well as scan for possible faults in an Anomaly Detection Module. Both of these 

functions rely on Normal Behavior Models created by artificial neural networks and the comparison 

between expected and actual values are how anomalies are detected, specifically by calculating normal 

behavior deviation degree and estimation certainty degree. SIMAP also offers a Diagnosis Expert 

Module that indicates the root cause of detected anomalies with the use of a fuzzy expert system that 

handles the uncertainty in such decision making. A Predictive Maintenance Scheduling Module is 

responsible for deciding when the maintenance actions should be scheduled. For this calculation, a 

fuzzy genetic algorithm is used since the task requires multi-objective large-scale dynamic decision-

making with variable constraints. Finally, the performed maintenance is evaluated in the Maintenance 

Effectiveness Assessment Module by comparing the health condition of the exchanged elements before 

and after maintenance. 

SIMAP is an example of how machine learning can be incorporated into PdM and gives an overview of 

the specific task that should be performed by different components of such a system. 
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2.4. Watchdog Agent 

 

A system with similar prognostic and diagnostic functionality is the Watchdog Agent. It bases its 

predictions on trending and statistical modeling of the observed performance signatures that have 

been measured in the past and model parameters. The performance assessment module of the 

Watchdog Agent [28] is a modular open architecture toolbox. The algorithms in the toolbox are based 

on neural networks, time series, wavelet and hybrid joint time-frequency. The Sensory Processing and 

Feature Extraction Module gathers the sensor data and filters it down to the most significant to the 

performance information. A Quantitative Health Assessment Module evaluates the degree of similarity 

between the observed signatures and the established ones for normal behavior. This value is called 

Confidence Value (CV) in the range between 0 and 1 with 1 being the perfect normal behavior value. 

The Watchdog Agent uses the gathered historical data of occurred anomalies in order to improve its 

classification of failure modes in the future. The Performance Prediction Module analyses the behavior 

process signatures and creates predictions based on them with the help of Autoregressive Moving 

Average (ARMA) and match matrix methods. The Watchdog Agent also can evaluate which 

components are in good enough condition to be disassembled and reused. 

 

2.5. Taleris  

 

Taleris is a Joint Venture of GE Aviation and Accenture with the purpose of using big data analytics of 

sensor data gathered from more than 30 airlines in order to prevent any faults in the operating 

procedures on an airplane. [23] Such improvement in maintenance would lead to improved flight 

security, fewer delays and flight cancellations and ultimately better customer satisfaction. The 

developed Taleris Big Data Platform and Analytics solution consists of the following components:  

• A real-time data transmission that is compressed due to the bandwidth constraints of the 

environment  

• The acquisition, storing and processing of sensor data from airplanes and partner airlines 

• Integration of maintenance, routing and planning data  

• Deployment of Data Science and Services for Predictive Analytics, Intelligent Operations, 

Root Cause Analytics, Simulation and Intelligent Planning, all with the use of learning 

algorithms  

• Visualization of the gathered findings for different user groups per Push or Pull over 

different channels and direct integration in the specific systems of the client airlines. 

This solution allows for predictions of faults in certain vent systems with the accuracy of one week 

beforehand. The Taleris system allows for airlines to better optimize their wait cycles, save 

maintenance and replacement costs and reduce delays. 
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3. Classification of PdM  

 

This section describes possible classifications of PdM systems according to different criteria. Each 

subsection includes what the challenges for this specific type are and what further design decisions 

need to be made in response to it. 

 

3.1. Incoming data source 

 

There can be made a distinction between PdM systems based on the source, from which they receive 

data. This is often determined by whether sensors are already part of the machinery that the PdM 

system monitors. 

 

3.1.1. Data directly from the machine 

 

The incorporation of sensors in modern machinery becoming commonplace is a great advantage when 

it comes to designing PdM systems. This means the maintenance system’s scope starts at a higher level 

– the gathering and transmission to the components responsible for processing the data. Such 

incorporation of sensors is commonplace in wind turbines, where the sensors supply data for different 

controllers. That sensor data can also be incorporated in a PdM plan, which is the case for the SIMAP 

[11] system, which was introduced in the previous section. 

Whether the sensor data is easily accessible, however, is an important distinction. It is possible that the 

observed system generates its own output from its sensors, for example in the form of warnings of 

malfunction. In this case, the exact cause or sensor measurement that set it off is unknown. This is the 

case in many modern household appliances like refrigerators and washing machines. Such a set-up 

would influence further design decisions like the functionality of the data analysis component. Without 

access to the original sensor data, the PdM system only works with very limited information. An 

alternative, in this case, would be incorporating additional sensors for monitoring. 

 

3.1.2. External measurements 

 

An important aspect when designing a PdM plan for a system that doesn’t incorporate sensors is 

deciding which parameters are relevant to its maintenance and need to be monitored. There are a 

number of techniques that are commonplace for PdM systems like vibration monitoring, 

thermography, tribology, and ultrasonics. [20] Along with that it is possible to incorporate visual 

inspections by maintenance experts as a data source. The decision which PdM technique is sensible 

varies between use cases since different machines have specific signs of deterioration. In [34] the 

different methods for gathering data from machinery are introduced including through external, 

usually wireless sensors. Such sensors can also be an addition to integrated sensors in cases where they 

do not provide enough information for accurate assessment on their own. Additional benefits of 

wireless sensors are introduced in Subsection 4.5.2. 

 

3.2. Amount of generated data 

 

Depending on the amount of data generated by a PdM system there are a number of design decisions 

that need to be made with regards to the storage and transmission of data. In the next subsections, the 

different scenarios will be examined based on whether a big data solution is necessary. 
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3.2.1. Big data 

 

The quality and quantity of data produced are steadily increasing with time and making it more 

difficult to manage with conventional solutions. This is solved through the introduction of big data 

tools like Hadoop. Having access to such quantities of data would mean that it can be used for analysis 

and machine learning purposes. Greater intelligence can be used in optimization for smart factories 

and cities through the introduction of prognostics and health management algorithms. [24] Two 

examples of big data systems were introduced in the related work section namely Taleris and DB 

Cargo. 

 

3.2.2. Small data 

 

There are still numerous cases though where the introduction of big data architectures would be 

unnecessary. In scenarios where only a limited amount of data is gathered in more contained use 

cases, a light-weight solution would be more suitable. This is the case in systems where only a small 

number of parameters need to be monitored. An example of such a system is SIMAP. This is also the 

case for smart buildings and in particular for energy monitoring as described in [37]. 

 

3.3. Type of observed system 

 

There are a number of design decisions that are made depending on whether the monitored system is 

stationary or mobile including communication set-up, updating process and location of the data 

analysis. 

 

3.3.1. Stationary 

 

Smart factories and buildings fall under the umbrella of stationary systems and as such represent a 

more traditional use case for PdM systems. This scenario allows for more reliable communication 

between components. 

 

3.3.2. Mobile 

 

In the case of trains and airplanes, for example, a more distributed approach to the design of a PdM 

system is usually necessary. This means the anomaly detection modules need to be set up locally since 

a centralized module would usually have a too slow response time. This would also influence how 

often the system can be updated. Such a system is, for example, the Distributed Aircraft Maintenance 

Environment (DAME). [27] Since mobile systems usually require a distributed solution, further details 

are introduced in Subsection 4.4.1. 

 

3.4. Location of the data analysis 

 

Based on where the fault definitions are stored and where the data processing happens, PdM systems 

can be divided into two categories: systems that perform data analysis in a distributed manner and 

such that use a centralized predictive analytics component for that purpose. 
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3.4.1. Distributed 

 

In this case transmission of large amounts of data is difficult, so the data processing is distributed to 

local subsystems. This is usually necessary for mobile systems where decision-making is time-sensitive 

and a delay caused by the data transmission to a centralized component would be too impractical.  A 

distributed approach to data analysis is used for example in the case of DAME. [27] Another significant 

project is PROTEUS, which was financed by the Federal Ministry of Education and Research of 

Germany and the French Ministry of Economy, Finance and Industry. It provides an architecture for 

integrating subsystems that have the task of performing remote maintenance. [35] 

 

3.4.2. In a centralized component 

 

Implementing data processing in a centralized component has a number of advantages like a larger 

amount of available data and an easier to update system. This is usually implemented in stationary 

systems that generate large quantities of data. In such use cases, the introduction of cloud-based 

solutions would be suitable. 

 

3.5. Topology 

 

The topology for the PdM system is an important aspect as it influences the communication protocols 

that would be necessary 

. 

3.5.1. Centralized topology 

 

In a traditional set-up for a PdM system, the sensors would either be integrated into the monitored 

machinery or the connection would resemble a star network topology, where all the sensors are 

connected to one central component but not to each other. This more classical topology would mean 

using simpler communication protocols and therefore easier development of the system that doesn’t 

require highly specific expertise.  

 

3.5.2. Wireless Sensor Networks 

 

Wireless sensor networks (WSN) have many advantages over traditional cabled industrial monitoring 

systems namely self-organization, intelligent processing capability, and flexibility. [25] The rust, 

corrosion, steam, dirt, dust, and water in industrial environments can do possible damage to wires, 

which is not a concern for WSN. Furthermore, a cost of $2000 per foot for wiring can be saved since 

wireless sensors are more cost-effective ($20 per foot). [34] 

In WSN sensors are installed on industrial equipment for the purpose of monitoring critical 

parameters. The sensor nodes are interconnected wirelessly and can transmit data between each other. 

These sensor nodes are connected to a sink node, which is responsible for analyzing the data from each 

sensor. In case that analysis detects abnormal measurements, plant personnel is notified. 

There are, however, a number of challenges when developing a WSN namely the need for expertise in 

several different fields, specifically in the areas of sensor-technology, RF design, and propagation 

environment, networking as well as general industrial expertise. [25] 

WSN are for example incorporated in aircraft health management systems. [26] 
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3.6. Anomaly detection strategies 

 

This section looks at how the gathered data from the monitored system needs to be interpreted so that 

early signs of deterioration can be detected.  

 

3.6.1. Predefined fault states 

 

In the case of industrial machinery standard alarm levels can usually be gathered from industry 

standards (ISO for example), manufacturers or diagnostic system retailers. [21] What common faults 

that occur in different systems are also already known. For example [36] includes the specific 

problems that can occur in Heating, ventilation and air conditioning (HVAC) systems. This means that 

in the process of designing PdM the common signs of deterioration are already known. These 

standards, however, can be imprecise and are not suited to indicating a particular cause for those 

measurements. A specific diagnosis in those cases is gained through performing machine inspections. 

[21] 

The standard alarm levels can be used as a basis for developing more precise maintenance systems. 

This can mean incorporating machine learning to discover more accurate deterioration signs.  

Another main concern in the design process is determining the time interval until a failure occurs after 

those initial signs have been detected.  

 

3.6.2. Unknown fault states 

 

Discovering potential deterioration signs is a non-trivial task since it requires detecting anomalies in 

the gathered data. Anomaly detection is a type of artificial intelligence that can be useful in such a 

scenario. This would mean that a normal behavior needs to be defined through a model first. One 

approach is creating a probabilistic model. Another is using a threshold for acceptable values. A 

potential issue, in this case, is balancing the ratio between false positives and false negatives. This 

depends on which is more acceptable in the specific use case. A data structure that can be used in this 

case is t-digest, which is used for the estimation of extreme quantiles in large datasets. [22] 

 

3.7. Overview 

Figure 1: Classification of PdM systems. 
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Figure 1 represents a possible way of classifying PdM systems. The two main important characteristics 

that define the architecture of a PdM system are the size of the data that should be handled and 

whether or not the system is distributed. The distinction of whether a system is stationary or moving is 

relevant to the design as far as it determines a distributed or a centralized design. Predefined fault 

states influence what functionality would be necessary, specifically anomaly detection as a part of a 

machine learning module.  

 From the given examples SIMAP would fall under the category of centralized small data systems, 

while PROTEUS has a distributed small data architecture. Most PdM systems for trains and airplanes 

would fall under the distributed big data quadrant due to the amount of data they generate. 
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4. Requirements for a modular centralized PdM system  

 

This section introduces the requirements for a generic PdM system that performs all its evaluation in a 

centralized component. Since they are intended for the definition of the problem domain of the 

reference architecture, the requirements are formulated for a non-specific scenario in order to ensure 

the applicability of the reference architecture in a larger number of cases. 

The requirements describe the core functionality that a PdM system needs without specifying an use 

case. In this case we are describing a system where it is appropriate for the analysis of the data to be 

done by a central component. The distinction between the centralized and distributed manner of 

analysis was introduced in the previous section. The main functionality of a PdM system is predictive - 

based on the incoming data the system should be able to predict the time remaining until a potential 

failure. This would require an accurate overview of the machinery state, which should be available to 

maintenance experts and can be taken into account when scheduling maintenance. A PdM system 

should also have diagnostic functionality - since the sensors are monitoring different components, in 

the case of faulty behavior it should be indicated which component is the cause behind it. The system 

should allow for scalability through adding new sensors for monitoring new variables. 

The system is intended for a generic user. This can include machinery or product owners or 

maintenance experts. Their goal is to have an accurate and up-to-date overview of the state of the 

machinery that is being observed by the PdM system.  They should, therefore, have access to all 

gathered data along with scheduled maintenance activities and evaluations made by the PdM system. 

The user should also be able to report maintenance-related data. This can include found reasons for 

failures or repairs. They should also be able to report state updates, which are used as non-sensor 

gathered sources of information on the state of the observed system. This knowledge will then be used 

in the later evaluation of the system. The user should also be able to schedule maintenance. The 

classes of data stored in the database, as well as the writing rights to those types, are represented in 

Figure 2. The user is supposed to have reading rights to all data. 

The requirements rely on variables such as t1 for the allowed delay and t2 for reaction time to 

anomalies. S1 indicates the amount of data the system should be able to store. These values remain 

undefined for the reference architecture since they vary depending on the specific scenario, for which 

the PdM system is implemented. 

An implementation of the proposed reference architecture would need to define these variables. 

As the main purpose of a PdM system is a timely notification of degradation or faulty behavior the user 

needs to be notified of the remaining time until a failure occurs. Similar to the already introduced 

mean-time-to-failure for the purpose of the proposed PdM system a variable 

actualMeanTimeToFailure is introduced, which signifies a prediction based on the accurate assessment 

of the monitored machinery. Similarly one of the great advantages of PdM is having an overview of the 

performance and efficiency of the system, which is described by the variable lossInProcessEfficiency. 
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Figure 2: Writing rights to the PdM database. 

 

4.1. Functional 

 

The implementation of the PdM system should fulfill the following functional requirements. 

 

1. The user should be able to add or remove observed machinery. 

Since one of the possible applications for the PdM system is in the case of large factories, the user 

should be allowed to adjust the number of monitored machines. 

 

2. The user should be able to indicate the type of observed machinery. 

Since the fault state definitions are specific to a certain type of machinery, they only need to be defined 

once when such type is introduced to the observed system. This categorization is useful in later stages 

since known fault states would not have to be redefined.  

Def.: We define the set of all machinery types as T and the set of all components as C. 

 

3. The integration of new type of machinery should include the definition of fault states. 

This should be performed by a maintenance expert during the set-up of the system or while extending 

the number of monitored machinery. 

 

4. The user should be able to add sensors monitoring new variables. 

As different types of systems require a specific set of sensors for their observation, it is necessary for 

the PdM system to allow the addition of any sensors regardless of the type of variable they are 
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monitoring. This implies that the storage and processing of the data should allow the addition of new 

types of monitoring data.  

 

Def.: We define the set of all possible measurable parameters as P =  {parameter1, . . . parametern}. 

For each parameter exists a unit u, and an interval I of permitted values [a, b]. Then a sensor 

measurement would be a set of a parameter 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖  where 1 ≤ i ≤ n, the value x that was 

measured, a timestamp t and a 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝐼𝐷 ∈ 𝑁: 

M ∶=  {𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖, x, machineID, t}.  

 

Such a measurement for example can be {temperature, 5, 0002143, 2016 − 11 − 28 07: 27: 35}. In this 

case we have temperature as 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟1, 5 as the value that was measured, a 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝐼𝐷 – 0002143 

and a timestamp 2016-11-28 07:27:35. 

 

5. The system should be compatible with any type of sensor. 

In order to facilitate the extensibility of the PdM system, its design should allow the adding of new 

sensors including such that monitor new variables. This also implied that the new data needs to be 

integrated into the evaluation process. In the case of new variables, this should be achieved through 

adjusting the failure definitions. 

 

6. The user should get updates on the values of the monitored variables. 

This visualization can be done in the form of graphs. The allowed delay between when the 

measurements are taken and the visualization is t1. 

 

7. The user should get receive notifications of declining efficiency or detected anomalies. 

These notifications are the result of the real-time data analysis that has been done by other 

components of the system. 

 

8. The user should be able to update the fault state definitions. 

These notifications are the result of the real-time data analysis that has been done by other 

components of the system. 

 

9. The user should be able to report manual measurements. 

These manual measurements that can be used along with the sensor data to improve the analytical 

aspect of the PdM system. 

 

10. The system should filter invalid sensor data. 

It is critical that all calculations are performed with accurate data and therefore a filtering of noise and 

outliers should occur before that stage. We define the filtering function as 

 

Def.:     filter: M → M  

where M is the initial set of measurements. This function can be implemented through Kalman filtering 

for example. 

 

11. The system should detect anomalies in the newest sensor data received in the last t2 

seconds. 



 

  13 

Since anomalies in the sensor measurements can indicate possible deterioration of the observed 

system, their detection can be crucial in preventing failures. Therefore this requirement covers the 

basic predictive functionality of a PdM system. 

 

12. In the case of a detected anomaly, the system should calculate the probability of the 

potential reasons and indicate which parts are most likely to have caused it. 

This information can be used later during maintenance.  

 

Def.: We define 

   {anomalyDetection ∶=  (m1, m2, … mn), F}  →  (ci, pi) 

Where  m1, m2, … mn ∈  M, F is the set of all fault state definitions and the result of the function is a 

tuple (ci, pi) of a component and the probability of it having a fault. 

 

13. The system should store a record of all maintenance that was performed. 

Information on replaced parts or what the causes behind regularly occurring anomalies can greatly 

improve the accuracy of both the diagnostic and prognostic functionality. In the case of irregular 

behavior the system should take into account that newer parts are less likely to cause faults. 

 

14. The system should be able to compute the value for the KPI 𝐚𝐜𝐭𝐮𝐚𝐥𝐌𝐞𝐚𝐧𝐓𝐢𝐦𝐞𝐓𝐨𝐅𝐚𝐢𝐥𝐮𝐫𝐞. 

Evaluation based on the monitored parameters should be performed and the user should be notified of 

the remaining lifetime of the machine. The value for actualMeanTimeToFailure  can be used in the 

scheduling of maintenance since the most optimal and cost-effective time for replacement of parts is 

right before a failure occurs. [1] The result of the actualMeanTimeToFailure function is a time and it is 

calculated based on the fault state definitions F and all historical measurements M: 

actualMeanTimeToFailure:   F, M →  N. 

 

15. The PdM system should be able to compute the value for the KPI 

𝐥𝐨𝐬𝐬𝐈𝐧𝐏𝐫𝐨𝐜𝐞𝐬𝐬𝐄𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐜𝐲 . 

An analysis of the observed behavior and use of resources of the monitored system should give an 

evaluation of its performance. For the purpose of this calculation, we use the definition of electrical 

efficiency 

  Efficiency =  Useful power output / Total power input   (1) 

 

Def.: The value for lossInProcessEfficiency is the ratio between efficiency and ideal performance: 

 

  𝑙𝑜𝑠𝑠𝐼𝑛𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 / 𝐼𝑑𝑒𝑎𝑙 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒  (2) 

 

16. The system should store the original unfiltered data. 

This ensures that no data is lost and can later be restored and used. It also allows for improvements in 

the filtering function to be tested with original data. 

 

17. The system should store the definitions for fault states. 

Since all systems consist of a finite number of parts that can cause faults, we have a predetermined 

number of possible outputs. For all appliances and machinery, there exists a knowledge base on what 

the causes for most common faults are that the automation of this process can rely on.  
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The advantage of predictive maintenance in this case is the recognition of the reason behind a fault 

through the sensor observation. This means that specific sensor values can be connected with fault 

states. This valuable information is behind each definition. A fault state definition should, therefore, 

consist of a value interval for the sensor data, a part that is responsible for this observation and the 

probability of that exact fault occurring based on data from the other sensors, historical information 

and the state of all parts as reported by the maintenance expert including replacements.   

The definitions must indicate what measurements for which parameters indicate a potential fault. 

 

Def.: We define a fault state as a set of parameter1, . . . parametern ∈  P, a corresponding interval 

[𝑎𝑖 , 𝑏𝑖] for 1 ≤ i ≤ n that the measurements need to be in to fulfill that fault state definition, 

machinery type  t ∈  T, components 𝑐1, . . . 𝑐𝑚   ∈  C and probabilities 𝑝1, . . . 𝑝𝑚 ∈ [0, 1] : 

  {( parameter1, 𝑎1, b1, ), … ( parameter𝑛, 𝑎𝑛, b𝑛), t, (𝑐1, p1), … (𝑐𝑚, p𝑚)} 

 

Such a fault state for example could be 

{(temperature, 0, −∞), compressor refrigerator, (temperature control, 30%)}.  

In this scenario, a measurement (temperature, −5, 0002143, 2016 − 11 − 28 07: 27: 35)  should trigger 

a notification that a fault state has been entered. 

We indicate 𝐹 as the set of all fault state definitions. 

 

18. The system should update the fault state definitions based on historical data. 

The gathered historical data on the behavior of the monitored system especially right before a failure 

occurs can be a great source for identifying patterns and improving the predictive functionality of the 

PdM system. This can potentially be achieved through machine learning.  

 

Def.: The fault state optimizing function is 

defUpdate: F →  F. 

 

4.2. Non-functional 

 

Along with those, there are further non-functional requirements that must be fulfilled. 

 

 The system should require a solution that is not feasible with one machine. 

This requirement ensures the scalability of the system. As sensors can generate large amounts of data it 

is vital that the PdM system can process it. This is often not realistic when using a single machine for 

the implementation. This requirement, therefore, establishes scalability through the use of a number of 

machines.  

 

 The system should able to support the storage of S1 GB of data. 

As sensors can generate large amounts of data it is vital that the PdM system can process it. Since the 

amount of data can vary based on the use case, the values should be set during the implementation. 

 

 The system should be designed in a way that allows for scalability as additional sensors 

are added. 

This ensures the lack of delays when the system is extended. 
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5. Proposed Architecture  

 

5.1. Centralized architecture 

 

 This section introduces the reference architecture for a PdM system that performs all its 

analytical functions in a central component. This architecture is designed according to the 

requirements introduced in the previous section.  

The architecture is introduced in three levels, starting at Level-1 with a black box representation of the 

PdM system and its interactions with the surrounding environment. Each next level goes into a more 

detailed white-box description of components – Level-2 describes the general architecture of the 

system while still having a black-box view of the Predictive analytics module, which is explained in 

detail in Level-3.  

 

5.1.1. Level-1 

Figure 3: PdM System, Level-1. 

We first consider the proposed system in the context of the Internet of Things. Figure 3 shows the 

interaction between the proposed systems and its environment. In Internet of Things (IoT) the concept 

of “things” can be any number of information sources like smartphones or factory machines with 

integrated sensors. 

The system is supposed to interact with the sensors that are installed in the observed machines and 

gather information from them. At this level of representation, the PdM system is one entity interacting 

with the monitored system. 

 

5.1.2. Level-2 
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The following UML diagram describes the components that the reference architecture consists of. 

Figure 4 White-box representation of the data stores, Level-2. 
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The proposed architecture would have the following components: 

 The sensors that gather data on the observed system are considered a black box since any 

implementation can require the measurement of different parameters. The sensors can vary 

from IoT devices to ones integrated into the machinery like the ones most modern wind 

turbines contain. 

 The gateway is the component responsible for gathering the data from the neighbouring 

sensors and sending it to the messaging queue.  

Since the designed architecture is a modular one and therefore independent from the types of 

sensors used and the format they send updates we can only define the gateway as a black box. 

Its function is to receive those updates and send them to the messaging queue for further 

redistribution. 

 The messaging queue receives the sensor data from the gateways and redistributes it to two 

channels. The first one is directly to the Filtering module for real-time analysis. The data is also 

sent to the Generic data store in an unfiltered state. This allows for the later use of machine 

learning on the original data. 

 The proposed architecture would have three main data stores: a Generic Data Store, Specific 

Data Store and a Config Database. The Generic Data Store contains the gathered sensor data in 

its original unfiltered state as specified in Requirement 16. The Specific data store contains the 

data that has been cleared of noise in the Filtering module. The Config database contains the 

fault state definitions implementing requirement 17 as well as a record of all the machines that 

are under observation through the PdM system. It also contains data for configuring the 

gateways. 

 The Filtering module has the purpose of clearing noise in the data so that these inaccuracies 

don’t lead to false evaluations in the Predictive Analytics module. The filtered data is then 

stored in the Specific data store.  

 The data meant for batch-analysis undergoes the Extraction process where the unstructured 

and unfiltered data is gathered for further analysis in the components of the Predictive 

Analytics module responsible for machine learning. 

 The Predictive Analytics module contains all real-time and batch-analysis components that are 

responsible for the evaluation of the sensor data. The results are then displayed by the User 

Interface. A more in-depth view of this module is introduced in the next subsection. 

 The UI component should provide the user with a visualization of the sensor data as well as the 

current values for actual-mean-time-to-failure and loss-in-process efficiency. In case those 

values fall below a certain threshold the user should receive a notification. 

The UI should also provide the user with options for adding or removing sensors and 

machinery, specifying or updating the fault definitions for a type of machinery as well as 

adding manual measurements. The UI component thus fulfills requirements 1-4 and 6-9. 

 

5.1.3. Level-3: Predictive Analytics module 

 

The predictive analytics module should have the following components:  
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Figure 5 White-box structure of the Predictive Analytics Module, Level-3. 

 

 The Fault State Definition Optimization module has the purpose of improving the fault 

definitions based on historical data stored in its unfiltered state in the Generic Data Store. The 

output for it is said definitions. This module’s purpose is to fulfill Requirement 18. 

The main purpose of the Fault definition optimization module is to improve the definitions that 

are used by the real-time analysis module for detecting anomalies. This can be achieved 

through the use of machine learning algorithms on all the historical data that has been 

gathered. This can include a re-evaluation of the indicators for specific fault states and the 

discovery of new related variables. 

 The Anomaly Detection Module is responsible for detecting possible faults based on the newest 

sensor data and thus implementing requirements 11 and 12. This module relies on data from 

the Specific Data Store and the Config Database where the fault state definitions are saved. 

When the module evaluates that a fault state is entered, it sends a notification to the UI.  

 The Efficiency Evaluation Module calculates the value for the loss-in-process-efficiency variable 

as defined in the previous section in requirement 15. The calculation uses the current sensor 

data from the Specific data store. In case the value for loss-in-process-efficiency variable falls 

beneath a certain threshold t, a notification is sent to the UI. 

 The Actual-mean-time-to-failure calculation module implements the calculation for the variable 

of the same name introduced in the previous section in requirement 14. This module relies on 

the historical data saved in the specific data store. This includes previous maintenance that was 

performed on the system, how long it has been in a fault state for along with Config data such 

as the service life of the specific machinery.  The evaluation also uses the current values for 

loss-in-process-efficiency as well as the results of the Anomaly Detection Module, which 

indicates whether a fault state has been entered or not. Depending on the amount of data 

sources available at any point the value for the Actual-mean-time-to-failure variable can be 

calculated through different methods: 

o In any newly installed system that hasn’t gathered enough historical data and has not 

yet entered a fault state the value is based on the efficiency. If the value for loss-in-

process-efficiency is stable, we take the average lifespan of such machinery due to lack 

of enough data for a more accurate assessment. In case the efficiency is declining this 
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development can be mathematically modelled through a function that can predict when 

a failure of the system should occur. 

o In the case where there is enough historical data gathered and a fault state is not 

currently entered, the behavior of the system can be compared to past states that have 

produced similar sensor measurements and the value should be based on how the 

system has behaved previously. 

o In a scenario where the Anomaly Detection module indicates that a fault state has been 

entered, historical data can be a good indication of how the deterioration process would 

look and this can be taken into account. If, however, there is no such data available the 

Actual-mean-time-to-failure variable would default to the default time-to-failure for a 

specific fault state. 

When the value for the variable falls under a certain threshold a notification is sent to the UI. 
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6. Implementation of a centralized big data architecture 

 

This section introduces an overview of potential technologies that can be used for the implementation 

of the suggested architecture. A comparison between the possible implementation options is also made 

based on the suitability for the given use case. 

In this thesis Hadoop is chosen as the base big data framework for the implementation and therefore 

compatibility with it will be used as a base criteria for the other tools and technologies that would be 

used. 

6.1. Hadoop 

 

Hadoop is a distributed big data storage framework based on the concepts introduced by Google’s Big 

Table. Hadoop provides shared storage (the Hadoop Distributed Filesystem) and analysis 

(MapReduce) that is resistant to hardware failure. [6] 

Hadoop consists of four modules: the Hadoop Distributed Filesystem (HDFS), MapReduce, YARN and 

Common. [7] The Hadoop ecosystem covers numerous projects that are related to and extend the 

functionality of those core modules. [6] 

 The Hadoop Distributed Filesystem (HDFS) is responsible for the data storage. HDFS’s design 

focuses on three main points: the storage of very large data files (up to hundreds of terabytes in 

size), streaming data access (a write-once, read-many-times data processing pattern) and the 

use of commodity hardware. [6] HDFS splits files into blocks (64 MB by default) in order to 

manage their storage. The filesystem achieves fault-tolerance through storing three copies of 

each data block. In HDFS there are two types of nodes: namenodes (master) and datanodes 

(workers). In each cluster there is one namenode that manages the filesystem tree and 

metadata and multiple datanodes, which store the blocks of data. The namenode is also 

responsible for storing the information about which blocks store a particular file. 

 MapReduce is Hadoop’s data processing engine. MapReduce deals with the computation of 

reads and writes through abstraction and instead works through computation over sets of keys 

and values. [6] There are two main phases of computation: the map and the reduce function. 

In the map phase the raw data is sorted into key/value pairs and in the reduce phase the actual 

processing of the already organised data happens.  

 YARN (“Yet Another Resource Negotiator”) provides resource management and thus facilitates 

the separation between the programming and infrastructure models. 

 Common is a set of utilities necessary for other Hadoop modules. 

While MapReduce is the default processing engine for Hadoop, it can be replaced by other options in 

the Hadoop ecosystem due to the modularity of Hadoop. In this section, we will take a look at Spark 

and other more suitable solutions for the proposed PdM architecture.  

 

When it comes to big data analysis platforms Hadoop is considered the de facto choice. [33] The main 

advantages that contribute to that are its scalability, fault-tolerance, cost-efficiency and flexibility. Next 

to other big data solutions, Hadoop proves to be a more appropriate choice. A comparison between 

Hadoop and the Oracle database’s performance found that Hadoop was easier to configure and scaled 

better. [32] 
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6.2. Databases 

 

Relational Database Management Systems (RDBMS) like MySQL are the most commonly used type of 

databases. The relational model is a key concept – a relation is a table with rows and columns. [12] 

A table contains a set of tuples with the same attributes, which describe the same object. A relational 

database consists of a set of such tables, where data from one can relate to another by key.  

The main issue with RDBMS in the context of big data is the performance – queries become 

increasingly slow. This is the main reason why NoSQL databases are a preferred solution since they 

facilitate the horizontal scaling of data. 

In this section two such databases will be described in more detail – HBase and Cassandra. 

 

6.2.1. HBase 

 

HBase is a column-oriented database that is part of the Hadoop ecosystem. A column-oriented 

database stores its data by column and not by row as is traditionally the case in MySQL.  

In HBase all columns of one row are grouped into column families and have a common prefix as 

indication. During the definition of table schema all column families of a table need to be specified. 

New columns, however, can be added on demand. All column family members are also stored together 

physically on the HDFS. Unlike tables in RDBMS, in HBase, it is possible to add new columns to an 

already existing table. Cells are versioned in HBase through a timestamp. The tables are also divided 

into regions – a region is a subset of rows. In the beginning each new table consists of only one region 

and as it grows it is split into multiple regions. 

 

6.2.2. Cassandra 

 

Cassandra is Facebook’s second generation distributed key-value store. [13] Like HBase, Cassandra is 

designed to handle large amounts of data and provide high availability. One of Cassandra’s main 

advantages over HBase is its lack of a single point of failure since every single node in a cluster 

occupies the same role. Though the addition of new machines, Cassandra’s read and write throughput 

can be increased linearly. 

Similarly to HBase columns can be added to specific keys but Cassandra also allows for columns to be 

put into column families in a nested way.  

 

6.2.3. OpenTSDB 

 

The data gathered by PdM systems is usually time-series data so databases specifically designed for 

storing it are a sensible solution for implementing the proposed system. This type of data has certain 

specifics that define it: it is collected in pairs of timestamp/value, recorded once and rarely changed 

after and data is usually accessed through a time range.  

OpenTSDB is a database for storing time-series data that uses HBase for storage. It can use REST API 

or client side collection library. OpenTSDB also has a GUI that can be used for plotting and basic 

analytics. OpenTSDB receives data as a set of four values: timestamp, value, metric and tags. [14] 

There are a number of advantages to OpenTSDB as specified in [15] for the use case of smart meters 

that would still be valid for any PdM system like scalability provided by HBase, fault tolerance and the 

facilitation of storing an increasing number of metrics.  
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As OpenTSDB is considered the most popular time-series database due to its simple and generic 

architecture [16] it is better suitable for the proposed implementation.  

Since both HBase and Cassandra are considered fairly competitive databases [15] and OpenTSDB has 

better integration with HBase, an implementation with OpenTSDB and HBase is the optimal solution. 

6.3. Streaming data analytics tools 

 

6.3.1. Spark 

 

Apache Spark is a large-scale data processing engine that is based on MapReduce but provides a 

considerate improvement on its functionality. In order to provide fault tolerance Spark uses Resilient 

Distributed Datasets (RDD), which store data in-memory. This allows for better efficiency. 

As an iterative batch processing engine Spark does not provide real-time processing. An alternative is 

Spark Streaming which uses micro-batching, an approach where the data is broken down into smaller 

packages in order to be processed by the batch system. While not being a true real-time processing 

system, Spark Streaming provides easier load balancing and resistance to node failure. In the context 

of the proposed system, however, Spark Streaming is an adequate solution since its minimal latency 

would not be a problem in most projects. [7] 

 

6.3.2. Flink 

 

Apache Flink provides both batch and stream processing. Unlike Spark’s micro-batch approach, Flink’s 

streaming API is event-based. Flink also has connectors for receiving data from Kafka, RabbitMQ, 

Twitter, and Flume as well as user-defined sources. 

FlinkML - Flink’s machine learning library was introduced in 2015. Flink is also compatible with 

SAMOA as an alternative machine learning library for streaming. 

 

A comparison between Spark and Flink done in [8] states that Spark provides better fault-tolerance 

and is more suitable for iterative algorithms. Flink, however, is said to be easier to integrate with other 

projects and provide more optimization mechanisms. A comprehensive comparison between the two 

frameworks done in [9] states that due to its larger developer community Spark has better usability. 

While Spark does not provide true stream processing its latency is minimal while providing higher 

fault-tolerance and better usability which is what makes it more suitable for the implementation of the 

proposed PdM architecture. 

6.4. Messaging systems 

 

Publish-subscribe is a distributed interaction paradigm suitable for loosely coupled and scalable 

systems. It allows the senders of messages to write to a persistent store and the receivers to get the 

changes to a class they have subscribed to at a system-appropriate time-frame. [17] The most popular 

open-source implementations are Apache Kafka and RabbitMQ. 

 

6.4.1. Kafka 

 

Apache Kafka is a publish-subscribe messaging system developed at LinkedIn. One of the main aspects 

considered in its design is delivering large volumes of log and event data with minimal latency. 
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Publishers submit messages to a specific topic. Each topic holds a feed of all messages sent to it and is 

spread over a number of Kafka brokers. Each broker holds zero or more partitions of a topic and each 

partition is a write-ahead log of messages. [18] 

Kafka utilises some very effective optimisation strategies like using batching at all stages of the pipeline 

and using persistent data structures and OS page cache, which leads to significantly better throughput. 

 

6.4.2. RabbitMQ 

 

RabbitMQ is an implementation of the Advanced Message Queuing Protocol (AMQP). AMQP is 

designed to solve the problem of interoperability in asynchronous messaging middlewares. The 

protocol divides message brokering into two main concepts: exchanges and message queues. An 

exchange is a router that receives messages and decides which message queues they should be sent to. 

The message queue stores the messages and then sends them to their respective receivers. Bindings 

join together the exchanges and message queues by defining the rules for the routing done by the 

exchanges. [18] 

Beyond the scope of the AMQP protocol RabbitMQ also provides a more efficient mechanism for 

acknowledging publishers, better flow control and better defined transactional behavior.  

RabbitMQ is also considered closer in design to classic messaging systems than Kafka. [18] 

 

When compared Kafka and RabbitMQ have similar low-latency results [18]. In a basic set-up, 

RabbitMQ performs better in terms of throughput. Kafka’s performance can, however, be greatly 

improved by increasing the partition count on a single node, which demonstrates its superior 

scalability. 

Kafka is also stated to be more suitable for streaming use cases [18] since it has a light-weight stream 

processing library (Kafka Streams), which makes it better suited for the implementation of the 

proposed PdM system. 

6.5. Predictive analytics tools 

 

This subsection introduces machine learning libraries that are suitable for big-data analysis within the 

Hadoop ecosystem. 

 

6.5.1. Mahout 

 

Mahout is a machine learning library that covers a large variety of algorithms for classification, 

clustering and batch based collaborative filtering. [10] Mahout is based on MapReduce which is why 

its main disadvantage is slow runtimes. Alongside that Mahout has been reported to be difficult to set 

up for Hadoop projects [7]. Mahout’s algorithms, however, scale well for larger datasets. While its 

extensibility is considered a major advantage, a high proficiency in Java is required in order to make 

use of that extensibility. 

 

6.5.2. MLlib 

 

MLlib provides a significant improvement in computation time through making use of Spark’s in-

memory computation. This, however, also means that it is dependable on Spark and therefore not 

compatible with other platforms. [7] It also provides tools for feature extraction, basic statistics and 
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regression models, which in particular are not covered by Mahout. MLlib’s set up is also reportedly 

easy compared to Mahout. 

 

Since Spark is the chosen streaming and batch-analysis framework for the proposed implementation, 

this allows a compatibility with MLlib as the chosen machine learning library. MLlib’s main advantage 

for this implementation is its faster runtimes. 

6.6. Proposed implementation 

 

After an evaluation of the possible solutions that can be used when implementing the architecture 

proposed in the previous chapter this section describes an overview of the most suitable for the generic 

use case components.  

Figure 6 displays the interaction between those components. Apache Kafka’s messaging queue receives 

data from the sensors and sends it to Spark for stream processing. Spark is also responsible for batch 

analysis through the use of the machine learning library MLlib. Data is stored in OpenTSDB which is 

based on HBase. All of these components work within the Hadoop framework and use its core 

components as basis. 

 

 

 

Figure 6 Proposed implementation of the PdM architecture. 
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7. Future work 

 

A possible continuation of this work could cover the development of a similar architecture and 

proposal of suitable technologies for implementing it for a scenario, where a more distributed 

approach in data analysis is necessary. There are real-world scenarios where a reaction time is critical 

and the delay caused by a central analytical component is too impractical like for example in airplanes 

and trains.  

In such situations a different approach in the development of a PdM system is necessary. The 

mentioned difficulties can be avoided by delegation the analytical and evaluation modules to a local 

level. This can be achieved through the introduction of components that provide evaluation only for 

smaller subsystems. In such a solution, a consideration should also be given to how machine learning 

can be introduced and at which level in the hierarchy that would be sensible. That also determines 

how the process of updating the fault state definitions in all subsystems should be set up. 

 

8. Conclusion 

 

In this thesis a proposal for a centralized reference architecture for a PdM system is made. A main 

aspect of the architecture is the predictive analytics module which contains components responsible for 

detection of potential failures in streaming data as well as for optimization through using machine 

learning in batch analysis. This reference architecture can be used as a basis for future projects. 

The architecture was designed on the basis of functional and non-functional requirements that define a 

general use case.  

This work also contains an evaluation of possible technologies that can be used to implement the PdM 

architecture based on the requirements for such a system. The proposed implementation uses projects 

within the Hadoop ecosystem. The solution would use the HBase and OpenTSDB databases and 

Apache Spark for batch and stream processing. 

In addition, this thesis contains a classification of PdM systems according to incoming data source, 

amount of generated data, type of observed system, location of the data analysis, topology and 

anomaly detection strategies. 
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