Ontology-based Modularization of User Interfaces

Heiko Paulheim
SAP Research CEC Darmstadt
Bleichstrasse 8
64283 Darmstadt, Germany

heiko.paulheim@sap.com

ABSTRACT

Modularization is almost the only feasible way of implement-
ing large-scale applications. For user interfaces, interactions
involving more than one module generate dependencies be-
tween modules. In this paper, we present a framework that
uses ontologies for building Uls from independent, loosely
coupled modules. In an example scenario, we show how
that framework is used to build an application for emer-
gency management.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques— User Interfaces

General Terms
Design, Algorithms

Keywords
Ontologies, User Interfaces, Modularity

1. INTRODUCTION

Whenever building larger software applications, it is nec-
essary to reduce their complexity so that the implementation
remains a task which can be handled. The idea of modular-
izing software is almost as old as software development itself
and goes back to the late sixties [20].

The user interface of a large, complex software application
is most often large and complex itself, and developing a sys-
tem’s Ul takes up to 70% of the overall development’s effort
[24]. It is therefore a desirable approach to divide the user
interface into independent modules. Especially when work-
ing in a large, distributed team, such modularity is essential
[22].

In this paper, we present an approach of modularization
using coarser-grained, loosely coupled components, which we
call plugins, to build an application’s Ul, where the plugins

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EICS’09, July 15-17, 2009, Pittsburgh, Pennsylvania, USA.

Copyright 2009 ACM 978-1-60558-600-7/09/07 ...$10.00.

are independent of each other. We use a strict definition of
independent, which states that no plugin’s definition must
contain a reference to another plugin. Such independence is
achieved by using ontologies for formally describing plugins
and their interactions.

The rest of this paper is structured as follows. After a
brief survey on the relevant background on modularization,
UI integration, and ontologies, we introduce a Java-based
framework for defining and running user interface plugins
defined by ontologies. In an example scenario, we explain
how interactions of independent plugins are implemented.
The paper continues with a review of related work and closes
with a conclusion and an outlook on future developments.

2. DESCRIBING USER INTERFACE
PLUGINS WITH ONTOLOGIES

In the past, several technologies for creating modular user
interfaces have been proposed. Following [7], those can be
roughly divided in web-based and non web-based techniques.

Modular web-based applications are most often imple-
mented either as mashups or as portals. In both cases, web-
based applications are composed of independent units, called
mashlets [1] or portlets [27], respectively. Each of those units
provides a certain view on some data, like a map, an address
list, and so on.

A common way of modularizing non web-based or desktop
applications is the use of plugins. Two approaches, tradi-
tional and pure plugin-based systems, can be distinguished
[5]. In a traditional plugin-based system, a host application
providing the main functionality can be extended by plugins,
while in a pure plugin-based system, the core functionality is
reduced to an engine for loading and executing plugins. Un-
like in traditional plugin-based systems, the system’s main
functionalities are also implemented as plugins, not in a fixed
host application [7]. One well-known for a pure plugin-based
system is the software development environment Fclipse.

Whenever interactions between plugins — e.g. highlighting
objects in one plugin which have been selected in another
one — are to be defined, dependencies between plugins occur.
Thus, many of the existing approaches either fail to provide
appropriate means for interaction between plugins or give
up the concept of loose coupling of plugins. The same holds
for portlets and mashlets [7].

Integrating modular user interfaces requires that the plu-
gins (or components, modules, portlets, whatever one likes
to call the basic building blocks) and their interfaces are
properly described. In [28], several requirements for such

plugin descriptions are listed. These descriptions have to be
formal, simple, human readable, and modular.

Each of those requirements is met by ontologies. An on-
tology is often defined as “an explicit specification of a con-
ceptualization” [14]. More precise definitions describe an
ontology as “an explicit, partial account of a conceptualiza-
tion” [15] or as “a set of logical axioms designed to account
for the intended meaning of a vocabulary” [14] of a domain.
By referring to logical axioms, the last definition already
points out that an ontology is always a formal description.

More concretely, an ontology is a collection of classes and
relations between those classes. By those classes and re-
lations, the vocabulary of a domain, e.g. the domain of
trucks, is defined. Examples for such relations are subsump-
tion (e.g. “each truck is a vehicle”), equivalence (e.g. “truck
is the same as lorry”), and domain-specific relations (e.g.
“trucks drive on streets”). Everyone talking about trucks
can refer to the identifiers from that ontology and thus, a
common understanding can be achieved.

Two of the most popular languages for describing ontolo-
gies are OWL [19] and F Logic [2]. Both use concepts such
as classes and subclasses, attributes, and relations as their
basic building blocks and can therefore be regarded as be-
ing simple for software developers, who use those concepts
in their everyday work. Human readers familiar with the
underlying formalisms (set theory in the case of OWL, first
order logic in the case of F-Logic) can read ontologies writ-
ten in those languages.

Modularity has been one design principle for ontologies
from the beginning [14], in the sense that new ontologies
can be built by extending existing ones. With the frame-
work described in this paper, we will also demonstrate an
approach based on modular ontologies.

When integrating modular user interfaces (as well as when
integrating data or applications), one problem to tackle is
the assessment of syntactic and semantic heterogeneity [7].
The problem of semantic heterogeneity - the use of an am-
biguous vocabulary, i.e. different terms for the same thing,
and terms with more than one meaning - may be overcome
by using ontologies [26]: as stated above, ontologies serve
to define and disambiguate the meaning of a vocabulary.
Therefore, using an ontology helps avoiding semantic het-
erogeneity.

These considerations have led to the development of a
framework for defining and executing UI plugins described
by ontologies.

3. IMPLEMENTING MODULAR USER IN-
TERFACES WITH ONTOLOGIES

The framework discussed in this paper uses three kinds of
ontologies: an application ontology defining the basic classes
for describing UI plugins, a domain ontology defining the
terms of the application’s domain (such as banking, travel,
etc.), and one plugin ontology per plugin using those two
ontologies to define the actual plugin (see Fig. 1).

3.1 Application Ontology

The application ontology defines base classes such as In-
teractiveComponent and Interaction. An Interactive-
Component is a component which has some interactive be-
haviour, e.g. a list in which objects can be selected, a table
in which objects may be dragged and dropped, and so on.

Application Ontology Domain Ontology

Y]

’
Plugin Ontologies -7 Jd

subclass relations represents relgtions

Figure 1: Ontologies for describing plugin-based
user interfaces

The application ontology incidentally does not specify the
types and appearance of components, such as buttons, ta-
bles, trees, and so on, in any more detail — for interactions
between independent plugins, that kind of information is not
relevant. More strongly worded: making such information
about a plugin available to other plugins would contradict to
the information hiding principle stated by Parnas [22] and
thus to the idea of independent plugins.

An Interaction describes how an interactive component
reacts to a user’s actions. An interaction has two parts: a
user action, like dragging, dropping, or selecting an object,
and a system action which is triggered by that user action,
such as displaying or modifying an object. As an exam-
ple, an interaction definition for a map component display-
ing rescue units (such as fire brigade cars) may be: “If the
user performs a SelectAction with a Rescue Unit, the map
component will perform a DisplayAction with that Rescue
Unit”.

There are two aspects to point out in that definition.
First, it defines several subclasses of the classes defined in
the application ontology, i.e. (the map component, which is
a subclass of the InteractiveComponent class in the appli-
cation ontology), a new user action (a SelectAction with a
Rescue Unit) and so on. In addition, classes from the do-
main ontology are referred to in order to define those new
classes (here: Rescue Unit).

Second, the definition contains no reference to the plugin
where the Rescue Unit is actually selected. Therefore, a
Rescue Unit will always be focussed when selected in any
plugin. Hence, the plugin containing the map component
will automatically cooperate with all plugins where such ob-
jects can be selected.

However, the definition still needs a bit of refinement.
The user working with the system does not deal with the
Rescue Units themselves (as there are no fire brigade cars
in the computer), but only with information objects which
represent those units. This motivates the introduction of
the InformationObject class and the represents relation.
The above definition may then be correctly rephrased as
follows: “If the user performs a SelectAction with an In-
formationObject representing a Rescue Unit, themap com-
ponent will perform a DisplayAction with that Informa-
tionObject”.

This distinction may seem a little nit-picky at first glance.
However, there is some rationale behind it: As shown in Fig,.
1, the only type of relation between the information system’s
description and the domain objects is the represents rela-
tion. This is facilitated by introducing the InformationOb-
ject class; the approach allows clean modularization and
avoids mixing up the information system’s model with the
domain model. As the application ontology itself is domain-
independent, it may be used for defining applications for
arbitrary domains, each using a different ontology for de-
scribing the system’s domain.

3.2 Architecture

While the application ontology is a fixed part of the frame-
work, the domain ontology is dynamically linked to the ap-
plication built with the framework. It is also possible to use
more than one domain ontology when developing an appli-
cation touching concerns from more than one domain. Each
plugin is described in its own plugin ontology, which extends
the application ontology (by defining interactions, user ac-
tions etc.) and which refers to the domain ontology. There-
fore, the information describing the plugins is distributed
across multiple ontologies and hence follows the idea of a
modular description, as depicted above.

Figure 2 shows an overview of the framework’s architec-
ture. A central part is an event exchange mechanism. In
order to make the Ul plugins work together, it is necessary
that they exchange data and messages. As has been argued
in [28], the most promising way of implementing such an ex-
change is using events and a bus-based architecture. In our
framework, the event exchange mechanism plays that role.

Each plugin is connected to that event bus, which means
that it can send and receive both directed as well as broad-
cast events. As an extension of the Model-View-Controller
(MVC) pattern [17], each plugin consists of (at least) four
parts:

1. a user interface (or view in MVC), responsible for ren-
dering the plugin and receiving the user’s actions and
input,

2. a class model (or model in MVC), which contains Java
implementations of the domain classes processed by
that plugin,

3. abusiness logic (or controller in MVC, which can range
from very simple forms or data display to arbitrarily
complex data processing, including the use of external
components or services), and

4. a plugin ontology which defines the components and
interactions of the plugin, as described above.

One important part of the framework is the reasoning
component, which is responsible for processing the differ-
ent ontologies and triggering the appropriate events. Since
ontologies are based on well understood and examined for-
malisms, a variety of such reasoning components exist. We
use the OntoBroker infrastructure [21] as an off-the-shelf
component for processing and querying the ontologies. Both
the ontologies and the queries are expressed in F-Logic.

User action events generated by a plugin’s UI are read by
the reasoner component. The reasoner queries the ontologies
for components defining interactions triggered by this type of
event, and notifies the respective plugins. In the terminology

of [7], this is a centrally-mediated communication. That
way of communication was chosen to leverage the degree of
independence between plugins - no plugin sends a message
to another plugin directly.

In our approach, we assume that each plugin may have
their own class model for the objects processed, and thus,
the same domain object may be modelled differently by dif-
ferent plugins. This design decision allows a greater possi-
bility to reuse existing implementations, and, again, lowers
the degree of dependencies between plugins. For being able
to mediate between different class models, we introduce an
object-to-ontology mapping registry (see Fig. 2). Each plu-
gin can register mappings from its class model to the domain
ontology, i.e., each class and each class’ attribute (repre-
sented by a respective getter and setter method) can be
mapped to a class or an attribute of the domain ontology.
The registry can be used for looking up objects that are sent
with events.

In the following section, we will show how the different
parts - ontologies, reasoning component and the mapping
registry - play together in creating an interactive system.

4. EXAMPLE SCENARIO

4.1 Setting

In this scenario, we look at the SOKNOS application for
emergency management [10]. Two plugins are involved in
the example. The first shows an inventory of available units
from different organizations. The second is a geographic
information plugin, which mainly consists of a map compo-
nent. On that map, locations of problems and rescue units
are displayed. The two plugins are shown in Fig. 3.

4.2 Domain Ontology

For developing an application for emergency management,
an emergency management ontology is needed; in the So-
KNOS project, the ontology described in [4] is used. This
ontology defines classes and relations required for emergency
management, such as incidents, damages, measures, and
units.

4.3 Defining Interactions

We now assume that the two plugins, as mentioned above,
are loaded and that the geographic information plugin shows
the resources contained in the inventory plugin on a map.
The first desired interaction is that resources selected in
the inventory are automatically focussed on the map, as de-
picted in Figure 3, an interaction technique known as link-
ing [11]. Therefore, like in the examples above, the geo-
graphic information plugin’s ontology would contain a defi-
nition such as “If the user performs a SelectAction with an
InformationObject representing something which has the
Quality ‘Position’, the map component will perform a Fo-
cusAction with that InformationObject”.

Note that this definition does not use the class Rescue
Unit explicitly. Instead, it makes use of the domain ontol-
ogy, which defines that each Rescue Unit has a position. It
will therefore also work for other things having a position,
such as Building or City. Furthermore, if the domain ontol-
ogy is extended while the system is developed further, and
new plugins are implemented using new information objects
which represent things having a position, the interaction def-
inition for the map component does not have to be changed.

Plugin 1 Plugin 2
GUI £ GUI &
— —
L Class Business®’ Class Business®
Model Logic Model Logic

Plugin 1
Ontology O)}KO

Plugin 2
Ontology /‘@%‘ -

N
N
\\
(Event Exchange / ,’ \ N O)
refer to query ext«‘and
Domain Application
consult ntology Ontology
register map to process
‘ / Semantic Processing
e Obiject Onto!og% consult Reasoning
9 (6] Mapping Registry Component

Figure 2: Framework architecture

It automatically supports interaction with every new and
updated plugin, as long as that plugin commits to the same
application and domain ontology.

4.4 Plugin Interoperation

When the user selects an entry in the inventory plugin,
that plugin broadcasts an event stating that a SelectAc-
tion has been performed with that device entry. That event
contains the plugin’s original DeviceEntry object.

The event is received by the semantic processing compo-
nent, which first has to decode the event. To that end, it con-
sults the mapping registry and looks up the corresponding
ontology class for the contained object, getting the answer
that it is Device. In the next step, it formulates a query for
the reasoning component, querying for components defining
interactions which are triggered by a SelectAction with an
InformationObject representing a Device. The query result
contains the map component in the geographic information
plugin, as well as the description of the respective system
action.

The semantic processing component then sends an event
to the geographic information plugin, indicating that the
map component is supposed to perform a FocusAction with
the Device. That event still contains the original object
from the inventory plugin.

The geographic information plugin receives the event, con-
sults the mapping registry to find out which attribute rep-
resents the contained position, invokes the corresponding
getter method via Java’s reflection mechanism, and focuses
the map on the respective position.

This example shows that an interaction between plugins
can be achieved based on ontologies without the need for
direct references between those plugins.

S. RELATED WORK

In this paper, we have proposed the approach of using
ontologies for describing Ul components. Such abstract de-
scriptions of Ul components, also known as user interface
description languages, have been well studied; a comprehen-
sive overview of such languages is given in [25]. From the
variety of such languages, there are two that come close to
the ontologies-based approach presented in this paper: the
eXtensible Interaction Scenario Language (XISL) [16] and
the eXtensible Interface Markup Language XIML [23].

There are a few approaches using ontologies for the de-
scription of UI components. The work described in [6] and
[12] propose ontologies for describing different types of user
interfaces on a rather general level, such as characterizing
different input and output devices. While we concentrate on
the use of ontologies for supporting Uls, other approaches,
like the ones described in [18] and [24], also use them for
generating Uls, thus providing an MDA approach. The lat-
ter work proposes the use of modular ontologies, comparable
to the ones described in this paper.

A few projects exist in which ontologies are used in build-
ing web portals and mashups. The approach described in
[8] uses semantic web services, i.e., web services described
by means of ontologies for communication between a portlet
and its backend system. The work described in [9] uses on-
tologies to annotate the contents delivered by portlets. The
authors of [3] propose an approach of using ontologies for
building mashup applications to integrate contents from di-
verse annotated data sources. Interaction between portlets
and mashlets is not covered by those approaches.

6. CONCLUSION AND OUTLOOK

In this paper, we have presented an approach for modular-
izing user interfaces, which are built from independent plug-
ins. That approach aims at reducing dependencies between
plugins. It was implemented in a domain-independent, Java-

Inventory Plugin

ResourceManagementPlugin #13 GI-Plugin ExAr #2.

Bookmerks 11 1 v Oresdorh @Tre

Ressourcen
= TaktischeEinheit
= SelbstaendigeTaktischeEinheit
“ NichtFuehrungsunterstuetzendeTaktischeEinheit *
“ FuehrungsunterstuetzendeTaktischeEinheit *
“ NichtselbststaendigeTaktischeEinheit *

= Tnstrument
* Gegenstaende-Nichtinteragierer *
Gegenstaende-Interagierer
Gegenstandsstatus-Modifikator *
 Gegenstaende-Modifikator
= Informationsverarbeitungsgeract
* MultifunktionalesInformationsverarbeitungsgeraet *
* Informationskonverter *
= InformationsakquirierendesGeraet
Sensor
Messgeraet
= InformationTransferierendesGeraet
= Kommunikationsgeraet
© Telefon
Handy

Funkgeraet
Funk-SenderUndEmpfaenger *
Funk-Empfaenger
Faxgerast
= Fortbewegungsmittel
= NichtmotorisiertesFortbewegungsmittel *
= MotorisiertesFortbewegungsmittel
TauchendesMotorisiertesFortbewegungsmittel
= SchwimmendesHotorisiertesFortbewegungsmittel
Hotorboot
“ RollendesMotoriseretesFortbewegungsmittel
Raupen-Fortbewegungsmittel
5 Raunsnkran * 19|

Cenie
G | esrption esares
[—
—
e —)
cavt

C_— 1
Sths [TRASERRG

Geographic Information Plugin

Figure 3: Screenshot of two plugins. Selecting resources in the inventory plugin causes the geographic
information plugin to focus on those items’ positions, indicated by the dotted line

based framework, which is currently used for an emergency
management system. That system, consisting of twelve plu-
gins, is developed by different teams distributed across eight
locations, thus requiring a fairly large amount of modularity.

We use an application ontology to define plugins. That
application ontology fits the requirements of a description of
user interface components, as it is formal, simple, human-
readable, and modular. It is complemented by a domain
ontology describing the terms of the domain that an ap-
plication is built for. Mappings between the plugins’ class
models and the domain ontology help facilitating data ex-
change without having to agree on a shared class model. As
long as every module commits to the same application and
domain ontology and contains a respective plugin ontology,
interoperability between those plugins can be achieved by
run-time ontology reasoning, even when they are updated
or recombined.

Since the individual plugins are only connected by the se-
mantic processing component based on ontologies, no infor-
mation about the user interface plugins’ implementation is
needed in any other plugin. Therefore, the approach could
potentially be extended to work with user interface mod-
ules written in different programming languages. Extending
the framework for integrating plugins written in different
programming languages will be one major area of future re-
search.

We are well aware that both the application ontology and
framework discussed in this paper have some potential for
improvement. First of all, we have only considered pair-

wise interactions between two plugins so far. In the future,
we strive at analysing more complex interactions as well.
Restricting interactions according to users’ rights is also a
possible extension.

So far, our approach works for class models that have het-
erogeneous names for different concepts. Heterogeneities on
the model level are not yet fully addressed. Formal frame-
works as the approach described in [13] could extend our
approach to be able to cope with those issues, too.

The use of ontologies for describing plugins provides the
potential for user assistance. We have already implemented
some first approaches in our framework, such as the aug-
mentation of drop targets with tooltips generated from the
ontology.

As user interfaces have to be reactive, great care has to be
taken regarding the performance, especially of the semantic
processing components. Therefore, we have to take into ac-
count highly performant reasoning components, and provide
some additional measures, e.g. caches.

In summary, we have shown how ontologies can be used in
the development of user interfaces. Our approach can help
in modularizing user interfaces and in developing Uls from
independent, loosely coupled plugins.

7. ACKNOWLEDGMENTS

The work presented in this paper has been partly funded
by the German Federal Ministry of Education and Research
under grant no. 01ISO7009.

8.
1]

[11]

[12]

[14]

REFERENCES

S. Abiteboul, O. Greenshpan, and T. Milo. Modeling
the Mashup Space. In WIDM ’08: Proceeding of the
10th ACM workshop on Web information and data
management, pages 87-94, New York, NY, USA, 2008.
ACM.

J. Angele and G. Lausen. Ontologies in F-Logic,
chapter 2, pages 29-50. International Handbooks on
Information Systems. Springer, 2004.

A. Ankolekar, M. Kroétzsch, T. Tran, and

D. Vrandecic. The Two Cultures: Mashing Up Web
2.0 and the Semantic Web. In WWW ’07: Proceedings
of the 16th International Conference on World Wide
Web, pages 825-834, New York, NY, USA, 2007.
ACM.

G. Babitski, F. Probst, J. Hoffmann, and D. Oberle.
Ontology Design for Information Integration in
Catastrophy Management, 2009. currently under
review.

D. Birsan. On plug-ins and extensible architectures.
ACM Queue, 3(2):40-46, 2005.

J. Coutaz, C. Lachenal, and S. Dupuy-Chessa.
Ontology for Multi-surface Interaction. In Proceedings
of IFIP INTERACTO03: Human-Computer
Interaction, pages 447-454. IFTP Technical Committee
No 13 on Human-Computer Interaction, 2003.

F. Daniel, J. Yu, B. Benatallah, F. Casati, M. Matera,
and R. Saint-Paul. Understanding UI Integration: A
Survey of Problems, Technologies, and Opportunities.
IEEE Internet Computing, 11(3):59-66, 2007.

T. Dettborn, B. Konig-Ries, and M. Welsch. Using
Semantics in Portal Development. In Proceedings of
the 4th International Workshop on Semantic Web
Enabled Software Engineering, 2008.

O. Diaz, J. Tturrioz, and A. Irastorza. Improving
portlet interoperability through deep annotation. In
WWW °05: Proceedings of the 14th international
conference on World Wide Web, pages 372-381, New
York, NY, USA, 2005. ACM.

S. Doeweling, F. Probst, T. Ziegert, and K. Manske.
SoKNOS - An Interactive Visual Emergency
Management Framework. In Proceedings of the
Workshop on Geographical Information Processing and
Visual Analytics for Environmental Security. Springer,
2009. to appear.

S. G. Eick and G. J. Wills. High Interaction Graphics.
European Journal of Operational Research,
84:445-459, 1995.

Foundation for Intelligent Phyiscal Agents. FIPA
Device Ontology Specification, 12 2002.
http://wuw.fipa.org/specs/fipa00091/index.html,
accessed 2008-01-22.

C. Ghidini, L. Serafini, and S. Tessaris. On relating
heterogeneous elements from different ontologies. In
B. N. Kokinov, D. C. Richardson, T. Roth-Berghofer,
and L. Vieu, editors, CONTEXT, volume 4635 of
Lecture Notes in Computer Science, pages 234-247.
Springer, 2007.

T. R. Gruber. Toward Principles for the Design of
Ontologies Used for Knowledge Sharing. volume 43,
pages 907-928, Duluth, MN, USA, 1995. Academic
Press, Inc.

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

(24]

(25]

[26]

27]

(28]

N. Guarino, editor. Formal Ontology and Information
Systems. 10S Press, 1998.

K. Katsurada, Y. Nakamura, H. Yamada, and

T. Nitta. XISL: a language for describing multimodal
interaction scenarios. In ICMI ’03: Proceedings of the
5th international conference on Multimodal interfaces,
pages 281-284, New York, NY, USA, 2003.

G. E. Krasner and S. T. Pope. A cookbook for using
the model-view controller user interface paradigm in
smalltalk-80. J. Object Oriented Program., 1(3):26-49,
1988.

B. Liu, H. Chen, and W. He. Deriving User Interface
from Ontologies: A Model-Based Approach. In ICTAT
’05: Proceedings of the 17th IEEE International
Conference on Tools with Artificial Intelligence, pages
254-259, Washington, DC, USA, 2005. IEEE
Computer Society.

D. L. McGuinness and F. van Harmelen. OWL Web
Ontology Language Overview.
http://www.w3.org/TR/owl-features/, 2004.

P. Naur and B. Randell. Software Engineering: Report
of a conference sponsored by the NATO Science
Committee, Garmisch, Germany, 7-11 Oct. 1968,
Brussels, Scientific Affairs Division, NATO, 1968.
ontoPrise. OntoBroker Website.
http://wuw.ontoprise.de/de/en/home/products/
ontobroker.html, 2009.

D. L. Parnas. Information Distribution Aspects of
Design Methodology. In IFIP Congress (1), pages
339-344, 1971.

A. Puerta and J. Eisenstein, 2001. .http:
//www.ximl.org/documents/XimlWhitePaper.pdf,
accessed 2009-01-15.

K. A. Sergevich and G. V. Viktorovna. From an
Ontology-Oriented Approach Conception to User
Interface Development. International Journal
"Information Theories and Applications”, 10(1):89-98,
2003.

N. Souchon and J. Vanderdonckt. A Review of
XML-compliant User Interface Description Languages.
volume 2844, pages 377-391. Springer, 2003.

H. Wache, T. Vogele, U. Visser, H. Stuckenschmidt,
G. Schuster, H. Neumann, and S. Hiibner.
Ontology-based integration of information - a survey
of existing approaches. In H. Stuckenschmidt, editor,
IJCAI-01 Workshop: Ontologies and Information
Sharing, pages 108-117, 2001.

C. Wege. Portal Server Technology. IEEE Internet
Computing, 6(3):73-77, 2002.

J. Yu, B. Benatallah, R. Saint-Paul, F. Casati,

F. Daniel, and M. Matera. A framework for rapid
integration of presentation components. In WWW ’07:
Proceedings of the 16th international conference on
World Wide Web, pages 923-932, New York, NY,
USA, 2007. ACM.

