Browsing Linked Open Data
with Auto Complete

Heiko Paulheim

Technische Universitdt Darmstadt
paulheim@ke.tu-darmstadt.de

Abstract. Information in Linked Open Data is incomplete by nature and design.
Nevertheless, the more complete information delivered on a subject is, the higher
is its value to an end user. With our submission to the Semantic Web Challenge',
we show how information, in particular types, can be completed automatically,
based on heuristic rule learning. We introduce an approach which employs lazy
learning instead of learning a global model, making the approach well scalable
to large data, while at the same time providing results at an accuracy of 85.6%.
The auto complete function is included in a modular semantic web browser.

Keywords: Linked Open Data, Automatic Completion, Association Rule Mining,
Ontology Learning, Ontology Alignment, Lazy Learning

1 Introduction

Information in Linked Open Data is incomplete by nature and design. Complete in-
formation about a subject can rarely be provided with a reasonable amount of efforts.
Thus, the open world assumption underlying RDF and Linked Open Data always as-
sumes incomplete information.

While creating and providing information can be expensive, more complete infor-
mation may have higher value for end users. To resolve this dilemma, we propose an
automatic approach for completing information, in particular type information.

In recent works, machine learning approaches have been proposed to complete
missing information in Linked Open Data. However, they can either focus on only one
particular problem (e.g., learning the missing value for one property [2]), with the need
to user invention by manual selection of relevant information, or use only a small sample
of the whole data [5]. So far, approaches that are able to cope with arbitrary completion
problems in a completely unsupervised manner can rarely handle the large amount of
data and the size of models to learn.

In our submission to the Semantic Web Challenge, we show a Linked Open Data
browser that automatically completes Linked Open Data on the fly, when displaying a
resource. The underlying algorithm automatically completes type information by using
association rule mining. While classical machine learning algorithms learn a complete,

'Live demo: http://kebap.ke.informatik.tu-darmstadt.de:8080/
LODATC/

global model, lazy learning algorithms learn partial models only for instances of interest
[7]. For the prototype, we have thus implemented a lazy variant of the apriori algorithm
for association rule mining [1], which is fast enough to be embedded in a Linked Open
Data browser.

2 Approach

In this section, we use the example of Pete Stewart, an American musician. In the cor-
responding DBpedia entry, there are, among others, the following triples’:

dbpedia:Pete_Stewart a yago:Singer110599806 (D)

dbpedia:Pete_Stewart a yago:AmericanMusicians 2)
On the other hand, an example for a missing triple is
dbpedia:Pete_Stewart a yago:AmericanSingers 3)
If there was an ontology-level statement stating

yago:3inger110599806 N yago:AmericanMusicians

C yvago:AmericanSingers, “

the missing triple could be easy completed. However, most of the ontologies used in
Linked Open Data do not provide that rich level of axiomatization. Thus, that type
cannot be obtained by simple computation of the transitive closure of all the instance’s
types.

To overcome this shortcoming, ontology learning approaches have been proposed.
We follow the method discussed in [6], proposing the use of association rule mining [1].
The apriori algorithm takes a table of instances as input, with the types listed for each
instances (called item sets). It then tries to find patterns of co-occuring types. In the
example above, if there are enough examples in the knowledge base that have the types
yago:Singer110599806, yago:AmericanMusicians, and yago:Ameri-
canSingers, the pattern can be found.

However, learning a complete set of association rules on the whole of Linked Open
Data and applying that rule set would lead to immense computational efforts. In or-
der to create a more scalable approach, we have implemented the apriori algorithm
in a lazy variant [7], which creates only those rules that are relevant for a single in-
stance. For example, the rule depicted in equation 4 could be learned for the instance
dbpedia:Pete_Stewart by starting a search from the types given for that instance.

Once the rules are learned, we compute the set of possible types from the rules
found for the instance. The apriori algorithm provides a confidence value for each rule,
which we set as the confidence value for the type statement derived from that rule. In
case more than one rule states that a type should be present, the confidence values are
combined following the approach discussed in [3]:

confidence(t) :=1— H 1 — con fidence(r) 3)
all rules r with t in head

Zseehttp://dbpedia.org/resource/Pete_Stewart

The rationale behind this formula is that if there may many pieces of weak evidence
(i.e., rules with low confidences) for a type, this may be a good indicator for a type as
well as one rule with high confidence.

Without further corrections, this approach would lead to many false positives. For
example, many people in Wikipedia are athletes, which leads to rules such as dbpedia :
Person T dbpedia : Athlete. To overcome such problems, we regard all types that
are explicitly given as true. Each type found which is disjoint with one of the ex-
plicit types can thus not be true and is discarded. Since there rarely are disjointness
axioms in ontologies used in Linked Open Data, we regard two types to be implic-
itly disjoint if there are no common instances in the whole data set. For the example
above, there are no instances in DBpedia that are both of type dbpedia:Athlete
and yago:AmericanMusicians. Thus, the type would be discarded.

The types that are found for a resource may not not only be disjoint to the re-
source’s explicit types, but also to each other. In that case, the type with the lower
confidence is discarded. In the example above, both yago: AmericanMaleSinger
and yago:AmericanFemaleSinger are found, which are disjoint. Since the first
has the higher confidence, the latter is discarded.

It is noteworthy that the approach does not only generate types within the ontologies
that are used for the specific instance, but also for other ontologies. In the example
above, our approach also generates the type umbel :MusicalPerformer, although
no mappings to the UMBEL ontology are given for the respective resource. Thus, it
does not only complete type information within one data set, but also adds mappings to
other data sets.

3 Prototype

We have integrated our approach for automatic type completion as an extension into
the modular Linked Open Data browser MoB4LOD?. The browser has been configured
to show three panels: the direct types given for an instance, the types automatically
completed, including scores, and the remaining triples about the instance. Fig. 1 shows
a screenshot of the user interface.

The user interface provides an input field where the user can enter a URI or a key-
word, which is resolved into a DBpedia URI using the DBpedia Lookup Service*. Fur-
thermore, the user can navigate between instances by clicking on links in the statements
table.

4 Evaluation

We have evaluated the quality of results of our approach using 50 randomly sam-
pled instances from DBpedia. For the parameters of the apriori algorithm, we have
set support,in to 0.1 (where the support of a rule is computed relative to the smallest
type in the set) and con fidence,,;, to 0.05. Furthermore, we have discarded all types

http://www.ke.tu-darmstadt.de/resources/mob4lod/
“http://wiki.dbpedia.org/lookup/

e I =10/]

| €2 Browsing LOD with Automatic Type Completion | &

JLODATC fquery/renderResults ?token =d72k3dioiz0ukha 2ip 7dnafn8gqaquerytext=ht (<] ‘ ‘\V- James_F._Jones, _Ir. P‘ A

£ | @ kebap ke.informatik. tu-darmstadt. de:a0

tatMenu [Ontology Mining @ LA... Y\ Datenanalyse: Vond... T5* LaTeX Symbols /' OpenDataStatistics 3 Lesezsichen

|

Aigaion [R8] xked UL IEEE ¥plore -Home | |

Browsing LOD with Automatic Type Completion

Enter keyword or URI:
RDF|

http://dbpedia.org/resource/Resource_Description_Framework
http-//dbpedia.org/resource/RDF_Media
R hitpz//dbpedia.org/resource/RDFa
http-/dbpedia.org/resource/RDF_Schema
http-/dbpedia.org/resource/RDF/XML

Types

Direct Types

These are the types that are expiicitly defined in the dataset.

yago:WorldwideWebConsortiumStandards

yago:XML-basedStandards

yago:BibliographyFileFormats

n ieally C leted Types

These are types that are automatically completed, with a score indicating the machine's confidence in those fypes.

yago:MarkuplanguAges (91%)

yago:ComputerFileFormats (81%)

yago:DataModelingLanguAges (74%)

yago DataSerializationFormats (70%)

yago:OpenFormats (44%)

=]

= s @ Fidder: Disabled

Fig. 1. Screenshot of the browser including autocompleted types

below an overall confidence of 0.15. The rationale of having two confidence values is
that according to (5), some weak pieces of evidence (i.e., rules) can multiply to a larger
overall confidence value, so we did not want to discard them too early. We varied the
maximum size of the item sets explored by the apriori algorithm.

As a baseline, we computed the transitive closure of all types of an instance. A gen-
eral observation is that except for rare exceptions, the types generated the baseline and
by our method are disjoint. Using the transitive closure leads to very general types such
as Object, Entity, or Thing, which are of limited interest for the user. In contrast,
our approach produces more concise types, as well as types from other ontologies, as
discussed above, which are rarely to be found by simply generating the transitive clo-
sure due to the low spreading of schema-level mappings in Linked Open Data.

3.5 1

0.9
3
0.8
s 0.7
®
g , 0.6 >
2 05 £ m#Generated Types
é 5 04 8 OAccuracy
Z 1 0
0.2
0.5
0.1
o 0

1 2 3 4

Maximum item set size

Fig. 2. Quality of the generated types for different maximum item set sizes

Figure 2 shows the average precision and number of types generated by our ap-
proach, depending on the maximum subset size. It can be observed that up to 3.26
additional types are generated on average, with an accuracy between 82.8% and 85.6%.

In contrast, 4.52 additional types are created by the baseline, which are always cor-
rect. Since the types generated by both approaches are disjoint except for very rare
exceptions, a total of 7.78 additional types can be created”.

Figure 3 depicts an analysis of the runtime behavior of our approach. It can be ob-
served that the runtime grows about linearly with the size of item sets, so does the num-
ber of item sets examined, each examination requiring an additional SPARQL query
(the decrease from a maximum itemset of three to four is not statistically significant).
When the number of item sets is kept low (i.e., at one and two), there are reasonable run
times for an interactive application. While the average run-times for one and two are at
around 1700 and 2800 milliseconds, the median is much lower (611 and 606 millisec-
onds, respectively), while a few resources take much longer to process. Overall, a good
trade-off between result quality, number of types generated, and run-time efficiency is
reached when setting the maximum item set size to two.

5 Conclusion and Outlook

With this contribution to the Semantic Web Challenge, we have introduced a prototype
for exploring Linked Open Data with automatic, on-the-fly completion of missing state-
ments. The results show that missing statements can be completed with a high quality
and within reasonable amounts of time for an interactive application.

So far, our approach is restricted to inducing type statements, based on other type
statements. For the future, we aim at using other features for learning (such as the

3> However, we have not included the results from the baseline in the web demonstrator, since
they are mostly uninteresting, as discussed above.

25 6000

20 5000

" 4000
g 15 E
g 3000 g W # Examined Sets
E 10 £ ORuntime (ms)
o 2000 &

5 1000

0 0

1 2 3 4

Maximum item set size

Fig. 3. Runtime behavior of the approach for different maximum item set sizes

types of related instances), as discussed in [4], as well as inferring missing statements
other than types. Furthermore, providing justifications of the inferred statements (by
explicating the inferred rules) to the user would enhance the user experience of the
browser.

The auto complete mechanism could also be of value when being plugged into an
editor for Linked Open Data, giving the author of resources hints for statements that are
potentially missing.

Acknowledgements

The author would like to thank Chinara Mammadova, Dominik Wienand, Jan Stengler,
Peter Klockner and Melanie Weiland for their support in implementing the browser
framework.

References

1. Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules between Sets of Items in
Large Databases. In: Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data. (1993) 207-216

2. Huang, Y., Nickel, M., Tresp, V., Kriegel, H.P.: A scalable kernel approach to learning in
semantic graphs with applications to linked data. In: Proceedings of the 1st Workshop on
Mining the Future Internet. (2010)

3. Olteanu, D., Huang, J., Koch, C.: Approximate confidence computation in probabilistic
databases. In: Data Engineering (ICDE), 2010 IEEE 26th International Conference on, IEEE
(2010) 145-156

4. Paulheim, H., Fiirnkranz, J.: Unsupervised generation of data mining features from linked
open data. In: International Conference on Web Intelligence and Semantics (WIMS’12).
(2012)

. Paulheim, H., Pan, J.Z.: Why the semantic web should become more imprecise. In: What will
the Semantic Web look like 10 years from now? (2012)

. Volker, J., Niepert, M.: Statistical schema induction. In: Proceedings of the 8th extended
semantic web conference on The semantic web: research and applications - Part I, Berlin,
Heidelberg, Springer-Verlag (2011) 124-138

. Zheng, Z., Webb, G.I.: Lazy learning of bayesian rules. Machine Learning 41 (2000) 53-84

Appendix

This appendix describes how our submission meets the challenge criteria.

Minimal Requirements

End-user Application The application is a Linked Open Data browser targeted at users
of the semantic web. It provides additional value for browsing the semantic web.

Information Sources The approach is generic and works with any kind of Semantic
Web data, following elementary standards such as RDF.

Meaning of Data By augmenting data with additional type information, the application
provides more insights into the semantics of the viewed resources.

Additional Desirable Features

Web Interface The application provides a functional web interface, which we hope is
attractive.

Scalability By implementing a lazy learning algorithm which only processes required
data on the fly, we can cope even with large datasets such as DBpedia in a reasonable
amount of time. A scalability evaluation is included in the paper.

Evaluation We have evaluated our approach with respect to result quality and runtime.

Accuracy and Ranking of Results The application provides its information ranked by
confidence, and makes the confidence values explicit.

