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a b s t r a c t 

Classification rules and rules describing interesting subgroups are important components of descriptive 

machine learning. Rule learning algorithms typically proceed in two phases: rule refinement selects con- 

ditions for specializing the rule, and rule selection selects the final rule among several rule candidates. 

While most conventional algorithms use the same heuristic for guiding both phases, recent research in- 

dicates that the use of two separate heuristics is conceptually better justified, improves the coverage of 

positive examples, and may result in better classification accuracy. The paper presents and evaluates two 

new beam search rule learning algorithms: DoubleBeam-SD for subgroup discovery and DoubleBeam-RL 

for classification rule learning. The algorithms use two separate beams and can combine various heuris- 

tics for rule refinement and rule selection, which widens the search space and allows for finding rules 

with improved quality. In the classification rule learning setting, the experimental results confirm previ- 

ously shown benefits of using two separate heuristics for rule refinement and rule selection. In subgroup 

discovery, DoubleBeam-SD algorithm variants outperform several state-of-the-art related algorithms. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

While most data mining techniques aim at optimizing predic-

ive performance of the induced models, their comprehensibility is

f ultimate importance for expert systems and decision support.

xamples of application areas in need of transparent models in-

lude medicine, law, finance and knowledge discovery ( Bibal & Fré-

ay, 2016 ). 

Rule learning is a symbolic data analysis technique that can be

sed to construct understandable models or patterns describing

he data ( Clark & Niblett, 1989; Fürnkranz, Gamberger, & Lavra ̌c,

012; Michalski, 1969 ). As one of the standard machine learning

echniques it has been used in numerous applications. Compared

o statistical learning techniques, the key advantage of rule learn-

ng is its simplicity and human understandable outputs. Therefore,

he development of new rule learning algorithms for constructing
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nderstandable models and patterns is in the core interest of the

ata mining community. 

Symbolic data analysis techniques can be divided into two cate-

ories. Techniques for predictive induction produce models, typically

nduced from labeled data, which are used to predict the label of

reviously unseen examples. The second category consists of tech-

iques for descriptive induction , where the aim is to find compre-

ensible patterns, typically induced from unlabeled data. There are

lso descriptive induction techniques that learn descriptive rules

rom labeled data, which are referred to as supervised descriptive

ule discovery techniques ( Kralj Novak, Lavra ̌c, & Webb, 2009 ). Typi-

al representatives of these techniques are subgroup discovery (SD)

 Atzmueller, 2015; Klösgen, 1996; Wrobel, 1997 ), contrast set min-

ng (CSM) ( Bay & Pazzani, 2001 ), and emerging pattern mining

EPM) ( Dong & Li, 1999 ) techniques. For instance, the task of sub-

roup discovery is to find interesting subgroups in the population,

.e. subgroups that have a significantly different class distribution

han the entire population ( Klösgen, 1996; Wrobel, 1997 ). The re-

ult of subgroup discovery is a set of individual rules, where the

ule consequence is a class label. 

An important characteristic of subgroup discovery is that its

ask is a combination of predictive and descriptive rule induction.

http://dx.doi.org/10.1016/j.eswa.2017.03.041
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It provides understandable descriptions of subgroups of individu-

als which share a common target property of interest. This fea-

ture of subgroup discovery has inspired many researchers to in-

vestigate new methods that will be more effective in finding inter-

esting patterns in the data. Most subgroup discovery approaches

build on classification algorithms, e.g., EXPLORA ( Klösgen, 1996 ),

MIDOS ( Wrobel, 1997 ), SD ( Gamberger & Lavra ̌c, 2002 ), CN2-

SD ( Lavra ̌c, Kavšek, Flach, & Todorovski, 2004 ), and RSD ( Lavra ̌c,

Železný, & Flach, 2002 ), or on algorithms for association rule learn-

ing, e.g., APRIORI-SD ( Kavšek, Lavra ̌c, & Jovanoski, 2003 ), SD-MAP

( Atzmüller & Puppe, 2006 ), and Merge-SD ( Grosskreutz & Rüping,

2009 ). 

The main difference between classification rule learning and

subgroup discovery is that subgroup discovery algorithms con-

struct individual rules describing the properties of individual

groups of target class instances, while classification rule learning

algorithms construct a set of classification rules covering the en-

tire problem space. 

A common property of classification rule learning and subgroup

discovery is that rule construction is performed in two phases: the

rule refinement and the rule selection phase. Typically, different

types of heuristics are used for classification rule induction and

subgroup induction. Researchers usually choose one heuristic and

use the same heuristic in the two phases of the rule construction

process: (i) a heuristic is used to evaluate rule refinements , i.e. to

select which of the refinements (specializations) of the current rule

will be further explored, and (ii) the same heuristic is used in rule

selection to decide which of the constructed rules will be added to

the rule set. For learning classification rules, Stecher, Janssen, and

Fürnkranz (2014) proposed to use separate heuristics for each of

the two rule construction phases, and suggested that in the refine-

ment phase, so-called inverted heuristics should be used for eval-

uating the relative gain obtained by refining the current rule. The

key idea of these heuristics is that while most conventional rule

learning heuristics, such as the Laplace or the m -estimate, anchor

their evaluation on the empty rule that does not cover any exam-

ples, inverted heuristics anchor the point of view on the base rule,

which is more appropriate for a top-down refinement process. 

In this paper, we test the utility of inverted heuristics in the

context of subgroup discovery as well as in the context of clas-

sification rule learning. For this purpose we have developed two

new beam search rule learning algorithms, named DoubleBeam-

SD for subgroup discovery and DoubleBeam-RL for classification

rule learning, respectively. The algorithms allow to combine vari-

ous heuristics for rule refinement and rule selection, with the goal

of determining their optimal combination, and, in consequence,

learn rules with better coverage and better descriptive power with-

out compromising rule accuracy. The introduction of two separate

beams enlarges the search space, enabling the learner to find rule

sets that are more accurate as well as more interesting to the end

user. For example, physicians appreciate rules that are highly accu-

rate when used in patient classification, but prefer understandable

rules that precisely characterize the patients in terms of the fea-

tures that distinguish the patients from the control group. 

We compare the double beam search algorithms to state-of-the-

art subgroup discovery and rule learning algorithms by experimen-

tally evaluating them on the UCI data sets, using the same data

sets as in previous research of Stecher et al. (2014) . All the com-

petitors are used with their default parameters from their corre-

sponding software platforms. In order to determine useful default

configurations for our algorithms, we employ a data set hold-out

methodology for parameter setting with the goal of finding the op-

timal configuration without tuning the algorithms to a particular

data set. 

The rest of this paper is organized as follows. Section 2 pro-

vides the necessary background on rule learning and subgroup dis-
overy, followed by the introduction of the coverage space and an

llustrative example, explaining the advantages of using inverted

euristics in rule refinement. It also summarizes the findings of

techer et al. (2014) concerning the use of inverted heuristics in

ule learning. Section 3 is concerned with subgroup discovery pre-

enting the DoubleBeam-SD algorithm and its variants, followed

y a description of the experimental setting and the obtained re-

ults. Section 4 outlines the DoubleBeam-RL algorithm for classifi-

ation rule learning, followed by a description of the experimen-

al setting, and the presentation of experimental results. Finally,

ection 5 presents the conclusions and ideas for further work. 

. Rule learning: background and related work 

Rule learning is a standard symbolic data analysis technique

sed for constructing understandable models and patterns. Its

ain advantage over the other data analysis techniques is its sim-

licity and comprehensibility of its outputs. Rule learning has been

xtensively used both in predictive and descriptive rule learning

ettings, where by applying different rule evaluation heuristics dif-

erent trade-offs between the consistency and coverage of con-

tructed rules can be achieved. 

This section first presents a short overview of classification rule

earning and subgroup discovery. It introduces the coverage space

sed as a tool for studying the properties of different heuristics

nd presents the idea of using two separate heuristics for rule re-

nement and rule selection illustrated on a selected UCI data set.

he section ends with the description of closely related work re-

arding the use of inverted heuristics in classification rule learning.

.1. Classification rule learning 

The task of classification rule learning is to find models which

ould ideally be complete (cover all positive examples, or at least

ost of the positives), and consistent (not cover any negative ex-

mples, or at most a very small number of negatives). Multi-class

lassification problems can be dealt with by using the one-versus-

ll approach, which learns one rule set for each class, where the

xamples labeled with the chosen class are considered as positive

arget class examples, and all examples of other classes as nega-

ives. 

There are numerous classification rule learning algorithms,

he most popular being AQ, CN2 and Ripper. The AQ algorithm

 Michalski, 1969 ), which was the first to propose the covering al-

orithm for rule set construction, is a top-down beam search algo-

ithm that uses a random positive example as a seed for finding

he best rule. The CN2 algorithm ( Clark & Niblett, 1989 ) combines

he ideas from the AQ algorithm and the decision tree learning al-

orithm ID3 ( Quinlan, 1983 ), given the similarity of rule learning

o learning decision trees, where each path from the root of the

ree to a tree leaf can be viewed as a separate rule. It constructs

n ordered decision list by learning rules describing the majority

lass examples in the training set. Once the learned rule is added

o the decision list, all the covered examples, both positive and

egative, are removed from the training data set, and the rule in-

uction process is continued on the updated training set. Ripper

 Cohen, 1995 ) is the first rule learning algorithm that effectively

vercomes the overfitting problem and is thus a very powerful rule

earning system. The algorithm constructs rule sets for each of the

lass values. Initially, the training data set is divided into a growing

nd a pruning set. Rules are learned on the growing set, and then

runed on the pruning set by incrementally reducing the error rate

n the pruning set. A pruned rule is added to the rule set if the

escription length of the newly constructed rule set is at most d

its longer (a parameter) than the already induced rule set. Oth-

rwise, the rule learning process is stopped. Similarly to the CN2
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Table 1 

Comparison of the DoubleBeam-RL algorithm to the state-of-the-art classification rule learners CN2, Ripper and SC-ILL. 

Algorithm Type of search Separate refinement heuristic Stopping criterion Rule pruning Post-processing 

CN2 Beam No No beam improvement No No 

Ripper Greedy No MDL Yes Yes 

SC-ILL Greedy Yes No negative examples covered No No 

DoubleBeam-RL Beam Yes maxSteps No No 
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lgorithm, when a new rule is added to the rule set, all the in-

tances covered by that rule are removed from the growing set. In

ddition to pruning the rules before adding them to induced rule

et, Ripper prevents rules overfitting in a post-processing phase in

hich the learned rule set is optimized and the selected rules are

e-learned in the context of the other rules. FURIA ( Hühn & Hüller-

eier, 2009 ) is a classification rule learning algorithm which ex-

ends the Ripper algorithm by learning fuzzy rules. 

Despite its long history, rule learning is still actively researched

nd routinely applied in practice. For example, Napierala and Ste-

anowski (2015) use rule learning with argumentation to tackle im-

alanced data sets, and Ruz (2016) explores the order of instances

n seeding rules to improve the classification accuracy. Minnaert,

artens, De Backer, and Baesens (2015) discuss the importance

f proper rule evaluation measures for improving the accuracy of

lassification rule learning algorithms. They also introduce multi-

riteria learning and investigate a Pareto front as a trade-off be-

ween comprehensibility and accuracy of rule learners. 

In a line of research started by Parpinelli, Lopes, and Freitas

2002) , rule learning is turned into an optimization problem us-

ng an ant colony optimization approach. The initial rule learning

lgorithm, named Ant-Miner, worked for nominal attributes only,

ut was later improved by Pi ̌culin and Robnik-Šikonja (2014) to ef-

ciently handle numeric attributes. Classification rule learning has

een a vivid topic of research also in inductive logic programming

nd relational data mining. For example, Zeng, Patel, and Page

2014) developed the QuickFOIL algorithm that improves over the

riginal FOIL algorithm ( Quinlan & Cameron-Jones, 1993 ). 

Learning rules can be regarded as a search problem ( Mitchell,

982 ). Search problems are defined by the structure of the search

pace, a search strategy for searching through the search space,

nd a quality function (a heuristic ) that evaluates the rules in or-

er to determine whether a candidate rule is a solution or how

lose it is to being a solution to be added to the rule set, i.e. the

nal classification model. The search space of possible solutions is

etermined by the model language bias ( Fürnkranz et al., 2012 ).

n propositional rule learning, the search space consists of all the

ules of the form targetClass ← Conditions , where targetClass is one

f the class labels, and Conditions is a conjunction of features. Fea-

ures have the form of A i = v i j (attribute A i has value v ij ). 

For learning a single rule, most learners use one of the fol-

owing search strategies: general-to-specific ( top-down hill-climbing )

r specific-to-general ( bottom-up ), where the former is more com-

only used. Whenever a new rule is to be learned, the learning

lgorithm initializes it with the universal rule r � . This is an empty

ule that covers all the examples, both positive and negative. In the

ule refinement phase, conditions are successively added to this

ule, which decreases the number of examples that are covered

y the rule. Candidate conditions are evaluated with the goal of

ncreasing the consistency of the rule while maintaining its com-

leteness, i.e. a good condition excludes many negative examples

nd maintains good coverage on the positive examples. 

Heuristic functions are used in order to evaluate and com-

are different rules. Different heuristics implement different trade-

ffs between these two objectives. While CN2 and Ripper use en-

ropy as the heuristic evaluation measure, numerous other heuris-

ic functions have been proposed in rule learning—for a variety of
euristics and their properties the interested reader is referred to

ürnkranz et al. (2012) . The most frequently used heuristics in rule

earning are: 

Precision: 

h prec (p, n ) = 

p 

p + n 

(1) 

Laplace: 

h lap (p, n ) = 

p + 1 

p + n + 2 

(2) 

m-estimate: 

h m-est (p, n, m ) = 

p + m · P 
P+ N 

p + n + m 

(3)

here, for a given rule, arguments p and n denote the number of

ositive and negative examples covered by the rule (i.e. the true

nd false positives, respectively), and P and N in Eq. (3) denote the

otal number of positive and negative examples in the data set.

iven that these heuristics concern the problem of selecting the

est of multiple refinements of the same base rule (the empty rule,

niversal rule), the values P and N can be regarded as constant, so

hat the above functions may be written as h ( p, n ) depending only

n the true and false positives. 

Table 1 compares the DoubleBeam-RL classification rule learn-

ng algorithm (introduced in Section 4 ) to the state-of-the-art clas-

ification rule learners that were used in the experiments. CN2 and

oubleBeam-RL are beam search algorithms, while Ripper and SC-

LL are greedy algorithms, adding conditions to the rules which

aximize their respective heuristics. The DoubleBeam-RL and SC-

LL algorithms use separate heuristics adapted for the refinement

nd selection phase of the rule learning process. Ripper is the

nly considered classification rule learning algorithm which em-

loys rule pruning and optimization of rule sets in post-processing.

he algorithms use different stopping criteria; for example, Ripper

ses a heuristic based on minimum description length (MDL) prin-

iple. 

.2. Subgroup discovery 

The goal of data analysis is not only building prediction mod-

ls, but frequently the aim is to discover individual patterns that

escribe regularities in the data ( Fürnkranz et al., 2012; Kralj No-

ak, Lavra ̌c, Zupan, & Gamberger, 2005; Wrobel, 1997 ). This form

f data analysis is used for data exploration and is referred to as

escriptive induction . Subgroup discovery is a form of descriptive

nduction. The task of subgroup discovery is to find subgroups of

xamples which are sufficiently large while having a significantly

arger distribution of target class instances than the original target

lass distribution. 

Like in classification rule learning, individual subgroup descrip-

ions are represented as rules in the form targetClass ← Conditions ,

here the targetClass is the target class representing the property

f interest, and Conditions is a conjunction of features that are

haracteristic for a selected group of individuals. 

Subgroup discovery is a special case of the more general task

f rule learning. Classification rule learners have been adapted
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Table 2 

Some properties of subgroup discovery algorithms DoubleBeam-SD, APRIORI-SD, SD, and CN2-SD. 

Algorithm Type of search Separate refinement heuristic Stopping criterion Post-processing 

APRIORI-SD Exhaustive No minSup, minConf Yes 

SD Beam No No beam improvement Yes 

CN2-SD Beam No No beam improvement No 

DoubleBeam-SD Two beams Yes maxSteps Optional 
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to perform subgroup discovery with heuristic search techniques

drawn from classification rule learning. These algorithm also ap-

ply constraints, which are appropriate for descriptive rule learning.

The research in the field of subgroup discovery has developed in

different directions. Exhaustive methods, which include EXPLORA

( Klösgen, 1996 ), SD-MAP ( Atzmüller & Puppe, 2006 ) and APRIORI-

SD ( Kavšek et al., 2003 ), guarantee the optimal solution given the

optimization criterion. The APRIORI-SD algorithm draws its inspira-

tion from the association rule learning algorithm APRIORI ( Agrawal

& Srikant, 1994 ), but restricts it to constructing rules that have

only the target variable (the property of interest) in their head,

with weighted relative accuracy (WRACC), defined in Eq. (5) , used as

a measure of rule quality. In order to improve the inferential power

of the subgroup describing rules, the APRIORI-SD algorithm uses a

post-processing step to reduce the generated rules to a relatively

small number of diverse rules. This reduction is performed using

the weighted covering method proposed by Gamberger and Lavra ̌c

(20 0 0) . When a rule is added to the induced rule set, weights

of examples covered by the rule are decreased. This allows the

method to prioritize rules which cover yet uncovered examples,

thus promoting the coverage of diverse groups of examples. 

While the APRIORI-SD algorithm adapts the process of associa-

tion rule learning to the context of subgroup discovery, the SD sub-

group discovery algorithm ( Gamberger & Lavra ̌c, 2002 ) performs

heuristic beam search, where rule quality is estimated using the

generalization quotient heuristic 

h g (p, n, g) = 

p 

n + g 
, (4)

where p is the number of true positives, n is the number of false

positives , and g is the generalization parameter . High-quality rules

will cover many target class examples and a low number of non-

target examples. The number of tolerated non-target examples cov-

ered by a rule is regulated by the generalization parameter. For

small g , more specific rules are generated while for bigger values

of g the algorithm constructs more general rules. The interpreta-

tion of the rules produced by the SD algorithm is improved using

the above mentioned weighted covering method in post-processing

( Gamberger & Lavra ̌c, 20 0 0 ). 

CN2-SD ( Lavra ̌c et al., 2004 ) is a beam search algorithm, which

adapts the CN2 ( Clark & Niblett, 1989 ) classification rule learner to

subgroup discovery. CN2-SD has introduced a weighted covering

algorithm, where examples that have already been covered by one

of the learned rules are not removed from the training data set,

but instead their weights are decreased. The authors propose and

compare different measures for rule evaluation. They argue that

the most important measure for subgroup evaluation is weighted

relative accuracy (WRACC), referred to as unusualness , defined as

follows 

WRACC (p, n ) = 

p + n 

P + N 

·
(

p 

p + n 

− P 

P + N 

)
(5)

This measure reflects both the rule significance and rule coverage,

as subgroup discovery is interested in rules with significantly dif-

ferent class distribution than the prior class distribution that cover

many instances. WRACC is the measure of choice in our experi-

mental work on subgroup discovery for comparing the quality of

the induced subgroup describing rules. 
Subgroup discovery was used also in the context of seman-

ic data mining. Adhikari, Vavpeti ̌c, Kralj, Lavra ̌c, and Hollmén

2014) have explained mixture models by applying semantic sub-

roup discovery system Hedwig ( Vavpeti ̌c, Novak, Gr ̌car, Mozeti ̌c, &

avra ̌c, 2013 ) to structure the search space and to formulate gen-

ralized hypotheses by using concepts from the given domain on-

ologies. 

Table 2 compares the DoubleBeam-SD algorithm (introduced in

ection 3 ) to the state-of-the-art subgroup discovery algorithms

PRIORI-SD, CN2-SD, and SD, which were used in the experiments.

he latter algorithms use only a single heuristic for rule evaluation,

esigned to optimize the selection of best rules. The DoubleBeam-

D algorithms can use pairs of different heuristics (see Section 2.4 )

hich can be applied to estimate rule quality in both the re-

nement and selection phases of the rule learning process. The

oubleBeam-SD algorithm stops the learning process after a pre-

etermined number of steps ( maxSteps ). The SD and CN2-SD algo-

ithms stop when there are no improvements of rules in the beam,

.e. when newly induced rules have lower quality than the rules al-

eady included in the beam. APRIORI-SD uses minimal support and

overage as the stopping criteria. 

.3. Coverage space 

Fürnkranz and Flach (2005) introduced the coverage space as

 formal framework for analyzing and visualizing the behavior of

ule learning heuristics. The coverage space ( Fürnkranz & Flach,

005; Fürnkranz et al., 2012 ), referred to as the PN space when

nitially introduced by Gamberger and Lavra ̌c (2002) , enables us

o plot the number of covered positive examples (true positives p )

ver the number of covered negative examples (false positives n ).

his results in a rectangular plot with values {0,1,... , N } (where N is

he total number of negative examples) on the horizontal axis and

0,1,... , P } (where P is the total number of positive examples) on

he vertical axis. Fig. 1 shows a coverage space visualization. The

rinciple of coverage spaces can be used to plot individual rules,

s well as entire theories or models composed of a rule set or a

ecision list. 

There are four points of special interest in a coverage space: 

- (0, 0) marks the empty theory , denoted by r ⊥ . This theory covers

no positive and no negative example. 

- (0, P ) is the perfect theory which covers all positive and none of

the negative examples. 

- ( N , 0) is the opposite theory . It covers all negative, but no posi-

tive examples. 

- ( N, P ) is the universal theory , denoted by r � . This theory covers

all the examples, regardless of their label. 

The ultimate goal of learning is to reach the point of perfect

heory in the coverage space, i.e. the point (0, P ). This will rarely be

chieved in a single step. A set of rules will need to be constructed

n order to achieve this objective. The purpose of heuristics used

or rule evaluation is to determine how close a given rule is to this

deal point. 

An isometric of a heuristic h is a line (or curve) in the coverage

pace that connects all points ( p, n ) for which h(p , n) = c for some

onstant value c . Several properties of heuristics can be seen from
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Fig. 1. Visualization of coverage space with P (total of positives) and N (total of negatives). 

Fig. 2. Isometrics for precision. 

i  

h  

c  

b  

(  

u  

v  

p  

h  

p  

t  

o

 

b  

r  

f  

s  

B  

a  

u  

r

2

 

m  

t  

t  

s  

b  

o  

t  

o  

fi  

m  

c  

p  

w  

t  

p  

fi

 

r

w  

p  

o  

i  

r  

b  

p  

a  

P  

n  

r  

r

 

i  

e  

o  

c  

r  

s  

l

 

d  
sometrics. As an example, Fig. 2 shows the isometrics of precision,

 prec . These isometrics show that regarding precision all rules that

over only positive examples (points on the P -axis) achieve the

est quality score, and all rules that cover only negative examples

points on the N -axis) achieve zero score. All other isometric val-

es are obtained by rotation around the origin (0, 0) for which the

alue of h prec is undefined. Fig. 2 presents also the disadvantage of

recision, which is its inability to discriminate between rules with

igh and low coverage. For illustration, a rule that covers only one

ositive example and no negative example will have better evalua-

ion than a rule that covers a hundred positive examples and only

ne negative example. 

The commonly used top-down strategy for rule refinement can

e viewed as a path through the coverage space. Fig. 3 illustrates

ule refinement, where each point on the path corresponds to one

urther condition conjunctively added to the rule body. The path

tarts at the upper right corner, ( N, P ), with the universal rule r � .
y adding conditions to the rule, the number of covered positive

nd negative examples decreases and the path of the rule contin-

es towards the origin (0, 0), which corresponds to the empty rule

 ⊥ . 

.4. Inverted heuristics 

Rule learning algorithms rely on heuristic measures to deter-

ine the quality of the induced rules. Stecher et al. (2014) propose

o distinguish between rule refinement and rule selection heuris-

ics in inductive rule learning. They argue that the nature of the

eparate-and-conquer rule learning algorithms opens up a possi-

ility to use two different heuristics in the two fundamental steps

f the rule learning process, i.e. rule refinement and rule selec-

ion. Using the coverage space they motivate separate evaluation

f candidates for rule refinement and the selection of rules for the
nal theory. Stecher et al. (2014) further argue that the rule refine-

ent step in a top-down search requires inverted heuristics , which

an result in better rules. Such heuristics evaluate rules from the

oint of the current base rule, instead of the empty rule. In this

ay, while successively adding features to the rule (refinement),

he learner favours rules with higher coverage of positive exam-

les and thereby gives chance to rules with higher coverage to be

nally selected with the selection heuristics. 

Representations of the inverted heuristics in the coverage space

eveal the following relationship with the basic heuristic: 

(6) 

here p and n denote the number of positive and negative exam-

les covered by the rule, and P and N are not constant but depend

n the predecessor of the currently constructed rule. For example,

n the example illustrated in Fig. 5 , in the first step N and P cor-

espond to the initial top-right corner ( N, P ) in the coverage space,

ut when refined to rule p ← a , the top-right corner is moved to

oint B . The values of N and P will change respectively. Addition-

lly, on the refinement path, N and P will be updated with the ( N,

 ) coordinates of values of point C, D , and E , respectively in each

ext refinement iteration. Each of these points represent the base

ule from which we observe the improvements of the consequent

efinements. 

Stecher et al. (2014) adapt the three standard heuristics for rule

nduction (introduced in Section 2.1 ): precision, Laplace , and m-

stimate . The effect on these three heuristics is that the isometrics

f their inverted variants do not rotate around the origin of the

overage space, but rotate around the point in the coverage space

epresenting the base rule (the predecessor of the currently con-

tructed rule). Consequently, the inverted heuristics have the fol-

owing forms: 

Inverted precision: 

(7) 

Inverted Laplace:

(8) 

Inverted m-estimate: 

(9) 

The inverted heuristics are not suited for rule selection. They

o favor rules with high coverage but are also tolerant to covering
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Fig. 3. A path in the coverage space of a top-down specialization of a single rule. For simplicity, a comma is used to represent the conjunction operator. 

Fig. 4. Isometrics of inverted precision. 
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negative examples. The isometrics of inverted precision in Fig. 4

illustrate this propery. 

For classification rule learning, Stecher et al. (2014) have shown

that the combination of Laplace heuristic h lap used in the rule se-

lection step and the inverted Laplace heuristic used in the

rule refinement step outperformed other combinations in terms of

average classification accuracy. An interesting side conclusion from

Stecher et al. (2014) is that the usage of inverted heuristics in the

rule refinement phase produces on average longer rules, which are

claimed to be better for explanatory purposes. 

We illustrate the advantage of using inverted heuristics in the

refinement phase on the UCI ( Lichman, 2013 ) mushroom data set.

In Fig. 5 we show the path in coverage space of top-down special-

ization of two rules for the class poisonous using different heuris-

tics. Table 3 shows the descriptions of the coverage space points

shown in Fig. 5 . The red path shows the top-down specialization

of a rule using the h lap heuristic. From all of the refinements of

the universal rule, the refinement odor = f has the steepest gradi-

ent from the origin (0, 0). Therefore, this rule is selected for further

refinement. However, since the number of covered positive exam-
Table 3 

Description of coverage space points from Fig. 3 , illustrated on the mush

Point Rule 

U p ← true. 
A p ← odor = f. 
B p ← veil-color = w. 
C p ← veil-color = w, gill-spacing = c.
D p ← veil-color = w, gill-spacing = c,
E p ← veil-color = w, gill-spacing = c,
F p ← veil-color = w, gill-spacing = c,

stalk-surface-above-ring = k. 
les is n = 0 , the refinement process is terminated and the rule

dor = f is also selected in the selection phase, covering 2160 pos-

tive and no negative examples. 

The green path shows the top-down specialization of a rule us-

ng the heuristic. This heuristic prefers rules with high cov-

rage of positive examples. It gives preference to rule refinements

ith the smallest angle between the line of the refinement and the

orizontal axis, i.e. angles α, β , and γ in Fig. 5 . Top-down special-

zation continues until there are no covered negative examples or

here are no possible refinements. In Fig. 5 the refinement stops

t point F , where rule veil-color = w, gill-spacing = c, bruises? =
, ring-number = o, stalk-surface-above-ring = k is constructed, cov-

ring a total number of 2192 positive examples and no negative

xamples. Using only a single selection heuristics this rule would

e preferred to the rule depicted with the red path, but it is not

chievable as a different choice was made already in the first step.

In summary, inverted heuristics prefer rules with high cover-

ge of positive examples. The top-down specialization of a rule is

teadily removing negative examples and some positive examples.

his leaves the possibility that an additional refinement will con-

truct a rule with the same or a higher number of covered positive

xamples than a rule constructed using a single heuristics which

mmediately maximizes its value. 

.5. Relation to previous work 

Our work is closely related to previous work in rule learning

nd subgroup discovery. In particular, it explores the recommended

pproach by Stecher et al. (2014) for separation of rule refinement

nd rule selection and the use of different heuristics in the classi-

cation rule learning context. While rule induction algorithms and

ubgroup discovery algorithms typically use the same heuristic for

ule refinement and rule selection, Stecher et al. (2014) argued that

he nature of the separate-and-conquer algorithms offers the pos-

ibility of separating the two rule construction phases and their

valuation using two different heuristics. 
room data set, using target class p ( poisonous ). 

p n 

3916 4208 

2160 0 

3908 4016 

 3804 2816 

 bruises? = f. 3188 160 

 bruises? = f, ring-number = o. 3152 144 

 bruises? = f, ring-number = o, 2192 0 
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Fig. 5. Comparison of rule refinement paths using standard heuristic and the inverted one. The red path shows rule constructed using h lap . The green path shows rule 

refinement using . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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In this paper we investigate the separation of the rule refine-

ent and rule selection phase in both subgroup discovery and

lassification rule learning. Along with the phase separation we in-

roduce two beams, each consisting of the best rules according to

he refinement and selection heuristic, respectively. 

Contrary to the approach of Stecher et al. (2014) , where they

ompare the selection quality of the best rule refinement to the

ule with the best selection quality, we compare the selection qual-

ty of all refined candidate rules to the selection quality of the best

ules for selection (current selection beam members). In this way

e expand the space of possible candidates for selection and in-

rease the possibility of choosing a candidate with good selection

uality, which might have been omitted in the refinement phase

sing the Stecher et al. (2014) approach. Additionally, our algo-

ithm for rule learning builds rule sets for each target class of a

iven data set. This is different from the approach taken in Stecher

t al. (2014) where unordered decision lists are constructed. 

This paper also significantly extends our previous work

 Valmarska, Robnik-Šikonja, & Lavra ̌c, 2015 ), where we reported on

he initial findings regarding the use of inverted heuristics in sub-

roup discovery. In this paper, we introduce an additional heuristic,

RACC, which consequently proves to improve over other heuris-

ics in several settings. In addition, we propose a different ap-

roach to algorithm comparison, by first determining the default

arameters for each algorithm and then comparing the algorithms

n new data sets, using the default parameters. The establishment

f default parameters is valuable for future users of the algorithms,

s it offers a solid starting point for their use. In addition to the

ubgroup discovery algorithm, in this paper we also introduce a

ovel classification rule learning algorithm based on double beam

nd compare it to the state-of-the-art rule learning algorithms. 

. DoubleBeam algorithm for subgroup discovery 

The previously observed favorable properties of inverted heuris-

ics in a classification setting provide a motivation to test the idea

n the subgroup discovery context. For this purpose, we developed

he DoubleBeam-SD subgroup discovery algorithm 

1 , which com-

ines separate refinement and selection heuristics with the beam
1 Code is available on github at https://github.com/bib3rce/RL _ SD . 

i

earch. In the same fashion, we integrated the beam search and

wo separate heuristics in the classification rule learning setting,

hich we discuss in Section 4 . 

Contrary to conventional beam-search based algorithms such

s CN2-SD ( Lavra ̌c et al., 2004 ), the DoubleBeam-SD algorithm for

ubgroup discovery maintains two separate beams, the refinement

eam and the selection beam . Upon initialization, each beam is

lled with the best single-condition rules according to their refine-

ent and selection quality, respectively. The algorithm then enters

 loop. In each iteration, rules of the form targetClass ← Condi-

ions from the refinement beam are refined by adding features to

he Conditions part of the existing rules. The resulting new rules

re added to the refinement beam, which is ordered according

o the refinement quality. Newly produced rules are then evalu-

ted according to their selection heuristic and the selection beam

s updated with the rules whose selection quality is better than

he selection quality of the rules already stored in the beam. The

lgorithm exits the loop after the maximally allowed number of

teps is reached. Another purpose of storing several rules in the

election beam is to allow post-processing where only the non-

edundant subset of rules is retained ( Gamberger & Lavra ̌c, 2002 ).

he DoubleBeam-SD algorithm is outlined in Algorithm 1 . 

In order to induce descriptions for subgroups of data instances

hich have not yet been covered by the previously constructed

ules, we employ weighted covering, which reduces the weight

f covered positive examples but does not remove them entirely.

his required a modification of the method for updating the se-

ection beam. Each time a positive example is covered by a rule

hat is already in the selection beam, the instance coverage count

s increased and consequently the instance weight is decreased,

hich results in reducing the probability that the covered exam-

les would be covered again by the rules constructed in the fol-

owing iterations of the algorithm. 

In this work, we used the harmonic and geometric weights for

nstance weighting. We also implemented removal of the already

overed positive instances by assigning weight 0 to every instance

lready covered by some rule in the selection beam (method zero

eight ). Eqs. (10) –(12) show how the weight of a covered example

s updated depending on the number of rules that cover it. 

https://github.com/bib3rce/RL_SD
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Algorithm 1: DoubleBeam-SD algorithm. 

Input: : E = P ∪ N 

E is the training set, | E| its size, 
tc is target class, 
P are positive examples (of class tc), 
N are negative examples (of classes � = tc). 

Output: : subgroup descriptions 
Parameters: : minSupport , 

rbw is refinement beam width, 
sbw is selection beam width, 
rh is refinement heuristic, 
sh is selection heuristic 
maxSteps is maximal number of steps 

1 Cand id ateList ← all feature values or intervals 

2 for each candidate in CandidateList do 
3 evaluate candidate with rh 
4 evaluate candidate with sh 

5 end 

6 sort Cand id ateList according to the rh 

7 for i = 0 to rbw do 
8 RB [ i ] ← Cand id ateList[ i ] 
9 end 

10 sort Cand id ateList according to the sh 

11 for i = 0 to sbw do 
12 SB [ i ] ← Cand id ateList[ i ] 
13 end 

14 step ← 1 

15 do 
16 refinedCandidates ← refine RB with Cand id ateList 
17 replace RB with refinedCandidates using rh 
18 updateSelectionBeam ( SB , refinedCandidates , sh ) 
19 step ← step + 1 

20 while step ≤ maxSteps ; 
21 return SB 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 2: Method for updating the selection beam. 

1 Method updateSelectionBeam( SB , refinedCandidates , sh ) 

// current data 
2 cData ← P ∪ N 

// candidates for selection 
3 cs ← ∪ SB 

// new selection beam 
4 nSB ← {} 
5 resetWeights ( cData ) 

6 for i = 0 to sbw do 
7 bestRule ← getBestRule ( cs , cData , sh ) 
8 cs ← remove ( cs , bestRule ) 
9 nSB { i } ← bestRule 

10 cData ← updateWeights ( cData , bestRule ) 

11 end 

12 SB ← nSB 
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Geometric weight: 

w g (d i ) = αk , (10)

where k is the number of rules that have already covered example

d i ; 

Harmonic weight: 

w h (d i ) = 

1 

k + 1 

, (11)

where k is the number of rules that have already covered example

d i ; 

Zero weight: 

w z (d i ) = 0 , (12)

if example d i is covered by at least one rule in the selection beam.

The weighted value of positive examples covered by a rule r

( weighted number of true positives ) is calculated using Eq. (13) . 

wT P (r) = 

| E| ∑ 

i =1 

w (d i ) · c 

{
c = 1 if r covers d i ; 
c = 0 otherwise. 

(13)

Note that zero weight can be understood as removing covered

positive examples from the data set. This is not the same as no

weighting, which means that instances are retained in the data

set. As we use the selection beam, which keeps all the interest-

ing subgroups, and the algorithm takes care that beam entries are

not duplicated, no weighting might be sufficient. However, a prac-

tical reason to introduce instance weighting are possible redun-

dancies in the attribute set. Without weighting we might get sev-

eral different but redundant descriptions of the same instances in

the beam, which unnecessary fill the beam and reduce the search

space. The code of the updateSelectionBeam method is outlined

in Algorithm 2 . 
Function getBestRule returns the rule with the best selection

uality on the data set with updated weights. The selection quality

f a rule is calculated according to the chosen selection heuristics.

unction updateWeights updates the weights of the covered pos-

tive examples. The weights are updated according to the desired

eight type i.e. geometric, harmonic or zero. 

.1. Experimental setting 

For the purpose of algorithm evaluation, we use different com-

inations of refinement and selection heuristics, constituting the

ollowing DoubleBeam subgroup discovery variants: 

SD-ILL (Inverted Laplace, Laplace), using ( ) heuristics

combination pair, 

SD-IPP (Inverted Precision, Precision), using ( ), 

SD-IMM (Inverted M-estimate, M-estimate), using

( ), 

SD-IGG (Inverted Generalization quotient, Generalization quo-

tient), using ( ), 

SD-GG (Generalization quotient, Generalization quotient), using

(h g , h g ), and 

SD-WRACC (WRACC), using (h WRACC , h WRACC ) . 

For the purpose of annotation, we prefix the variants of our

oubleBeam-SD with SD. The h g heuristic is the generalization

uotient proposed in Gamberger and Lavra ̌c (2002) ( Eq. 4 ), while

is its inverted variant defined as . The weighted

elative accuracy (WRACC) heuristic is defined in Eq. (5) . It was in-

roduced in Lavra ̌c et al. (2004) to measure the unusualness of the

nduced subgroup describing rules. Note that WRACC is identical

o its inverted variant ( Stecher et al., 2014 ). 

We compare three state-of-the-art subgroup discovery al-

orithms (SD, CN2-SD, and APRIORI-SD) and the proposed

oubleBeam-SD algorithm with six combinations of refinement

nd selection heuristics (SD-ILL, SD-IPP, SD-IMM, SD-IGG, SD-GG,

nd SD-WRACC). We test the DoubleBeam-SD algorithm with each

f the six combinations of refinement and selection heuristics, both

ith and without using the weighted covering algorithm, and with

nd without using rule subset selection in the post-processing step

escribed in Gamberger and Lavra ̌c (2002) . This resulted in 48 dif-
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Table 4 

Number of classes ( C ), examples ( E ), attributes ( A ), and features ( F ) of the 20 data sets used in the 

experiments. 

Tuning data sets C E A F Evaluation data set C E A F 

breast-cancer 2 286 10 41 contact-lenses 3 24 5 9 

car 4 1728 7 21 futebol 2 14 5 27 

glass 7 214 10 31 ionosphere 2 351 35 157 

hepatitis 2 155 20 41 iris 3 150 5 14 

horse-colic 2 368 23 72 labor 2 57 17 42 

hypothyroid 2 3163 26 60 mushroom 2 8124 23 116 

idh 3 29 5 14 primary-tumor 22 339 18 37 

lymphography 4 148 19 52 soybean 19 683 36 99 

monk3 2 122 7 17 tic-tac-toe 2 958 10 27 

vote 2 435 17 32 zoo 7 101 18 134 

Table 5 

Chosen variants of the DoubleBeam-SD algorithm. The overall rank is the rank of the algorithm 

among the 48 variants. 

Heuristics combination Overall rank Average rank Post-processing Weight type 

WRACC 1 7 .30 No None 

IMM 2 7 .45 Yes None 

GG 3 8 .15 No None 

IGG 9 15 .50 No None 

ILL 14 19 .95 Yes None 

IPP 21 24 .45 No Zero 
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Fig. 6. Nemenyi test on ranking of subgroup discovery algorithms regarding average 

WRACC values with a significance level of 0.05. 
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erent combinations of the DoubleBeam-SD algorithm (6 refine-

ent/selection combinations × 2 post-processing/no × 4 weight-

ng/no). 

We use SD, CN2-SD and APRIORI-SD implementations of al-

orithms that are available in the ClowdFlows platform ( Kranjc,

odpe ̌can, & Lavra ̌c, 2012 ). We use the same 20 UCI classification

ata sets as Stecher et al. (2014) (see Table 4 ). In order to deter-

ine suitable settings, we randomly split the data sets into two

roups: we use 10 randomly chosen data sets (shown on the left-

and side of Table 4 ) to determine default parameters of all com-

eting methods, and the remaining 10 data sets (shown on the

ight-hand side of Table 4 ) to compare the best settings. The tun-

ng of parameters is described in Section 3.2 , while the methods

omparison is presented in Section 3.3 . 

To compare the speed and scalability of the algorithms, we use

he UCI adult data set which consists of 32,561 instances and 14

ttributes. We do not use cross-validation on this data set but split

t into training and test sets of different sizes. 

.2. Default parameter setting 

We use the 10 left-hand side data sets from Table 4 for set-

ing default parameters of the algorithms. The SD algorithm and

he APRIORI-SD algorithm are both trained using rule subset se-

ection in the post-processing step, as described in Gamberger and

avra ̌c (2002) . Originally, the CN2-SD algorithm does not use rule

election in the post-processing. 

The algorithms are initially tested with 10-fold double-loop

ross-validation on each of the 10 data sets used for parameter

uning (named tuning data sets in the rest of this paper). For each

lgorithm (both the newly proposed algorithms as well as the ex-

sting algorithms SD, CN2-SD and APRIORI-SD), a grid of possible

arameter values is set in advance. The value of minSup is set

o 0.01. Each training set of a given cross-validation iteration is

dditionally split into an internal training and testing subset. For

ach algorithm, models were built using the internal training sub-

et and the parameters from its own parameter grid. Parameters

aximizing the value of unusualness of the produced subgroups

n the internal test subest are then chosen for building a model

sing the whole training set. In the evaluation, we use the sub-

roup discovery evaluation statistics proposed in Kralj Novak et al.
2005) (originally implemented in the Orange data mining environ-

ent Demšar et al., 2013 ): coverage, support, size, complexity, signif-

cance, unusualness (WRACC), classification accuracy , and AUC . 

We compute average ranks of the 48 combinations of

he DoubleBeam-SD algorithm with respect to the unusualness

WRACC) of the produced subgroup describing rules. For each com-

ination of refinement and selection heuristics of algorithms de-

cribed in Section 3.1 we chose the algorithm setting that had the

est average ranking. The chosen algorithm settings are shown in

able 5 . 

The default set of parameters for each algorithm consists of the

arameters which were chosen in the 10-fold double-loop cross-

alidation testing phase. This default set of parameters is used for

ross-validation testing of the subgroup discovery algorithms on

he remaining 10 data sets. 

.3. Experimental results 

The WRACC values obtained from the 10-fold cross-validation

esting on the 10 evaluation data sets with selected default param-

ters are shown in Table 6 . These values are averaged over all the

lasses for every particular data set. 

The results of the Nemenyi test following the Friedman test

or statistical significance of differences between average values of

RACC are shown in Fig. 6 . It is evident that SD-WRACC algorithm

roduces the most interesting subgroups, which are statistically

ore unusual than the ones produced by the two state-of-the-art

lgorithms, the SD algorithm and the APRIORI-SD algorithm. How-

ver, there are no statistically significant differences between the
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Table 6 

Ten-fold cross-validation WRACC results for subgroup discovery algorithms with default parameters. The best values for each data 

set are written in bold. We compare existing SD, CN2-SD and APRIORI-SD algorithms with the proposed DoubleBeam algorithms 

with different refinement and selection heuristics. 

Data sets SD CN2-SD APRIORI-SD SD-ILL SD-IPP-w-z SD-IMM SD-WRACC SD-GG SD-IGG 

contact-lenses 0 .032 0 .071 0 .027 0 .039 0 .035 0 .021 0 .047 0 .081 0 .081 

futebol 0 .0 0 0 0 .009 0 .005 0 .005 0 .003 0 .015 0 .0 0 0 0 .006 0 .005 

ionosphere 0 .099 0 .111 0 .0 0 0 0 .083 0 .032 0 .105 0 .133 0 .105 0 .107 

iris 0 .090 0 .200 0 .142 0 .159 0 .167 0 .146 0 .175 0 .148 0 .148 

labor 0 .080 0 .102 0 .041 0 .081 0 .085 0 .085 0 .098 0 .095 0 .094 

mushroom 0 .088 0 .163 0 .0 0 0 0 .133 0 .029 0 .134 0 .191 0 .146 0 .131 

primary-tumor 0 .011 0 .009 0 .008 0 .006 0 .006 0 .017 0 .019 0 .014 0 .014 

soybean 0 .025 0 .037 0 .0 0 0 0 .035 0 .036 0 .043 0 .037 0 .035 

tic-tac-toe 0 .022 0 .021 0 .029 0 .024 0 .029 0 .024 0 .041 0 .028 0 .029 

zoo 0 .037 0 .097 0 .0 0 0 0 .094 0 .065 0 .096 0 .100 0 .099 0 .094 

Table 7 

Performance comparison of subgroup discovery algorithms using WRACC score and average rule length (ARL) on the UCI 

adult data set. The data set is split in 70:30 ratio. Rules are induced using the default parameters. 

Measure SD CN2-SD APRIORI-SD SD-ILL SD-IPP-w-z SD-IMM SD-WRACC SD-GG SD-IGG 

WRACC 0 .023 0 .043 0 .041 0 .011 0 .012 0 .028 0 .076 0 .025 0 .024 

ARL 2 .800 2 .150 2 .700 2 .800 1 .300 2 .100 2 .100 2 .600 2 .500 

Fig. 7. Nemenyi test on ranking of average rule sizes for subgroup discovery algo- 

rithms in the second experimental setting with a significance level of 0.05. Note 

that algorithms are ordered according to the average length of generated rules—

rank 1 would indicate the algorithm producing the longest rules. 
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six chosen variants of the DoubleBeam-SD algorithm and the CN2-

SD algorithm. The DoubleBeam-SD algorithm with the combina-

tion (h g , h g ) produces statistically more unusual subgroups than

the ones produced by the APRIORI-SD algorithm. The rest of the

variants of the DoubleBeam-SD algorithm do not produce subgroup

describing rules which are statistically more interesting than the

ones produced by any of the tested algorithms. 

Experimental results reveal that algorithms which use WRACC

as their heuristic (the SD-WRACC algorithm and the CN2-SD algo-

rithm) produce rules which describe more interesting subgroups.

The underperformance of the other considered variants of the

DoubleBeam-SD algorithm is due to their respective heuristics,

which are specialized towards finding prediction rules and not un-

usual rules. 

The results of the Nemenyi test following Friedman test for

statistical significance of differences of the average rule sizes are

shown in Fig. 7 . The DoubleBeam-SD algorithm with the combina-

tion (h g , h g ) produces subgroups which are on average described

by the longest rules. The SD-GG algorithm generates subgroups de-

scribed by rules that are statistically longer only than the ones pro-

duced by the SD algorithm and the SD-IPP algorithm with zero-

weight covering. There is no statistical evidence that the SD-GG

algorithm produces longer rules than other evaluated algorithms.

Consequently, these results do not confirm that the DoubleBeam-

SD algorithm with inverted refinement heuristic produces statisti-

cally longer subgroup descriptions than all other subgroup discov-

ery algorithms. This is slightly surprising taking into account the

findings of Stecher et al. (2014) in the classification rule learning

setting. 
Table 7 presents the performance of subgroup discovery algo-

ithms on the adult data set in terms of their WRACC score. We

plit the data set in the 70:30 ratio, leading to 22,793 training

nd 9768 testing instances. The SD-WRACC algorithm produced the

ost interesting rules, followed by the CN2-SD algorithm. The re-

ults are in accordance with the results presented in Fig. 6 . The al-

orithms SD-ILL, SD, APRIORI-SD and SD-GG generated the longest

ules; the SD-ILL and SD-GG algorithms produced the longest rules

lso on data sets from Fig. 7 . 

Fig. 8 presents the training times of subgroup discovery algo-

ithms with different numbers of training instances from the adult

ata set. The APRIORI-SD algorithm is the slowest, followed by the

D-IPP-w-z and CN2-SD algorithms. The other subgroup discovery

lgorithms are comparable in terms of training time and allow for

rocessing of relatively large data sets. 

To the users of subgroup discovery algorithms we recommend

he use of the SD-WRACC algorithm with the selection beam width

et to 5, and no example weighting or post-processing. Results

how that this algorithm on average outperforms other subgroup

iscovery algorithms considered in this work. 

. DoubleBeam algorithm in classification rule learning 

The idea of using two separate heuristics for rule refinement

nd selection as well as using inverted heuristics in refinement

hase was proposed and successfully tested by Stecher et al.

2014) . The previous section shows that this idea can also be suc-

essful in subgroup discovery, where we tested it using a double

eam search approach. As Stecher et al. (2014) do not use beam

earch in rule learning, an obvious extension is to use double beam

lso in classification rule learning. 

In order to test the influence of different selection heuris-

ics, refinement heuristics, selection beam width, and refinement

eam width, we implemented a DoubleBeam classification rule

earning (DoubleBeam-RL) algorithm. This algorithm is adaptation

f the DoubleBeam-SD algorithm. It uses a combination of re-

nement and selection heuristics for each phase of rule learn-

ng. The algorithm has two beams, the selection beam and the

efinement beam, where during the process of generating rules

t holds potential candidates for refinement and selection, based

n their selection and refinement quality. For learning a decision

ist, it employs the commonly used separate-and-conquer strategy

 Fürnkranz, 1999 ): each time a rule is generated for a given target
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Fig. 8. Comparison of training times for subgroup discovery on the adult data set. The horizontal axis shows the number of training instances and the vertical axis shows 

the training time in seconds. 
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Algorithm 4: Function for generating rules using two heuris- 

tics. 

1 Function generateRule ( dataset, tc, rh , sh , rbw , sbw ) 

// candidates for best rule 
2 bRC ← DoubleBeam-SD ( dataset , tc, rh , sh , rbw , sbw ) 

3 bestRule ← getBestRule (bRC) 

4 return bestRule 
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lass, the positive examples covered by the rule are removed from

he data set. The algorithm continues to learn new rules for the

ame target class on the updated data set as long as rules with a

inimal acceptable quality are induced, i.e. if the rule covers more

ositive than negative examples and covers more positive exam-

les than a chosen threshold (in our case a threshold of 2). The

nal result is a rule set with acceptable rules for the given target

lass. 

Basically, for learning a single rule, a single beam (in the re-

nement phase) is sufficient, unless we want to produce a collec-

ion of rules which are post-processed later. If not, we shall set

he selection beam width to 1, as we do in our experiments. The

oubleBeam-RL algorithm is outlined in Algorithm 3 . The function

Algorithm 3: DoubleBeam-RL algorithm. 

Input: : E = P ∪ N 

E is the training set, | E| its size, 
tc is target class, 
P are positive examples (of class tc), 
N are negative examples (of classes � = tc). 

Output: : R , ( R is rule set for tc) 
Parameters: : rh is refinement heuristic, 

sh is selection heuristic, 
rbw is refinement beam width, 
sbw is selection beam width. 

// rule set for target class tc 
1 R ← {} 
// current data 

2 cData ← E 

3 do 
4 rule ← generateRule (cData, tc, r h, sh, r bw, sbw ) 
5 R ← R + rule 
6 cData ← removePositiveCovered (cData, rule, tc) 

7 while not satisfied ; 

8 return R 

or generating a single rule when a data set, selection heuristics,

efinement heuristics, selection beam width, and refinement beam

idth are given is outlined in Algorithm 4 . 

.1. Experimental setting 

We perform experimental evaluation in two steps. In the first

tep we determine default parameters for the five best combina-
ions of refinement and selection heuristics on the same randomly

hosen 10 data sets in the left-hand side of Table 4 . In the second

tep, we use 10 fresh data sets (the right-hand side of Table 4 )

o compare these five best configurations with two state-of-the-art

lgorithms for rule learning, Ripper ( Cohen, 1995 ) and CN2 ( Clark

 Niblett, 1989 ). We use the Weka ( Hall et al., 2009 ) implemen-

ation of Ripper and the Orange ( Demšar et al., 2013 ) implemen-

ation of the CN2 algorithm. For both algorithms we use the de-

ault parameters set by their software platforms, respectively. For

omparison, we also include the results from the best performing

lgorithm from Stecher’s ( Stecher et al., 2014 ) experimental work,

amed SC-ILL. 

The quality of the induced rules is measured in terms of the

lassification accuracy (CA). The process of parameter tuning and

ariant selection is described in Section 4.3 . We also report the av-

rage rule length of produced rules. 

.2. Illustrative example 

We compare our approach with the approach of Stecher et al.

2014) with an illustrative example. For the purpose of this com-

arison, we chose the same set of attributes used in the mentioned

ork. Rules in both decision lists are generated with as the

efinement heuristic and h lap as the selection heuristic. The width

f both refinement and selection beam is set to 1. Fig. 8 shows

he decision list learned for the class poisonous on the data set

ushroom using the algorithm presented in Stecher et al. (2014) ,

hereas Fig. 9 presents the rule set learned by our DoubleBeam

ule learning algorithm. 

Results from Tables 8 and 9 suggest that our approach

ends towards finding even more complete rules than the ap-

roach taken by Stecher et al. (2014) . The algorithm produces
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Table 8 

Decision list learned for class p ( poisonous ) in the mushroom data set using Stecher’s approach with refinement heuristic and se- 

lection heuristic h lap . The number of positive examples covered by each rule is also shown. No rule covers any of the negative examples. 

2192 p ← veil-color = w, gill-spacing = c, bruises? = f, ring-number = o, 
stalk-surface-above-ring = k. 

864 p ← veil-color = w, gill-spacing = c, gill-size = n, population = v, 
stalk-shape = t. 

336 p ← stalk-color-below-ring = w, ring-type = p, stalk-color-above-ring = w, 
ring-number = o, cap-surface = s, stalk-root = b, gill-spacing = c. 

264 p ← stalk-surface-below-ring = s, stalk-surface-above-ring = s, 
ring-type = p, stalk-shape = e, veil-color = w, gill-size = n, bruises? = t. 

144 p ← stalk-shape = e, stalk-root = b, stalk-color-below-ring = w, ring-number = o. 
72 p ← stalk-shape = e, gill-spacing = c, veil-color = w, gill-size = b, 

spore-print-color = r. 
44 p ← stalk-surface-below-ring = y, stalk-root = c. 

Table 9 

Rule set learned for the class p ( poisonous ) in the mushroom data set using DoubleBeam rule learning algorithm with refinement 

heuristic , selection heuristic h lap , and both refinement and selection beam width set to 1. The number of positive examples 

covered by each rule is shown on the left. No rule covers any negative examples. 

2228 p ← p ← gill-spacing = c, veil-color = w, stalk-surface-above-ring = k. 
864 p ← gill-color = b. 
336 p ← stalk-color-above-ring = w, gill-spacing = c, stalk-root = b, 

stalk-color-below-ring = w, gill-attachment = f, cap-surface = s, 
ring-number = o, ring-type = p. 

264 p ← stalk-shape = e, bruises? = t, gill-size = n, gill-attachment = f, 
stalk-surface-above-ring = s, stalk-surface-below-ring = s, ring-type = p. 

144 p ← stalk-shape = e, bruises? = f, stalk-root = b, stalk-color-below-ring = w, 
gill-attachment = f. 

72 p ← stalk-shape = e, spore-print-color = r. 
8 p ← veil-color = y. 
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on average shorter rules which include more or the same

number of examples. The DoubleBeam-RL algorithm is able

to detect features that do not contribute to the overall im-

provement of the rules. Such example is the bruises? = f
feature. In the first rule from Stecher’s decision rule, the 2192

covered examples are covered by the conjunction of the fol-

lowing features: veil-color = w, gill-spacing = c,
ring-number = o, stalk-surface-above-ring = k . 
Feature bruises? = f was selected during the refinement

phase, but does not contribute anything to the final result. 

This difference is due to the nature of the applied algorithms.

Stecher’s approach is to refine a rule using the inverted heuristics

until there are only positive examples covered and then returns the

best rule on the refinement path. This approach leads to eliminat-

ing possible refinements of a certain rule due to their lower refine-

ment quality, even though their selection quality is very high; in

our case, one of the possible refinements has even better selection

quality than the final rule, chosen by the Stecher’s approach. The

DoubleBeam-RL algorithm on the other hand, considers the selec-

tion quality of the refined candidates and the rules already in the

selection beam. It simultaneously checks for rules with best refine-

ment and selection quality and keeps track of all the best rules

found in the refinement process. 

As an example, consider rules from Table 3 . After the univer-

sal rule is refined, the best candidate for further refinement in

both approaches is p ← veil-color = w. The DoubleBeam-

RL algorithm saves this rule as a candidate for refinement,

but chooses rule p ← odor = f as its candidate for best

rule. In the next iteration, once more the two algorithms have

the best candidate for refinement, p ← veil-color = w,
gill-spacing = c. There is no change in the selection beam

of the DoubleBeam-RL algorithm, where the selection quality of

p ← odor = f (1.0 0 0) is better than the selection quality of

p ← veil-color = w, gill-spacing = c (0.575). In the

third step, best rule for refinement is p ← veil-color = w,
gill-spacing = c, bruises? = f. Both algorithms will
ontinue with the refinement of this rule, however, the selec-

ion beam of the DoubleBeam-RL algorithm will be updated with

 refinement of p ← veil-color = w, gill-spacing =
, leading to rule p ← veil-color = w, gill-spacing
 c, stalk-surface-above-ring = k, whose selection

uality is the same as the selection quality of the rule already

tored in the beam (1.0 0 0). When the DoubleBeam-RL algorithm

s faced with choosing between two rules with the same selection

uality, it always chooses the rule that has covered more positive

xamples. In case the decision is not straight-forward, it chooses

he shortest among the rules in question. The top-down specializa-

ion will continue for both algorithms. The algorithm proposed by

techer will stop when there are only positive examples covered

r there is no possible further refinement. At the end, the algo-

ithm will return the rule with the best selection quality among

ll the rules on the refinement path. As it is evident from our

xample, this will result with longer rules which can have lower

overage than the rules selected by the DoubleBeam-RL algorithm.

he DoubleBeam-RL algorithm stops after a predefined number of

teps, and returns the rule with the best selection quality among

ll the investigated refinements. 

.3. Default parameter setting 

In the experiments performed to determine the default param-

ter values for the DoubleBeam-RL algorithm, we use all combina-

ions of the following heuristics in refinement and selection phase:

– Laplace h lap - L, 

– Inverted Laplace - IL, 

– Precision h prec - P, 

– Inverted Precision - IP, 

– M-estimate h m-est - M, 

– Inverted -M-estimate - IM, and 
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Fig. 9. Nemenyi test on ranking of classification accuracy values with a significance 

level of 0.05. 

Fig. 10. Nemenyi test on ranking of average classification rule length with a signif- 

icance level of 0.05. 
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– Weighted Relative ACCuracy h WRACC - W. 

As an example, the abbreviation RL-ILL indicates that was

sed as a refinement heuristic, and h lap as a selection heuristic in

he DoubleBeam-RL algorithm. This resulted in 49 variants of the

oubleBeam-RL algorithm. Each variant is tested on the same 10

andomly chosen data sets that were used for parameter tuning in

he subgroup discovery context. 

The value of the selection beam width is fixed to 1 in all vari-

nts (see Section 4 ). In order to select the default width of the re-

nement beam for each variant of the DoubleBeam-RL algorithm,

e perform a 10-fold double-loop cross-validation of each variant

n each of the tuning data sets from Table 4 . Each tuning data set

s divided into training and test set. Each training data set is ad-

itionally split into internal training and test subset. A separate

odel is induced on the internal training subset for each of the

ossible parameter values. These models are then evaluated using

he internal test subset. The parameter values that maximize the

alue of classification accuracy are chosen as parameters for the

onstruction of the model using the initial training data set. The

nal cross-validation value of classification accuracy (CA) for each

old is calculated using the model induced with the chosen best

arameters and the corresponding test data set. 

For each heuristic combination we collected the best parame-

ers for refinement beam width across the tested 10 data sets. The

ost frequently selected parameter was chosen as a default pa-

ameter for the considered combination. Our experiments showed

hat for each variant of the rule learning algorithm, the most ac-

urate rules are induced when we use refinement beam width

ith value 1. This means that the selected best parameters make

ur algorithm identical to the rule learning algorithm proposed

n Stecher et al. (2014) , with the exception that our algorithms

an select the best rule from each refinement step (line 2 of

lgorithm 4 and line 18 of Algorithm 1 ), while in Stecher et al.

2014) only the final refined rule is selected. This seemingly small

ifference leads our algorithm to form shorter rules with better

overage and affects also the classification accuracy as presented

n Section 4.4 . 

Out of the 49 variants of the DoubleBeam-RL algorithm, we

ventually selected the following five variants, which had the best

verage rank performance on the 10 tuning data sets: RL-MM

 h m-est , h m-est ), RL-ILM ( ), RL-WM ( h WRACC , h m-est ), RL-

PM ( ), and RL-PM ( h prec , h m-est ). 

.4. Experimental results 

We compare the selected best rule learning algorithm (using

he five chosen variants of rule selection heuristics) with two

tate-of-the art algorithms, Ripper and CN2, and the best perform-

ng algorithm from Stecher et al. (2014) ’s work, named SC-ILL.

he classification accuracy (CA) values obtained from the 10-fold

ross-validation testing on the 10 evaluation data sets from the

ight-hand side of Table 4 with default parameters are shown in

able 10 . 

The Friedman test for statistical differences in CA showed

hat there are no significant differences between the algorithms

hich is confirmed by the confidence intervals of the Nemenyi

est in Fig. 9 . Nevertheless, the approach taken by Stecher et al.

2014) yields the best results (average rank is 3.00). Three of our

ve chosen variants of the DoubleBeam-RL algorithm have a bet-

er average rank than the Ripper algorithm. The chosen variants of

ur algorithm for rule learning on average perform better than the

N2 algorithm. 
An interesting observation is that among all the algorithms with

wo heuristics, the one with the least search performs best i.e.

he Stecher et al. (2014) approach. The explanation for this could

e the over-searching phenomenon ( Janssen & Fürnkranz, 2009;

uinlan & Cameron-Jones, 1995 ), which indicates that the amount

f search shall be adjusted specifically to a data set and search

euristics employed. 

The results of the Friedman test and post-hoc Nemenyi test for

tatistical significance of differences between average rule length

f rules induced by the chosen variants of the DoubleBeam-RL al-

orithm and the state-of-the-art algorithms for classification rule

earning are shown in Fig. 10 . The results suggest that the vari-

nt that uses the inverted heuristic in refinement phase, RL-IPM,

nduces rules which are statistically longer than the rules in-

uced by the standard refinement heuristic, RL-PM. The results in

ig. 10 are in accordance with the conclusions drawn by Stecher

t al. (2014) . The approach taken by Stecher et al. (2014) , SC-ILL,

roduces longest rules, while the CN2 algorithm produces rules

ith the shortest average rule length. These rules are significantly

horer than the rules produced by the SC-ILL, the Rl-IPM, and the

L-ILM algorithm. Note the average rule length is calculated as the

atio between the sum of all conditions across all induced rules

nd the total number of rules in the model. 

Table 11 shows the performance comparison of classification

ule learning algorithms on the adult data set in terms of classifi-

ation accuracy and average rule length. Results reveal that all ver-

ions of the DoubleBeam-RL algorithm produce rules with better

lassification accuracy than the CN2 algorithm. Three DoubleBeam-

L algorithms (RL-ILM, RL-WM, and RL-IPM) slightly outperform

he Ripper algorithm. Comparison of the results obtained with the

lgorithms RL-IPM and RL-PM confirm the conclusions of Stecher

t al. (2014) : when an inverted heuristic is used in the refinement

hase, the produced rules tend to be longer and have better clas-

ification accuracy. 

Fig. 11 presents the training times of classification rule learn-

ng algorithms with different numbers of training instances from

he adult data set. The times can only give a rough picture of

he algorithms’ performance, as the algorithms are not imple-

ented on the same platform: we use the Ripper implementa-

ion from Weka, CN2 from Orange, the other algorithms are im-

lemented in Python. The training times of the SC-ILL algorithm

re not included due to excessive time consumption of the algo-
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Table 10 

Ten-fold cross-validation CA results for rule learning with default parameters. Best values are written in 

bold. 

Data sets RL-MM RL-ILM RL-WM RL-IPM RL-PM Ripper S C-ILL CN2 

contact-lenses 0 .750 0 .750 0 .750 0 .750 0 .750 0 .750 0 .875 0 .683 

futebol 0 .700 0 .700 0 .700 0 .700 0 .700 0 .571 0 .571 0 .800 

ionosphere 0 .900 0 .861 0 .858 0 .875 0 .914 0 .897 0 .932 0 .906 

iris 0 .920 0 .920 0 .920 0 .920 0 .920 0 .953 0 .953 0 .893 

labor 0 .773 0 .820 0 .720 0 .820 0 .827 0 .771 0 .825 0 .720 

mushroom 0 .999 1 .0 0 0 1 .0 0 0 1 .0 0 0 0 .997 1 .0 0 0 1 .0 0 0 1 .0 0 0 

primary-tumor 0 .401 0 .407 0 .410 0 .395 0 .345 0 .392 0 .360 0 .345 

soybean 0 .921 0 .908 0 .903 0 .909 0 .852 0 .915 0 .924 0 .883 

tic-tac-toe 0 .982 0 .976 0 .892 0 .974 0 .980 0 .978 0 .976 0 .818 

zoo 0 .872 0 .892 0 .882 0 .892 0 .823 0 .871 0 .921 0 .961 

Table 11 

Comparison of classification accuracy (CA) and average rule length (ARL) of classification rule 

learning algorithms on the UCI adult data set. Data set is split in 70:30 ratio. Models are induced 

using estimated default parameters. SC-ILL results are not included as its training took more than 

5 hours of CPU time. 

Measure RL-MM RL-ILM RL-WM RL-IPM RL-PM Ripper SC-ILL CN2 

CA 0 .834 0 .851 0 .852 0 .854 0 .835 0 .845 / 0 .815 

ARL 2 .909 2 .824 1 .938 2 .684 1 .214 4 .333 / 2 .531 

Fig. 11. Comparison of training times for classification rule learning algorithms on the adult data set. The horizontal axis shows the number of training instances and the 

vertical axis shows the training time in seconds. 
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rithm. Fig. 11 shows that the Ripper algorithm is the fastest clas-

sification rule learner. Algorithms RL-IPM and RL-ILM have almost

identical training times and are the most inefficient. An interest-

ing observation is that DoubleBeam-RL algorithms, which use in-

verted heuristics in their refinement phase, produce slightly more

accurate models ( Table 11 ) than their Laplace counterparts at the

cost of being less efficient. Fig. 11 reveals that algorithms RL-ILM,

RL-IPM, RL-MM, and RL-WM may use less time in spite of larger

training set. Further investigation revealed relatively large variance

of measured times. For specific points the mentioned algorithms

produce models with fewer rules and fewer conditions. 

Based on our experimental work, there can be no clear recom-

mendation for the user which algorithm to use, as the differences

in classification accuracy are not statistically significant. However,

several algorithms with two heuristics produces on average more

accurate rules than Ripper and CN2, the most accurate being SC-

ILL and RL-MM. For large data sets where computational efficiency

is crucial, Ripper is clearly the best choice. 
. Conclusions 

This paper introduces two new algorithms for rule learning,

ne for subgroup discovery and one for classification rule learn-

ng. Both algorithms use beam search and offer the possibility to

se separate heuristics for rule refinement and rule selection. 

The experiments were performed on 20 UCI data sets. The per-

ormance of each of the considered algorithms depends on its

arameters. In order to systematically choose the default param-

ters for each algorithm, we initially performed 10-fold double-

oop cross-validation training on 10 randomly chosen data sets. The

onclusions about the performance of the discussed algorithms are

btained after ten-fold cross-validation testing on the remaining 10

ata sets, which have not been used for parameter setting and are

xclusively used for algorithm evaluation. 

The experiments indicate that the subgroup describing rules

reated using the SD-WRACC algorithm are more interesting than

he subgroups induced by other state-of-the-art subgroup discov-



A. Valmarska et al. / Expert Systems With Applications 81 (2017) 147–162 161 

e  

n  

d  

A

 

t  

i  

t  

t  

a  

a  

s  

t  

e  

f  

w  

r  

t  

t  

t

 

g  

m  

t  

r  

a  

p  

t  

g  

w  

w  

i  

c  

e

 

s  

r  

i  

m  

s  

c  

r  

c  

w  

a  

a  

b

 

s  

t  

t  

p  

r

 

t  

o  

h  

a

 

m  

(  

c  

r  

t  

a  

t  

w  

v

A

 

n  

P  

U  

g  

J

R

A  

 

 

A  

 

A  

A  

 

B  

B  

 

 

C  

C  

D  

 

D  

 

F  

F  

F  

G  

G  

 

G  

H  

H  

J  

 

K  

 

K  

K  

 

K  

 

 

K  

 

L  

L  

 

ry algorithms. The difference between most of the algorithms are

ot statistically significant, however SD-WRACC and CN2-SD pro-

uce statistically significantly more interesting rules than SD and

PRIORI-SD. 

In the context of classification rule learning we proposed a new,

he DoubleBeam-RL algorithm, which offers the possibility for us-

ng separate rule refinement and selection heuristics. Among the

ested 49 variants of refinement and selection heuristics inside

he DoubleBeam-RL algorithm and their comparison with Ripper

nd CN2, the best performing variants in terms of classification

ccuracy were the algorithms that use the m-estimate as their

election heuristic. In particular, the best performing variant of

he DoubleBeam-RL algorithm was the variant that uses the m-

stimate both as its selection and refinement heuristic. The dif-

erences are, however, not statistically significant. The algorithms

hich use inverted heuristic perform slightly better than the algo-

ithms using the standard heuristics (RL-IPM and RL-ILM compared

o RL-PM and RL-WM). All five of our algorithms perform better

han the CN2 algorithm, and three of our algorithms perform bet-

er than the Ripper algorithm. 

The main advantage of DoubleBeam-SD and DoubleBeam-RL al-

orithms is their ability to use separate heuristics for the refine-

ent and selection phase of rule learning. Different heuristics can

ake advantage of the data properties and contribute to better

ules (rules with improved unusualness or rules with improved

ccuracy). The experimental results suggest that both algorithms

rovide rules with comparable or better quality than those ob-

ained by the state-of-the-art algorithms for rule learning and sub-

roup discovery, respectively. The use of two beams in combination

ith separate heuristics for each phase of the learning processes

idens the algorithms’ search space thus improving the probabil-

ty of finding better quality rules. However, this also increases the

hances of data overfitting, an aspect which our algorithms do not

xplicitly address at this point. 

In contrast to the APRIORI-SD algorithm which uses exhaustive

earch, the DoubleBeam-SD algorithm is a heuristic search algo-

ithm (similar to the SD and the CN2-SD algorithm). Despite be-

ng faster than the APRIORI-SD algorithm and ability to handle

edium size data sets, the current DoubleBeam-SD algorithm is

till not able to handle large data sets, due to space and time

omplexity. In fact, this is one of the main disadvantages of all

ule learning algorithms using a covering approach. Lower memory

onsumption could be achieved with more efficient data structures,

hile significant speedups could be gained with instance sampling

nd feature subset selection, as well as with parallelization of the

lgorithms. Due to two beams, large degree of parallelization could

e achieved with DoubleBeam algorithms. 

While our DoubleBeam-SD and DoubleBeam-RL algorithms

how promising results, their increased search power demands fur-

her research in terms of stopping criteria and rule pruning heuris-

ics. Using a post-processing rule pruning step similar to the Rip-

er is a promising research direction. We plan to explore also the

ule pruning method proposed by Sikora (2011) . 

Experimental results on subgroup discovery revealed the advan-

age of using WRACC over the traditional rule learning heuristics in

btaining interesting subgroups. We believe that developing new

euristics specialized for the detection of interesting subgroups is

 promising research path. 

Subgroup discovery is a useful approach in the analysis of

edical data. In line with our work on Parkinson’s disease data

 Valmarska, Miljkovic, Robnik-Šikonja, & Lavra ̌c, 2016 ), we plan a

ase-study comparing results of different subgroup discovery algo-

ithms on Parkinson’s disease patients data set. In order to increase

he interpretability of the induced subgroup describing rules we

lso plan on presenting a method for subgroup visualization. In

his way we will assist experts (e.g. physicians) in their decision
hether a certain subgroup discovery rule is interesting and rele-

ant for their work. 
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