
Seamlessly Integrated, but Loosely Coupled –
Building User Interfaces from Heterogeneous Components

Heiko Paulheim
SAP Research CEC Darmstadt

Bleichstrasse 8
64283 Darmstadt, Germany

heiko.paulheim@sap.com

ABSTRACT
User interface development is a time and resource consuming task.
Thus, reusing existing UI components is a desirable approach for
rapid UI development. To keep UIs maintainable, those compo-
nents should be loosely coupled. Composing UIs of heterogeneous
components developed with different technologies, on the other
hand, is a non-trivial task not supported well by currently existing
integration frameworks, and there is only little progress in automa-
tizing the integration step.

In this paper, we introduce a framework for UI integration which
is capable of handling heterogeneous UI components. It facilitates
events annotated with RDF and ontologies for assembling user in-
terfaces from loosely coupled components. With that framework,
UIs can be composed semi-automatically, based on logic event pro-
cessing rules.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques—
User Interfaces; D.2.13 [Software Engineering]: Reusable Soft-
ware—Reuse Models

General Terms
Design, Algorithms

Keywords
User Interfaces, Integration, Component-based Software, Ontolo-
gies, RDF, Semantic Web

1. INTRODUCTION
Developing a software system’s user interface is a time and re-

source consuming task which takes up to 50% of the system’s to-
tal development time [8]. Therefore, reusing existing components
is an important topic in UI development. While numerous tech-
nologies for developing highly appealing UI components, such as
Flex, Silverlight, JavaFX etc., have been introduced during the past

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’10, September 20–24, 2010, Antwerp, Belgium.
Copyright 2010 ACM 978-1-4503-0116-9/10/09 ...$10.00.

years, it has become more likely that reusing existing UI compo-
nents involves the task of integrating heterogeneous UI compo-
nents.

Although there are libraries for displaying e.g. Flex components
within a Java application, such as JFlashPlayer or DJ Native In-
tegration (see [13] for a comparison), those libraries do not yet
provide a meaningful integration. To end up with a useful inte-
grated UI, the integrated components need not only be displayed
next to each other, but also react to actions performed with other
components, such as highlighting related information in different
components, or allowing the user to drag and drop objects from
one component to the other. Only by allowing such interactions,
the user will experience an integrated UI as being all of a piece.
We use the term seamless integration to indicate such a type of
integration.

Current UI integration approaches are still rather limited with re-
spect to facilitating interaction between the integrated components
[3], and the use of heterogeneous components makes things even
worse. Furthermore, implementing seamless integration most of-
ten implies writing code specifically for the components that are
supposed to interact with each other, as opposed to the paradigm
of loose coupling, and leads to code-tangling and systems that are
hard to maintain [4]. For heterogeneous user interface components,
the glueing code may not only be scattered across components, but
also be written in different programing languages, which further
complicates maintenance.

In this paper, we introduce a framework for seamless UI integra-
tion based on RDF and ontologies [9]. The framework is based on
an exchange of annotated events, which leads to a loosely coupled
and well maintainable integrated system, and facilitates semantic
event processing by using a centralized reasoning module.

2. BASIC FRAMEWORK
ARCHITECTURE

Fig. 1 gives a high-level overview of our integration framework’s
architecture. Each UI component runs in a container, which is re-
sponsible for displaying the UI and provides different services for
performing the integration with other components.

The event handling service is responsible for sending and receiv-
ing events to and from other components. To this end, all containers
are connected via a common event bus. The object transformation
service transforms objects to and from RDF for sending them along
with events. The drag and drop handling service keeps track of ob-
jects dragged from and dropped to components and facilitates drag
and drop even across heterogeneous components. The components
and state management service manages the UI component’s sub-
components, and their respective states.

Flex Container

E
v
e
n
t

H
a
n
d
lin
g

O
b
je
c
t

T
ra
n
s
fo
rm
a
ti
o
n

D
ra
g
 a
n
d
 D
ro
p

H
a
n
d
lin
g

Flex UI Component

C
o
m
p
o
n
e
n
ts
 a
n
d

S
ta
te
 M
a
n
a
g
e
m
e
n
t

Java Container

E
v
e
n
t

H
a
n
d
lin
g

O
b
je
c
t

T
ra
n
s
fo
rm
a
ti
o
n

D
ra
g
 a
n
d
 D
ro
p

H
a
n
d
lin
g

Java UI Component

C
o
m
p
o
n
e
n
ts
 a
n
d

S
ta
te
 M
a
n
a
g
e
m
e
n
t

Central Event Processor

E
v
e
n
t

H
a
n
d
lin
g

Reasoning

Module

A
-b
o
x
 C
o
n
n
e
c
to
r

In
te
g
ra
ti
o
n
 R
u
le
s

T
-b
o
x
 C
o
n
n
e
c
to
r

Real World

Domain

Ontology

Application 1

Ontology

Application 2

Ontology

Application n

Ontology

Event Bus

UI and Inter-

actions

Ontology

Figure 1: Architecture overview. Components run in con-
tainers and exchange annotated events, using a centralized,
ontology-based event processor.

An essential component of our framework is the central event
processor (CEP) and its reasoning module. The CEP is also con-
nected to the framework’s event bus by its own event handling ser-
vice and can thereby send and receive events. It facilitates central-
ized event processing [3] by analyzing events and computing new
events that are triggered by the ones that have been received. By in-
corporating information about the event’s meta data as well as the
objects contained therein, i.e. the semantics of an event, the rea-
soning module facilitates semantic event processing, as defined in
[15]. The central event processor serves as an indirection to ensure
loose coupling of the UI components.

To define the semantics of events, we use three different types
of ontologies, formalized in F-Logic: An ontology of the user in-
terfaces and interactions domain defines the basic concepts of UI
components, as well as user and system actions. A real world do-
main ontology describes the real world entities the system deals
with, such as banking accounts and customers or travel itineraries.
Based on those two ontologies, a specific application ontology is
defined for each component integrated in the system, defining the
specific sub-components of that component, their behaviour, and
the interactions they support [9].

These ontologies are provided to the reasoner by the T-Box con-
nector, which reads them at system start time and loads them into
the reasoner. Based on those ontologies, integration rules can be
defined which control cross-component interaction. For example,
a linking interaction is defined by the following integration rule:
“When a select event is detected involving an information object,
it triggers a highlight event for each other information object cur-
rently displayed which refers to the same real world object.”

By using reasoning on a real world domain ontology, such inte-
gration rules may be formulated in a more general way. For exam-
ple, a map component might declare that it can show the position
of everything that has a position. The use of such general rules sig-
nificantly decreases the need for adjustments when integrating new
components [10].

A typical query posed to the reasoning module is: “Given a re-
ceived event e, which actions are triggered by that event?” To an-
swer this query, the integration rules are evaluated, which may have
conditions such as “if the event is performed with a component of
type c” or “if a component of type c is in a state s”. Thus, the
reasoning module requires information about the system’s current
state, such as the components that are currently active and the infor-
mation objects they currently display. While the reasoner’s T-Box
(which defines the categories of components, events, and data ob-
jects) as well as the set of integration rules remain constant and can
thus be initialized at system startup by the T-Box connector, the
reasoner’s A-Box (which defines the actual instance data, i.e. the
set of currently active UI components and the data objects they pro-
cess) is subject to constant change. Therefore, the A-Box connector
has to work differently from the T-Box connector.

In our previous work, we have shown that pull-based approaches
where the reasoner dynamically queries the integrated components’
state clearly outperform push-based approaches where the inte-
grated components notify the reasoner about state changes. The
latter even turned out not to scale at all to a larger amount of com-
ponents with frequent state updates [11]. Thus, we have imple-
mented our framework with a pull-based approach, using an A-Box
connector which collects instance data on the fly during a query
by addressing the containers’ components and state management
services. Those services can also cache the instance data and thus
further improve the system’s performance.

3. ANNOTATING AND PROCESSING
EVENTS

Events that are exchanged between components have to be com-
monly and unambiguously understood by each component. To that
end, mechanisms for bridging both the syntactic (i.e. programming
language) as well as the semantic (e.g. using different class or at-
tribute names) gaps are needed. Annotation using formal ontolo-
gies can ensure such a mutual understanding [16].

As discussed in [1], RDF can be used as an interlingua bridg-
ing the syntactic gap between different components, and when us-
ing ontologies for defining the RDF elements, the semantic gap is
bridged as well: events can be properly serialized and deserialized,
e.g. using RDF-XML, and the meaning of each element of the se-
rialization is defined in a formal ontology.

We use the ontology of user interfaces and interactions for defin-
ing event types. Each event notifies about an action. Our ontology
contains a categorization of actions performed by the user (such as
selecting, dragging and dropping objects) as well as by the system
(such as highlighting, displaying or removing objects). Together
with the annotation of the involved information objects and com-
ponents (see below), an event can be encoded and transmitted in
RDF, which allows the unambiguous decoding of an event.

4. ANNOTATING UI COMPONENTS
A container’s A-Box connector has access to different type of

information about the running system: UI components and the data
objects they process. To be able to process those information, they
need to be annotated by using the common ontologies. For each
component, the components and state management service pro-
vides such annotation by keeping track of the component and its
sub-components. It can serve the reasoning engine information
about the currently active components, their respective states, and
the information objects they currently process, e.g. in RDF.

The annotations can use concepts from the domain ontologies, as
well as from the respective components’s application ontology, e.g.

Event

Handling

Object

Transformation

Component 2a

Event Bus

Event

Handling

Object

Transformation

Component 1a

Component 1b

C
o
m
p
o
n
e
n
t
1
c

2.

1.

3.

4.

5. 6.

7.

Component 1 Component 2

1. Event raised in component 1

2. Contained object marked

 with origin

3. Event transferred to component 2

4. Object’s origin analyzed

5. Object translated to RDF

 representation by origin

6. RDF representation translated

 to component 2's format

7. Event passed to component 2

Object in component 1

Object in component 2

Object in RDF representation

Event containing an object

Figure 2: Schematic view of object transformation using an abstract intermediate format in an event exchange between two UI
components. For reasons of simplicity, the event processing step by the central reasoner is not shown in this diagram.

for specialized components. For example, a special button
concept can be defined in an application ontology, declaring it as a
subconcept of the general button concept in the UIs and interac-
tions ontology.

The resulting annotation of components is used two-fold: for
inclusion in the event annotation (i.e., for defining the components
that have raised an event) and for providing information about the
currently active components to the central event processor through
the A-box connector.

5. ANNOTATING AND PROCESSING
DATA OBJECTS

Events most often involve data objects. For example, a select
event does not only carry the information that the user has selected
something, but also more information about that something, i.e.,
the selected object. In a heterogeneous system, those objects may
be implemented in different programming languages and exist in
different technical environments. For event exchange, those ob-
jects have to be transferred between heterogeneous components and
transformed into their respective formats.

The big picture of object exchange is shown in Fig. 2: When an
object is sent along with an event, the event contains a reference
to the originating container and an ID to identify the object within
that container. When the event is received by another component,
it requests the object’s abstract RDF representation. By following
the reference to the originating container, that container’s object
transformation service is used to dynamically provide the RDF rep-
resentation based on the object’s ID, and the receiving container’s
object transformation service can translate the object back to its
own representation.

The use of annotated events as a communication paradigm be-
tween integrated UI components leads to a modular system built
from loosely coupled components: the only dependencies shared
between the integrated components are the common ontologies,
and there are no direct dependencies between components.

6. RELATED WORK
UI components can be integrated with different approaches, such

as component based and plugin based systems, web portals, and
mash-ups. Most of those approaches use the exposed APIs of the

integrated components, and the developer has to write code invok-
ing one component from another one. This often leads to code-
tangling and to integrated systems which are not loosely coupled,
not modular, and therefore hard to maintain. As discussed in [3],
the means for seamless integration, as defined in this paper, are still
rather limited, and formal models, which could remedy the prob-
lem, are still not used very widely. Furthermore, despite the large
variety of integration approaches, only a few of those approaches
explicitly address problems of cross-technology integration.

Component and plugin based approaches most often expect the
plugins to follow a certain architectural style and programming lan-
guage and are thus not suitable for integrating heterogeneous com-
ponents. There are, however, a few examples explicitly directed at
heterogeneous components, such as the OpenInterface workbench
[6]. This platform allows components implemented with different
technologies to communicate via exposed interfaces. The approach
described in [5] focuses on integrating widgets from heterogeneous
widgets platforms by using abstract models of those widgets and
combines those models with MDA methods.

The CRUISe integration framework [14] uses the notion of user
interface services for integrating different user interfaces, includ-
ing Flex and HTML/JavaScript based components. Using a user
interface definition language, they also focus on dynamic retrieval
and binding of components, which is out of scope of our approach.
The Mixup approach shown in [7], which is probably the closest to
the one shown in this paper, uses wrappers for components imple-
mented with different technologies, which are responsible for data
conversion and communication.

Portals and mash-ups are typical approaches to UI integration on
the web. The 2.0 version of the JSR portlet standard also offers
a basic event processing mechanisms between portlets, including
user-defined events. However, event and object exchange in most
portal implementations is based on naming conventions. Thus, the
portlet standard per se does not provide semantic event exchange,
and does not prevent code tangling between portlets.

Mash-ups differ from portals as they use less standardized, light-
weight frameworks and rather address end users and semi-profes-
sional programmers than professional software developers. Event-
based mashup platforms are good candidates for implementing
linked views on data by linking, e.g. integrating Google Maps with
other applications to show the geographic location of selected ob-

jects. As for portals, no abstraction layer between mashlets exists
that prevents code tangling when implementing cross-mashlet in-
teraction.

7. CONCLUSION AND OUTLOOK
Composing user interfaces from existing UI components helps

saving engineering time and efforts. Especially when re-using
heterogeneous components together in one system, implementing
cross-component interaction leads to code-tangling and close cou-
pling, thus complicating the maintenance of the integrated user in-
terface.

In this paper, we have introduced a framework which is capa-
ble of integrating heterogeneous UI components and follows the
paradigm of loose coupling. Components can exchange events an-
notated using RDF and ontologies, which are processed by a central
reasoner based on integration rules. In [11], we have shown that
the event processing times of our framework are reasonable even
for larger number of components and integration rules.

The introduction of the semantic event processor as an indirec-
tion in the event exchange process helps keeping the integrated
components modular and separated from each other. By formulat-
ing the interaction rules based on ontologies, components may be
exchanged for others without causing any changes on other com-
ponents.

The framework introduced in this paper has been successfully
used for building the SoKNOS application [12], a prototype system
for emergency management comprised of more than 20 different
components developed with Java and Flex.

Currently, the automatic annotation of data objects as described
in this paper is limited to class models which can be mapped to an
ontology in a way that each data object class and attribute maps
to one concept in the corresponding ontology. We are currently
extending this mechanism in a way that it also works in cases where
such 1:1 mappings are not possible.

Although the run-time reasoning based on annotations, ontolo-
gies, and integration rules automatizes much of the integration and
frees the developer from writing a lot of glue code, there is still
a number of steps that the developer who performs the integration
with our framework has to conduct. Providing an easy-to-use tool
could further automatize UI integration.

8. ACKNOWLEDGEMENTS
The work presented in this paper has been partly funded by the

German Federal Ministry of Education and Research under grant
no. 01ISO7009 and 01IA08006.

9. REFERENCES
[1] David Booth. RDF and SOA. In Workshop on Web of

Services for Enterprise Computing. W3C, 2007.
http://www.dbooth.org/2007/rdf-and-soa/
rdf-and-soa-paper.htm.

[2] Gaelle Calvary, T. C. Nicolas Graham, and Philip Gray,
editors. Proceedings of The 1st ACM SIGCHI Symposium on
Engineering Interactive Computing Systems (EICS). ACM,
2009.

[3] Florian Daniel, Jin Yu, Boualem Benatallah, Fabio Casati,
Maristella Matera, and Regis Saint-Paul. Understanding UI
Integration: A Survey of Problems, Technologies, and
Opportunities. IEEE Internet Computing, 11(3):59–66, 2007.

[4] Sofie Goderis, Dirk Deridder, and Ellen Van Paesschen.
DEUCE : Separating Concerns in User Interfaces. In
Proceedings of the Second International Conference on

Software Engineering Advances (ICSEA 2007), August
25-31, 2007, Cap Esterel, French Riviera, France, page 51.
IEEE Computer Society, 2007.

[5] Dimitrios Kotsalis. Managing Non-Native Widgets in
Model-Based UI Engineering. In Calvary et al. [2], pages
313–316.

[6] Jean-Yves Lionel Lawson, Ahmad-Amr Al-Akkad, Jean
Vanderdonckt, and Benoît Macq. An Open Source
Workbench for Prototyping Multimodal Interactions Based
on Off-The-Shelf Heterogeneous Components. In Calvary
et al. [2], pages 254–254.

[7] Florian Danieland Maristella Matera. Mashing Up
Context-Aware Web Applications: A Component-Based
Development Approach. In WISE ’08: Proceedings of the
9th international conference on Web Information Systems
Engineering, volume 5175 of LNCS, pages 250–263, Berlin,
Heidelberg, 2008. Springer-Verlag.

[8] Brad A. Myers and Mary Beth Rosson. Survey on user
interface programming. In CHI ’92: Proceedings of the
SIGCHI conference on Human factors in computing systems,
pages 195–202, New York, NY, USA, 1992. ACM.

[9] Heiko Paulheim. Ontologies for User Interface Integration.
In Abraham Bernstein, David R. Karger, Tom Heath, Lee
Feigenbaum, Diana Maynard, Enrico Motta, and
Krishnaprasad Thirunarayan, editors, The Semantic Web -
ISWC 2009, volume 5823 of Lecture Notes in Computer
Science, pages 973–981. Springer, 2009.

[10] Heiko Paulheim. Ontology-based Modularization of User
Interfaces. In Calvary et al. [2], pages 23–28.

[11] Heiko Paulheim. Efficient Semantic Event Processing:
Lessons Learned in User Interface Integration. In Lora
Aroyo, Grigoris Antoniou, Eero Hyvönen, Annette ten Teije,
Heiner Stuckenschmidt, Liliana Cabral, and Tania
Tudorache, editors, The Semantic Web: Research and
Applications, 6th European Semantic Web Conference,
ESWC 2010, Heraklion, Crete, Greece, May 31-June 4,
2010, Proceedings, volume 6089 of LNCS, pages 60–74.
Springer, 2010.

[12] Heiko Paulheim, Sebastian Döweling, Karen Tso-Sutter,
Florian Probst, and Thomas Ziegert. Improving Usability of
Integrated Emergency Response Systems: The SoKNOS
Approach. In Proceedings "39. Jahrestagung der
Gesellschaft für Informatik e.V. (GI) - Informatik 2009",
volume 154 of LNI, pages 1435–1449, 2009.

[13] Heiko Paulheim and Atila Erdogan. Seamless Integration of
Heterogeneous UI Components. In Proceedings of the 2nd
ACM SIGCHI Symposium on Engineering Interactive
Computing Systems (EICS 2010), pages 303–308. ACM,
2010.

[14] Stefan Pietschmann, Martin Voigt, Andreas Rümpel, and
Klaus Meißner. CRUISe: Composition of Rich User
Interface Services. In M. Gaedke, M. Grossniklaus, and
O. Díaz, editors, Proceedings of the 9th International
Conference on Web Engineering (ICWE 2009), Edition 5648,
pages 473–476, San Sebastian, Spain, June 2009. Springer.

[15] Kia Teymourian and Adrian Paschke. Towards semantic
event processing. In DEBS ’09: Proceedings of the Third
ACM International Conference on Distributed Event-Based
Systems, pages 1–2, New York, NY, USA, 2009. ACM.

[16] Utz Westermann and Ramesh Jain. Toward a Common Event
Model for Multimedia Applications. IEEE MultiMedia,
14(1):19–29, 2007.

