Efficient Semantic Event Processing:
Lessons Learned in User Interface Integration

Heiko Paulheim

SAP Research
heiko.paulheim@sap.com

Abstract. Most approaches to application integration require an un-
ambiguous exchange of events. Ontologies can be used to annotate the
events exchanged and thus ensure a common understanding of those
events. The domain knowledge formalized in ontologies can also be em-
ployed to facilitate more intelligent, semantic event processing, but at
the cost of higher processing efforts.

When application integration and event processing are implemented on
the user interface layer, performance is an important issue to ensure
acceptable reactivity of the integrated system. In this paper, we analyze
different architecture variants of implementing such an event exchange,
and present an evaluation with regard to performance. An example of an
integrated emergency management system is used to demonstrate those
variants.

1 Introduction

Integrating existing applications to form new systems is an important topic in
software development, both for the purpose of saving engineering and mainte-
nance efforts and for enabling the cooperation of existing systems (within as well
as across organizations) [1]. Application integration can be carried out on three
different levels: the data source level, the business logic level, and the user inter-
face level [2]. Integration on the user interface level, or user interface integration
for short, has two significant advantages [3]:

— Existing applications’ user interfaces can be reused. Since the development
of the user interface consumes about 50% of a software’s total development
efforts [4], the degree of reuse can be raised significantly.

— Users already familiar with existing user interfaces do not have to learn
how to work with new ones. Therefore, the usability of an integrated user
interfaces can be higher than of a user interface developed from scratch.

Integrated applications, and especially the implementation of cross-applica-
tion interactions, require an event exchange mechanism [2]. To facilitate inte-
gration, the events issued by each application have to be commonly understood.
Therefore, an ontology formalizing the information contained in the events is re-
quired [5]. It can be used to annotate the events, thus facilitating unambiguous

event exchange. Using ontologies and the domain knowledge encoded therein also
allows for a more sophisticated approach of dealing with events, called semantic
event processing [6].

Such a sophisticated approach, e.g. incorporating an ontology reasoner, makes
event processing a more complex and thus more time consuming task. But when
dealing with Ul integration and user interfaces in general, reactivity is an im-
portant factor with massive influence on the users’ performance and satisfaction
[7,8]. Therefore, semantic event processing mechanisms have to be implemented
in an efficient, high-performance way. Various options exist for such implemen-
tations: events can be processed in a centralized or a decentralized manner [2],
and instance data can be made available to the reasoner via push or pull mech-
anisms. In this paper, we analyze those different implementation variations and
evaluate them with respect to performance.

The rest of this paper is structured as follows: in section 2, we outline the basic
concepts of semantic event processing. In section 3, we introduce a framework for
Ul integration and present an example for semantic event processing, which does
not only demonstrate how ontologies can be used to facilitate cross-application
interactions such as drag and drop, but also how to make those interactions more
intelligent and comfortable for the user. In section 4, we compare the different
implementation variations based on the framework introduced, and we show
the impact on the system’s performance with each variant. We conclude with a
survey of related work, a summary, and an outlook on future developments.

2 Background

Following the survey in [9], event-driven approaches can be roughly categorized
in event detection (dealing with the detection and creation of events) and event
processing (dealing with reacting to those events, e.g. by creating new events
and/or changing a system’s state). Furthermore, logic-based and non-logic-based
approaches can be distinguished, where the former encorporates formal logic to
detect or process events, while the latter does not. Following this categorization,
the work presented in this paper is a formal approach to event processing.

The term semantic event processing denotes the processing of events based on
information on the semantics of that event [6]. The decisions in event processing
may range from filtering and routing of events to the production of new events
from the detected ones. An events’ semantics may be comprised of information
about the actor who caused the event, the objects with which the event was
performed, and many more. Westermann and Jain propose a six-dimensional
common event model, including temporal and spatial aspects as well as informa-
tion about the involved actors and information objects [5]. As semantics can be
described by using ontologies based on formal logics, semantic event processing
is a subset of logic-based event processing.

One simple form of event processing systems are publish-subscribe-systems.
Here, clients subscribe to events which deal with a certain topic or, more general,
fulfill a certain set of conditions. Ontologies may be used to provide a hierarchy

of topics, in the simplest case. Sophisticated approaches can use more complex
annotations of events and allow subscription not only on topics, but also on
subgraphs of the annotations, e.g. by using SPARQL queries [10-12].

More advanced approaches of event processing do not only forward or discard
events, but may also create new events or allow the triggering of actions if events
occur under certain conditions, an approach known as event-condition-action
(ECA) rules. There are several approaches to implementing event-driven systems
based on ECA rules, e.g. in Datalog [13] or RuleML [14]. The approach presented
in this paper uses F-Logic [15] for implementing event-processing rules.

3 A Framework for Integration on the UI Level

Application integration on the user interface level, or Ul integration for short,
means assembling applications in a way that their existing user interfaces are pre-
served. Typically, those interfaces are presented as individual parts on the screen
within one common frame, such as a portal [16], or a mashup [17]. In each case,
the user can simultaneously and parallely interact with different applications.
Most current approaches to implementing cross-application interactions, such as
drag and drop from one application to another, are still very limited: they require
writing a larger amount of glue code in each of the applications to be integrated,
most often leading to code-tangling and non-modular integrated systems [2]. In
this section, we introduce an ontology-based framework for UI integration which
aims at remedying those limitations by introducing centralized semantic event
processing.

3.1 Framework Architecture

Our framework for Ul integration is based on Java and uses OntoBroker [18] as
a reasoner and rule engine. It can be used to integrate applications written in
Java as well as applications which can be wrapped in Java components, e.g. Flex
applications by using libraries such as JFlashPlayer [19].

The integrated applications are connected via an event exchange, where
events can be sent in a directed or broadcast way. To allow a common under-
standing and sophisticated semantic event processing, each event is annotated
with different information, such as the action that has caused the event, the com-
ponent that this action was performed with, and the types of objects that are
involved in the action (see Fig. 1). Events can than be analyzed by a reasoner,
and re-distributed and further processed by using a rule engine [3].

As user interface integration requires formal and modular models of the inte-
grated applications as well as the part of the real world for which the applications
are built [20], we use ontologies in our framework for modeling the relevant parts
of the applications as well as the real world [3]. With the help of those ontologies,
the events can be annotated to make them universally and unambiguosly under-
standable by all parties, and to allow sophisticated semantic event processing.
In our framework, we use three types of ontologies:

1. An ontology of the user interfaces and interactions domain defines basic con-
cepts such as user interface components and actions that can be performed
with those components. Furthermore, it defines a basic category for infor-
mation objects, which are objects in the application carrying information
(and which are typically visualized in user interfaces). Events are annotated
with this ontology to categorize the type of action underlying the event, and
the reasoner uses this ontology for formulating the queries needed in event
processing.

The UI and interactions ontology is an integral part of our framework.

2. A real world domain ontology defines the objects from the applications’ real
world domain, such as banking, travel, etc. The real world domain ontology
is used to annotate data objects passed between the integrated applications.
Each data object and its attributes is annotated with concepts from the
domain ontology. Furthermore, it provides background knowledge which can
be used to formulate more elaborate interaction rules.

The real world domain ontology is not part of our framework, since the
framework is domain-independent. For integrating applications, an appro-
priate real world domain ontology needs to be created or reused.

3. For each integrated application, an application ontology defines this appli-
cation’s components and the interactions that are possible with them. The
components and actions defined in the application ontologies are subclasses
of the respective concepts defined in the user interfaces and interactions do-
main ontology. All applications and their components are instances of the
components defined in these ontologies, and the information objects they
process represent objects from the real world domain ontology.

During the integration, a developer has to implement one application ontol-
ogy per integrated application.

The application ontologies also contain interaction rules that define how the
user can interact with the different integrated applications, formalized in F-Logic
[15]. Those interaction rules are used to define cross-application behaviour.

The integration framework is currently used in the research project SokNOS?,
an integrated application in the emergency management field [21]. The SOKNOS
system itself is a larger system which consists of 20 integrated applications. On
average, there are nine integration rules per application, forming a total of 180
integration rules. In SOKNOS, we use an ontology of the emergency management
domain [22] as a real world domain ontology.

Further details of the framework are introduced in section 4, where the dif-
ferent architectural variants are discussed.

3.2 Example Interaction Rules: Intelligent Drag and Drop

Examples for cross-application interaction include displaying related information
in one application when selecting an object in another one [23], cross-application

! Service-orientiertierte ArchiteKturen fiir Netzwerke im Bereich Oeffentlicher Si-
cherheit (German for service oriented architectures for networks in the field of public
security).

User Interfaces and Interactions Domain Ontology

.) ui#interaction
ui#supports

. - ~
uihasTrigger ui#hasEffect
ui#hasSubcomponent ui#perrormedWith—7\‘ uif#Action ¢’
4 N ——isdispla uittinvolves /7 V\
splays.
~ ¥

ui#InteractiveComponent —

ui#InformationObject ui#UserAction ui#SystemAction

]
b\) it nt /4 QV\
ui#Application . repLese s
A\

owh#Thing ui#Drag ui#Drop ...

ui#Display ui#Link

app1#Application1 app2#Application2

/
ui#hasSubcomponent

ui#hasSubcomponent ui#thasSubcomponent ui#thasSubcompanent

app1#Component1 app1#Component2 app2#Component1 app2#Component2

instance of

instance of

instance of Application|Ontology 1 instance of instance of Application Ontology 2 instance of

app2i#tapplication2a

©

E app1#col a

3

§ \\a'ppz#eemponenn a
|—€

3

=]

a

a

® | appi#applicationia appaitcomponentza

(/]w Event Exchange O)
]

domain#TacticalUnit

Number: 0081237
Time: 1260268366
Sender: app1#appinstance1

~_
domain#hasComm&l}der

domain#suitableFor Tl FEEen
Ann.: drop081237 : ui#Drop

drop081237 uitperformedWith app1#component2a.

drop081237 ui#involves object32.

object32 : ui#InformationObject.

object32 uit#represents unit485.

unit485 : domain#TacticalUnit.

unit485 domain#hasCommander p238.

domain#Measure —domain#Adresses—» domain#Problem

71

domain#Threat domain#Damage

Annotated Event Real World Domain Ontology

Fig. 1. The use of ontologies in our framework. Parts of the Ul and interaction do-
main ontology, real world domain ontology and two application ontologies as well as
their relations are shown. The event is annotated by using concepts from the different

ontologies. A real world domain ontology from the emergency response domain is used
in this example.

workflows (e.g. the creation of an object in one application requires entering
data in another one), or dragging and dropping objects from one application
to another one. In the following, we will introduce an example taken from the
emergency response domain, which is implemented in the SOKNOS system [21].

The emergency response domain deals with entities like damages (such as
fires, floodings, etc.), measures addressing those damages (such as fire fighting,
building dams, etc.), and tactical units (such as fire brigade cars, helicopters,
etc.). A useful interaction rule could be the following: if the user drops a tactical
unit on a measure, the unit is allocated to that measure (which may e.g. result
in issuing an order to that unit), given that the unit is suitable for fulfilling
that measure. The (non-trivial) decision whether a tactical unit is suitable for a
measure or not requires a certain amount of knowledge of the emergency response
domain [22].

To formalize such a rule, we use three types of ontologies, as depicted above:
an ontology of the user interfaces and interactions domain (prefixed ui), an
ontology of the real world domain (here: emergency response, prefixed domain),
and the application ontology of the integrated application which should support
the interaction? (prefixed app). Each interaction rule contains a triggering event
(the E in FCA, see section 5), an action to be performed as an effect (the A
in ECA), and some conditions under which the interaction can be performed
(the C in ECA). The example rule facilitating the drag and drop interaction,
formalized in first order logic, looks as follows:

Ve, t, 101,100, u,m : app# DisplayMeasureComponent (c) A ui# DropAction (t)
A wi#In formationObject (io1) A domain#TacticalUnit (u)
A ui#In formationObject (io2) A domain# Measure (m)
A ui#represents (ioy, u) A ui#represents (iog, m)
A wiftper formedWith (t, c) A uiftinvolves (t,io1)
A wiftdisplays (¢, i02) A domain#tsuitable For (u, m)
— i, e: sys#Interaction (i) A\ ui## Link Action (e)
A witsupports (app, i) A uiinvolves (e, i0)
A witthasTrigger (i,e) A wi#thasE f fect (i, e) (1)

The rule states that whenever a triggering event t is processed which states
that an information object 70, representing a tactical unit u is dropped on a
component ¢ displaying an information object 0o representing a measure m,
the resulting interaction ¢ will have the effect e of linking the tactical unit to
the measure. The last term of the rule’s body — domain#suitableFor (u,m) —
involves the usage of real world domain knowledge (i.e. the conditions under
which a tactical unit is suitable for a measure). Thus, the semantics of the event

2 As the example shows, the interaction is triggered by the drop action, not by the
drag action. Therefore, the application supporting the interaction is the one where
the object is dropped, not the one from which it is dragged. The interaction as it is
defined above works regardless of which application the object is dragged from.

and the objects contained therein are used to provide an intelligent processing of
that event. The rule also contains statements such as wi#tdisplays (¢, i03), which
need information on the system’s state to be evaluated. In section 4.2, we will
show alternatives of providing this information to the reasoner and rule engine.

An intelligent drag and drop interaction mechanism would not only allow
the drag and drop itself, but also highlight the possible drop targets when the
user starts dragging an object. Such a behaviour can be formalized as another
interaction rule:

Ve, t,i0 0 ui#InteractiveComponent (¢) A wi#DragAction (t)
A ui#InformationObject (io) A ui#involves (t,i0)
A (Fthyp : uidEDropAction (thyy) A uiFinvolves (thyp, i0)
A uiftper formedWith (thyy,)
— Tipyy : wiFInteraction (inyy) A uiFthasTrigger (inyp, thyp))
— i, e : ui#Interaction (i) A wi#Highlight Action (e)
A uwi#hasTrigger (i,e) A wifthasE f fect (i,e)
A ui#per formedWith (e, c) (2)

This rules states that for any drag action ¢, if a corresponding (hypothetical)
drop action ty,,, on a component ¢ would serve as a trigger for any (hypothetical)
interaction iy, then this component is to be highlighted as an effect e of that
drag action3. This rule is only defined once and fires for every drag and drop
interaction performed with any object from any application, as no concepts from
the domain ontology nor from any specific application ontology are referred to.
It can thus be included in the user interfaces and interactions ontology. By using
the natural language representation of the actions and objects involved in the
computed events, the highlighted drop locations may also be augmented with
tooltips (see Fig. 2).

4 Implementation Variants

We have tested different possible implementation variants with the framework
described in section 3. For each variant, we have measured the average process-
ing time for events, which is the main factor in the perceived reactivity of the
integrated system. Throughout the experiments, we have varied some parame-

3 Note that such a rule cannot be defined directly in most rule-based systems, due
to the nested implication statement in the body. Therefore, further steps such as
breaking down the rule into two or more rules are necessary for the actual imple-
mentation.

s*portal

Einsatzionto - verbunden mit lokalem 53 :: Anzeige aktueller Objekte

- | Woschaug 185w Koin
7 | m o st me

o | Woscraug3BFuKg

3
: 2 Stoer g

| Mrmtzug 16ekn

T | D3 status mE =

Fig. 2. A screenshot of intelligent drag and drop. Two integrated applications are
shown: one for managing problems and measures addressing those problems (top), the
other one for managing tactical units (bottom). If the user starts dragging a tactical
unit (indicated by the arrow), the corresponding drop locations are highlighted. In
addition, a tooltip is shown indicating the effect of dropping the object.

ters, such as the number of instances of integrated applications that are used in
parallel*, or the number of integration rules per application.’

4.1 Centralized vs. Decentralized Processing

Semantic event processing involves operations such as event filtering or the cre-
ation of new events from those that are already known. Such operations may
be performed either by one central unit, or in a decentralized way by each par-
ticipant involved in the event exchange [2]. The two variants are depicted in
Fig. 3.

Both approaches have advantages and drawbacks. A centralized event pro-
cessing unit needs to know about each application ontology including the event
processing rules defined therein (see Fig. 3(a)), thus leading to a large number
of rules to be processed by one unit. This unit may become a bottleneck, and
cross-dependencies between rules can slow the whole process down.

With decentralized event processing, on the other hand, each event has to
be analyzed and processed multiple times, even if the result of such process-

4 Note that this is not the number of applications that are integrated into one system,
but the number of instances of those applications that are used in parallel, where
the latter is usually lower than the former.

® The tests have been carried out on a Windows XP 64Bit PC with an Intel Core Duo
3.00GHz processor and 4GB of RAM, using Java 1.6 and OntoBroker 5.3.

Application Application
Ontology 1 Ontology 2
Q Q
0 2P)(0 P
Application 1 Application 2 Application 1 @ @ App!ication 2
oS £ SR
— g x g; % x g’ B
- = Qoo W &eesl.l.J”-;-w
l l l — l
(Event Exchange () (Event Exchange] A 0
N N
Reasoner ‘ Coo
& Rule (¢ KZQD 2% o
Engine |-|l|-||| E“>§06Lﬁ I.|||.]||
1T \& Application n % ZE Application n
Real World 2
+Uland O
Interaction @ @
Real World Ul and Application Domain Application
Domain Interaction ~ Ontologies Ontology Ontology n
Ontology Domain 1.n
Ontology

(a) Implementation with global event (b) Implementation with local event pro-
processing cessing

Fig. 3. Framework architecture using global vs. local event processing. The global
variant uses one central reasoning and rule engine which processes all domain and all
application ontologies. The local variant uses several reasoning and rule engines which
each process all domain ontologies and only one application ontology.

ing is that the event is discarded in most cases. Furthermore, common domain
knowledge, which is an essential ingredient of semantic event processing, has to
be replicated and taken into the processing process each time (see Fig. 3(b)).
Those operations can also have negative impact on the overall event processing
performance.

The measurements depicted in Fig. 4 reflect these mixed findings. Both ap-
proaches scale about equally well to larger numbers of integrated applications
(and thus, larger total numbers of integration rules). For integrated applications
with a smaller number of integration rules per application, global processing is
about 40% faster than local processing; with a growing number of integration
rules per application, the difference is not as significant, but global processing is
still slightly faster.

The main reason why global event processing turns out to be faster is that
each event has to be processed only once, not once per receiving application —
this advantage is not trumped by the larger number of rules in a centralized
approach.

1600
1400

1200 - =% - Local Processing (10 Rules/Appl.)

1000
800
600
400

- & - Local Processing (20 Rules/Appl.)

—>— Global Processing (10 Rules/Appl.)

—— Global Processing (20 Rules/Appl.)
200

Event processing time [msec]

5 10 15 20
No. of integrated application instances open in parallel

Fig. 4. Event processing performance comparison between using centralized and de-
centralized processing. Event processing time has been measured for 5 to 20 instances
of integrated applications used in parallel, with 10 to 20 integration rules each.

4.2 Pushing vs. Pulling of Instance Data

Ontologies have two parts, a T-Box, which contains the definitions of classes
and relations, and an A-Box, which contains the information about instances of
those classes. Reasoning about an integrated Ul and events requires information
about the system at run time, such as the application instances that are currently
open, the components that constitute them, and the information objects they
currently process (such as the example rule no. 1, which uses information about
which components display which information objects as a condition). These kind
of information are part of the ontologies’ A-boxes.

There are two possible ways of implementing this A-box. A straight forward
approach is to use an instance store for the instance data (see Fig. 5(a)). In
this approach, integrated applications are responsible for sending (i.e. pushing)
regular updates to assure that the instance store is always synchronized with
the system its instances represent.

Another approach is to use the integrated system itself as an instance store.
In this approach, an instance store connector is used to answer the reasoner’s
queries when needed. When called upon a query, it passes the query to the
applications, collects (i.e. pulls) their answers and returns the instance data to
the reasoner (see Fig. 5(b)).

Both approaches have their advantages and drawbacks. Pushing instance
data into an instance store causes redundancy, since the data contained in the
instance store is also contained in the integrated system itself. Furthermore,
to make sure that each query is answered correctly, the updates sent by the
applications and the queries issued by the reasoner need to be properly serialized.
This may result in slower query execution if a larger number of updates is queued
before the query. These problems are avoided when using a pull-based approach.

On the other hand, a pull-based approach includes that instance data is
retrieved from external systems while a query is processed. Depending on the
reactivity of those systems, the overall query processing time might also increase.

Application 1 Application 2 Application 1 Application 2

L L
ucr ucr A‘
Event Exchange g () (EventExchange 7 ~ s 0
‘ P query ‘
Reasoner Reasoner 2o
& Rule &Rule |2 S
Engine N Engine | S ” [LTHLTH
Application n Application n
Rules T-Box A-Box Rules T-Box
(a) Push-based implementation (b) Pull-based implementation

Fig. 5. Framework architecture using a push-based vs. a pull-based approach. Both
variants are demonstrated in an implementation combined with global event processing.
In comparison to Fig. 3, the individual ontologies’ rules, T-boxes and A-boxes are
subsumed in this figure.

A comparison of both implementations is shown in Fig. 6, using applications
with ten integration rules each, and varying the number of applications that are
integrated at the same time. For applications issuing five updates per second on
average, both approaches scale equally well. For applications issuing ten updates
per second, the pushing approach does not scale anymore.

With a pushing approach, the updates from the individual applications form
an ever growing queue, slowing down the whole system until a total collapse.
This behavior will occur with every reasoning system as soon as the frequency
of updates exceeds the inverse of the time it takes to process an update. Thus,
only approaches using the pulling approach scale up to larger integrated systems.

5 Related work

Few works exist which inspect the efficiency and scalability issues of using se-
mantic events. In the field of event detection, the approach described in [6] uses
modular event ontologies for different domains to enable more sophisticated se-
mantic event processing mechanisms based on ECA rules. The authors propose
to use reasoning to detect more complex event patterns in a stream of events
described by ontologies, and to tell important events from non-important ones.
The authors name scalability and real time processing as challenges, although
no actual numbers are presented.

The idea of modular event ontologies is further carried out in [24] and [25].
The authors propose a modular approach where not only different ontologies,
but also different languages can be used for individual parts of ECA rules. In this
very versatile approach, applications on the semantic web can register their rules
as well as the corresponding processing units. Annotated events are then pro-
cessed in a distributed fashion by dynamically calling the registered processing

2000 ;
1800 !
1600 1
1400 s
1200 :
1000 !
800 s
600 !
400 B - o —a— Pulling (10 Updates/sec)
200

- =% - Pushing (5 Updates/sec)

- & - Pushing (10 Updates/sec)

—— Pulling (5 Updates/sec)

Event processing time [msec]

5 10 15 20
No. of integrated application instances open in parallel

Fig. 6. Event processing performance comparison between pushing and pulling instance
data. Event processing time has been measured for 5 to 20 instances of integrated
applications used in parallel, with ten integration rules each, working at an update
frequence of 5 to 10 updates per second. The figure has been cut at the two second
mark where reasonable work is assumed to become impossible, as indicated in the HCI
literature [7,8]. Systems integrated from applications issuing 10 updates per second
collapsed when integrating more than 15 applications using the pushing approach.

units. As such an approach involves (possibly remote) method calls during the
event processing procedure, it may not be suitable in applications with real-time
requirements.

The work discussed in [26] also uses events described with ontologies. The
authors focus on mining information from a large database of events, allowing
queries about characteristics such as the social relationships between the actors
involved in events as well as the temporal and spatial relationships between
events. Although real-time processing is not a necessary property in this case,
the authors discuss the use of high-performance triple stores to allow fast query
answering. A similar approach is described in [27], where operators for detecting
complex events from a database of atomic events are introduced, based on the
model by Westermann and Jain mentioned above.

In the field of event processing, there are a few examples of using semantic
event processing in the user interface area. One approach is described in [28].
Annotated web pages can be used to create events that also carry information
about the semantics of the involved objects. The authors present an approach
for producing, processing, and consuming those events, and for constructing
complex events from atomic ones. In their approach, the annotations may be
used to formulate rules, but no reasoning is applied in processing the events.
The approach is evaluated with respect to performance (although no variants
are discussed) by means of the example of context-sensitve advertising, and it
proves high scalability, but at the price of not incorporating domain knowledge
and reasoning in the event processing mechanism at all (and thus not facilitating
semantic event processing as defined above).

Another application of semantic event processing in the user interface area
is shown in [29]. Here, it is employed for run time adaptation of user interfaces,

allowing the incorporation of domain knowledge in the reasoning process. The
authors present an e-government portal and show the use case of presenting
appropriate content based on the users context, and evaluate their approach
with regard to run time, reporting event processing times between a few and a
few thousand milliseconds, depending on the number of rules and the number
of instances that are used to answer a query. The authors present performance
measures that allow a direct comparison to our work: While the performance
marks are about the same, our approach allows for formulating arbitrary rules
on the ontologies, the approach presented in that paper allows only the use of
the class hierarchy. Thus, examples as shown in section 3.2 would not be possible
with that approach.

6 Conclusion and Outlook

Application integration on the user interface level is an emerging area of re-
search. With the example of an intelligent drag and drop mechanism, we have
shown how semantic event processing — i.e. event processing incorporating do-
main knowledge — can be employed to build more intelligent integrated systems.

Incorporating domain knowledge makes the event processing task more com-
plex and thus more time consuming. As user interfaces require fast reactivity,
our main focus was on the performance of the approaches, i.e. on the time to pro-
cess an event. In this paper, we have introduced a framework for UI integration,
which is capable of integrating Java-based as well as non-Java-based user inter-
faces, using ontologies and rules for the integration. Based on this framework,
we have analyzed different variants of implementing a semantic event exchange
based on the commercial off-the-shelf reasoner OntoBroker. We have introduced
architectures for centralized and decentralized event processing, and for pushing
and pulling instance data needed by the reasoning and rule engine.

While there are only minor differences between centralized and decentralized
event processing, the pushing approach using a continuously updated instance
store does not scale at all to larger and more complex integrated systems. There-
fore, the key finding is that high-performance semantic event processing can only
be implemented using the pulling approach.

For the work introduced in this paper, we have used a very basic and straight
forward connector implementation (which still outperforms the pulling approach).
In the future, we aim at improving this implementation, e.g. using more sophis-
ticated caching approaches and rule sets that minimize the number of connector
invocations. These actions may further improve the performance measures.

The framework for Ul integration introduced in this paper is also subject
to further research work. Current research addresses problems such as mediat-
ing between heterogeneous class models based on semantic annotation, and on
incorporating more detailed context information, which can then be used to for-
mulate more concise interaction rules (e.g. including restrictions based on the
users’ rights and context).

In summary, we have shown approaches to implement efficient semantic event
processing, and discussed its implementation in the scenario of application inte-
gration on the user interface level.

Acknowledgements

The work presented in this paper has been partly funded by the German Federal
Ministry of Education and Research under grant no. 01ISO7009. The author
would like to thank the reviewers for their helpful and constructive remarks.

References

1. Linthicum, D.S.: Enterprise Application Integration. Addison Wesley (1999)

2. Daniel, F., Yu, J., Benatallah, B., Casati, F., Matera, M., Saint-Paul, R.: Under-
standing UT Integration: A Survey of Problems, Technologies, and Opportunities.
IEEE Internet Computing 11(3) (2007) 59-66

3. Paulheim, H.: Ontologies for User Interface Integration. [30] 973-981

4. Myers, B.A., Rosson, M.B.: Survey on user interface programming. In: CHI ’92:
Proceedings of the SIGCHI conference on Human factors in computing systems,
New York, NY, USA, ACM (1992) 195-202

5. Westermann, U., Jain, R.: Toward a Common Event Model for Multimedia Ap-
plications. IEEE MultiMedia 14(1) (2007) 19-29

6. Teymouriana, K., Paschke, A.: Towards semantic event processing. In: DEBS ’09:
Proceedings of the Third ACM International Conference on Distributed Event-
Based Systems, New York, NY, USA, ACM (2009) 1-2

7. Miller, R.B.: Response time in man-computer conversational transactions. In:
AFIPS ’68 (Fall, part I): Proceedings of the December 9-11, 1968, fall joint com-
puter conference, part I, New York, NY, USA, ACM (1968) 267-277

8. Shneiderman, B.: Response Time and Display Rate in Human Performance with
Computers. ACM Computing Surveys 16(3) (1984) 265-285

9. Schmidt, K.U., Anicic, D., Stithmer, R.: Event-driven Reactivity: A Survey and
Requirements Analysis. In: Proceedings of the 3rd International Workshop on
Semantic Business Process Management. (2008)

10. Wang, J., Jin, B., Li, J.: An ontology-based publish/subscribe system. In: Middle-
ware ’04: Proceedings of the 5th ACM/IFIP/USENIX international conference on
Middleware, New York, NY, USA, Springer-Verlag New York, Inc. (2004) 232-253

11. Skovronski, J., Chiu, K.: An Ontology-Based Publish Subscribe Framework. In:
Proceedings of the 8th International Conference on Information Integration and
Web-based Applications & Services (iiWAS2006). (2006)

12. Murth, M., Kithn, E.: Knowledge-based coordination with a reliable semantic
subscription mechanism. In: SAC ’09: Proceedings of the 2009 ACM symposium
on Applied Computing, New York, NY, USA, ACM (2009) 1374-1380

13. Anicic, D., Stojanovic, N.: Towards Creation of Logical Framework for Event-
Driven Information Systems. In Cordeiro, J., Filipe, J., eds.: ICEIS 2008 - Pro-
ceedings of the Tenth International Conference on Enterprise Information Systems,
Volume ISAS-2, Barcelona, Spain, June 12-16, 2008. (2008) 394401

14. Paschke, A., Kozlenkov, A., Boley, H.: A Homogenous Reaction Rules Language
for Complex Event Processing. In: International Workshop on Event Drive Archi-
tecture for Complex Event Process. (2007)

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Angele, J., Lausen, G.: 2. International Handbooks on Information Systems. In:
Ontologies in F-Logic. Springer (2004) 29-50

Wege, C.: Portal Server Technology. IEEE Internet Computing 6(3) (2002) 73-77
Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding Mashup Development.
IEEE Internet Computing 12(5) (Sept.-Oct. 2008) 44-52

Decker, S., Erdmann, M., Fensel, D., Studer, R.: Ontobroker: Ontology Based
Access to Distributed and Semi-Structured Information. In Meersman, R., Tari,
7., Stevens, S.M., eds.: Database Semantics - Semantic Issues in Multimedia Sys-
tems, IFIP TC2/WG2.6 Eighth Working Conference on Database Semantics (DS-
8), Rotorua, New Zealand, January 4-8, 1999. Volume 138 of IFIP Conference
Proceedings., Kluwer (1999) 351-369

Software, V.: JFlashPlayer Web Page. http://www. jpackages.com/jflashplayer
(2009)

Yu, J., Benatallah, B., Saint-Paul, R., Casati, F., Daniel, F., Matera, M.: A frame-
work for rapid integration of presentation components. In: WWW ’07: Proceedings
of the 16th international conference on World Wide Web, New York, NY, USA,
ACM (2007) 923-932

Paulheim, H., Doweling, S., Tso-Sutter, K., Probst, F., Ziegert, T.: Improving Us-
ability of Integrated Emergency Response Systems: The SOKNOS Approach. In:
Proceedings 739. Jahrestagung der Gesellschaft fiir Informatik e.V. (GI) - Infor-
matik 2009”. Volume 154 of LNI. (2009) 1435-1449

Babitski, G., Probst, F., Hoffmann, J., Oberle, D.: Ontology Design for Information
Integration in Catastrophy Management. In: Proceedings of the 4th International
Workshop on Applications of Semantic Technologies (AST’09). (2009)

Eick, S.G., Wills, G.J.: High Interaction Graphics. European Journal of Opera-
tional Research 84 (1995) 445-459

Alferes, J.J., Eckert, M., May, W.: Evolution and Reactivity in the Semantic Web.
In Bry, F., Maluszynski, J., eds.: Semantic Techniques for the Web. Volume 5500
of Lecture Notes in Computer Science. (2009)

Behrends, E., Fritzen, O., May, W., Schenk, F.: Combining ECA Rules with Pro-
cess Algebras for the Semantic Web. In: RULEML ’06: Proceedings of the Second
International Conference on Rules and Rule Markup Languages for the Semantic
Web, Washington, DC, USA, IEEE Computer Society (2006) 29-38

Aasman, J.: Unification of Geospatial Reasoning, Temporal Logic, & Social Net-
work Analysis in Event-Based Systems. In: DEBS ’08: Proceedings of the Second
International Conference on Distributed Event-Based Systems, New York, NY,
USA, ACM (2008) 139-145

Rafatirad, S., Gupta, A., Jain, R.: Event composition operators: ECO. In: EIMM
’09: Proceedings of the 1st ACM international workshop on Events in multimedia,
New York, NY, USA, ACM (2009) 65-72

Stithmer, R., Anicic, D., Sen, S., Ma, J., Schmidt, K.U., Stojanovic, N.: Lifting
Events in RDF from Interactions with Annotated Web Pages. [30] 893-908
Schmidt, K.U., Dérflinger, J., Rahmani, T., Sahbi, M., Thomas, L.S.S.M.: An User
Interface Adaptation Architecture for Rich Internet Applications. In Bechhofer, S.,
Hauswirth, M., Hoffmann, J., Koubarakis, M., eds.: The Semantic Web: Research
and Applications. Proceedings of the 5th European Semantic Web Conference,
ESWC 2008. Number 5021 in LNCS (2008) 736-750

Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E.,
Thirunarayan, K., eds.: The Semantic Web - ISWC 2009. Volume 5823 of Lecture
Notes in Computer Science., Springer (2009)

