Towards a Formalization of Individual Work
Execution at Computer Workplaces

Benedikt Schmidt!, Heiko Paulheim', Todor Stoitsev', and Max Miihlhiuser?

! SAP Research Darmstadt,
Bleichstrasse 8, 64285 Darmstadt, Germany
{firstname.lastname}@sap.com
2 Technische Universitdt Darmstadt, Telecooperation Group
Schlof3gartenstr. 7, 64289 Darmstadt, Germany
{firstname}@informatik.tu-darmstadt.de,

Abstract. To better understand, analyze, and support work execution
at computer workplaces, this paper presents a framework of ontolo-
gies. We analyze knowledge work at computer workplaces as weakly-
structured processes by means of activity theory. Based on the analysis,
we extend a set of upper ontologies to model the computer workplace and
the process of work execution. We especially reflect the process of tool
selection involved in work execution by a hierarchical analysis of involved
planning activities and software tools, enabling a plan realization.

1 Introduction

Individual work execution processes in knowledge work are complex and weakly
structured, i.e., they allow a large number of variations of the individual pro-
cess steps and their execution order. A relevant environment of individual work
execution processes is the computer workplace. This paper addresses the formal-
ization of work execution at computer workplaces, i.e. the execution of regular
office work.

Computer workplaces are multi-purpose workplaces, providing a set of soft-
ware applications with numerous functionalities to enable and support a large
variety of information creation and consumption activities. Individuals blend the
use of software applications in individual processes of work execution which man-
ifest expertise as well as experience. Description, analysis and support of such
individual execution processes is a difficult task, as it comprises consideration
of the software landscape with its capabilities — a highly structured domain —
as well as the planning and execution of the work process — a weakly structured
and highly individualized process.

The remainder of this paper is structured as follows. We give an overview of
the requirements for an ontology of the domain and introduce a running example
that will illustrate our work throughout the paper. The third section analyzes
work execution processes at computer workplaces in terms of activity theory
(AT). To formalize the processes, we extent the DOLCE upper ontology that

2 Schmidt, Paulheim, Stoitsev, Miihlduser

is introduced in Sect. 4. The original contribution of this paper, the computer
work ontology (CWO) is presented in Sect. 5:

— Formalization of the computer workplace
— Formalization of work execution processes and tool selection

Finally, we review related ontologies and conclude with a summary and an
outlook on future work.

2 Running Example and Requirements

Although the approach supports the formalization of arbitrary work execution
processes at computer workplaces, we provide one running example that illus-
trates the core aspects of our work and that is used throughout the paper to
illustrate formalizations.

2.1 Running Example: Pete Plans a Conference Travel

Pete works at the research department of a software company. Pete wants to
visit the ICCS11 conference. Pete’s original motive of visiting the conference is a
strong interest in conceptual structures. Therefore, he has the objective to attend
the ICCS11, which requires the creation of a travel request to be confirmed by
his manager. The travel request is a standardized form which requires different
information, e.g. travel destination, travel duration, and approximate costs for
flight and hotel. Pete needs to find the travel request form, identify all required
information, fill them into the form, and provide his manager with the filled out
form. All these activities are performed on a windows PC with an office suite.
To execute the task, Pete executes the following process:

lvedb . . .
— Browse for the document **25"? Use the Windows Explorer to identify the

form document by opening different folders (Stepl).

. lvedb
— Consume the authoring form document **=5"Y Open the form document

with Microsoft Excel, as it is an .xls, file and identify required information
(Step2).
— Browse for required information, conference data Open a web browser

and use a search engine to access the conference website (Step3).
solvedb
— Author form document, conference data °” =5’ Use copy and paste to trans-
fer different information from the conference website to the form (Step4).
solvedby
%

solvedb
vedby

— Browse for required information, hotel and flight costs Use a web
browser to access web pages to book flights and hotels and identify approx-

imate costs (Step5).

— Author form document, hotel and flight costs solvedby Type identified costs

into the respective input fields of the form document (Step6).

) lvedb .
— Communicate the filled out form **“5"Y Start Outlook, create an email and

attach the filled out request form (Step7).

Formalization of Individual Work Execution 3

In the remainder of this paper, we will use this example process to illustrate
our concepts and illustrate the ontology. Since we are dealing with weakly struc-
tured processes, however, we have to point out that this only one out of the
numerous valid execution paths which exist due to individual requirements and
selections of available functionality.

2.2 Modeling Requirements

The example illustrates a work execution process at the computer workplace
and gives us some indications of what concepts a useful formal description may
contain. The process of individual requirement generation and the selection of
appropriate software to solve the requirements is of importance. This will fa-
cilitate the modeling of execution processes and may also be used to facilitate
work execution by improved user support: proposing software functionalities and
resources.
Altogether, the example indicates the following required aspects:

1. Individual work execution: Information about individuals, individual goals
and the categories which are used to describe and execute work is required.

2. Tool/artifact: Software and its capabilities on an abstract and a functional
level needs to be modeled. Information handling needs to be a specific focus
with respect to the structured encoding systems and the content.

3. Connection between individual execution and tools/artifacts: As the indi-
vidual execution process is constrained by usable tools and artefacts, the
connection between both needs to be modeled.

Following [11], we define four additional requirements for the formalization:
We need to (1) avoid conceptual ambiguity, (2) axiomatize our concepts, (3)
avoid concepts that have no ontological meaning but exist for modeling rea-
sons only and (4) provide the concepts without limiting future extensions of the
ontology.

3 Activity Theory as Perspective on Work Execution

Work execution at computer workplaces can be explained by means of Activity
Theory (AT) [7]. AT provides concepts to describe the interaction of an individ-
ual with the environment. In the following, we give a quick overview on concepts
of AT which are relevant in the context of this paper. Then, we apply these
concepts to the domain of work execution at the computer workplace.

3.1 Activity Theory and Situated Behavior

AT uses activities to provide a minimal meaningful context for human action.
Thereby, an activity is a form of doing directed to an object. The relation of
a subject to an object is mediated by a tool. The tool condenses the historical
development of the relationship between subject and object. The role of tools

4 Schmidt, Paulheim, Stoitsev, Miihlduser

Activity
Tools
Subject(s) —— Object-Motive
Action
Tools
Subject(s) Goal
Operation
Tools
Subject(s) ———— Condition

Fig. 1. Hierarchy of Behavior Situatedness in Activity Theory

shows the need to consider artifacts as integral and inseparable components of
human functioning.

Based on the activity, AT organizes situated behavior in a hierarchy, decom-
posing activities to actions and operations. Each element of the hierarchy is a
maximally connected triad (see Fig. 1). Activities as long-term formations cannot
be transformed directly into outcomes, but through a process. Thereby, activ-
ities are realized by a set of individual and cooperative actions. These actions
are related to each other by the object/motive of the enclosing activity. Actions
are executed by a set of operations, which are routines used subconsciously as
answers to conditions faced during the performance of the action [6].

The borders between the levels of the hierarchy are permeable. Actions trans-
form to operations, once the subject has gained experience to execute the action
subconsciously. In case of changing conditions, the operation may transform back
into an action. An activity can become an action, once a motive is lost, or the
goal of an action may turn out as being a motive, transforming the action to an
activity.

Formalization of Individual Work Execution 5

3.2 Situated Behavior at Computer Workplaces

Considering the computer workplace, situated behavior presents is constrained
by the capabilities of the computer as tool. The computer transforms signs and
has established as a tool for supporting the consumption, creation and trans-
formation of data as information. Precisely, all behavior is channeled through
software tools with respective functionalities.

As described above, AT mediates activities, actions and operations by tools.
Work at a computer workplace as an individual and weakly structured process
involving different applications to generate a specific outcome can be considered
as action. We do not consider weakly structured computer work as an activity,
as the limited execution time and the precise outcome does not fit the long-term
motive perspective. On the other hand, we do not consider weakly structured
computer work as an operation, as the execution is a knowledge-intensive act
with characteristics of problem-solving, thus improbably unconsciously executed.

Considering weakly structured work at computer workplaces as an action
does not provide information about the way execution processes develop. In
the given example (see Sect. 2), the main goal of requesting a travel by the
manager was decomposed into different subgoals. Each subgoal was executed
by the functionality of a software application. We propose the decomposition of
computer work actions into four categories that are connected in the sense of a
hierarchical decomposition:

— Task process: The first level in a computer work execution hierarchy is
the process of planning and executing a task. We follow a functional under-
standing of task as a a logical unit of work that is performed by a series of
actions in pursuit of a certain aim [8,15].

— Knowledge action: The second level in the hierarchy stands for the initial
decomposition of the task. The subject identifies the main challenges of the
task and tries to address these challenges by patterns of problem solving.
We call these problem solving patterns knowledge actions, following existing
works on reoccurring problem solving tasks in knowledge work [5]. Relevant
knowledge actions in the domain of computer workplaces are 1) Browsing,
2) Consuming, 3) Authoring, 4) Communicating, and 5) Organizing.

— Application action: The third level in the hierarchy stands for execution
activities in the context of a software and the identification of sets of func-
tionalities that need to be performed to execute the knowledge action.

— Desktop operation: The fourth and lowest level of a computer work exe-
cution hierarchy stands for single functionalities that can be accessed within
the context of a software and thus can be realized directly by an operation.

4 Modeling Basis

While domain ontologies focus on a minimal terminological structure, upper on-
tologies describe general concepts which are valid across all knowledge domains.
The ontology we present in this paper is an extension of the DOLCE ontology.

6 Schmidt, Paulheim, Stoitsev, Miihlduser

— —

DOLCE

0
|
|
|

1.

Descripti reused
escription
& Situation - ontology

| 7 (Dns) [< — modules

Ontology of [~ >+ | Ontology of
Plans (OoP) _l Information

S~ Core T Objects (10)

Software
Ontology
(CSO)
N

|

|

3

Computer . .
Work contribution

Ontology
(CWO)

Fig. 2. Overview of the ontologies. Dotted lines represent dependencies between on-
tologies. An ontology O; depends on Ox it if specializes concepts of Oz, has associations
with domains and ranges to Oz or reuses its axioms.

DOLCE has been designed as a first module of a foundational Ontologies
Library [3,9]. As an upper ontology, DOLCE describes relationships between
endurant and perdurant particulars. Endurants are independent essential wholes
that are in time, while lacking temporal parts, e.g. this paper. Perdurants, on
the contrary, are entities that happen in time, and can have temporal parts, e.g.
the process of reading this paper.

The library of ontologies contains different systematically related modules
and defines different design patterns to reuse the content for more specific do-
mains [2]. For this paper, we reuse the following ontologies (c.f. Fig. 2):

— Descriptions and Situations (DnS): An ontological theory of contexts. DnS
can be considered an ontology design pattern for structuring core and domain
ontologies that require contextualization.

— Ontology of Plans (OoP): Formalization of a generic theory of plans.

— Ontology of Information Objects (I0): A semiotic ontology design pattern
that assumes a content transferred in any modality to be equivalent to a
social object called information object.

— Core Software Ontology (CSO): Formalization of fundamental concepts in
the computer domain, e.g. software or data.

5 Computer Work Ontology (CWO)

The CWO extends the DOLCE ontology with respect to the domain of indi-
vidual, weakly-structured desktop work. We present the CWO in terms of tool,

Formalization of Individual Work Execution 7

subject, and object and describe their relationship as given in the AT triade.
The tool is the computer workplace environment, which is described as an envi-
ronment for the transformation of information by functionalities. The subject is
the knowledge worker, who plans and executes work at a computer workplace.
The object is the goal of the individual work.

5.1 Tool: Computer Workplace Environment

We model the computer workplace as an environment that offers functionalities
of generating, displaying and transforming data which can be consumed as infor-
mation. The functionalities and the available information defines a possibility-
space for the execution of work. Functionalities are encapsulated in software
tools and information is stored in files.

Software and Functionalities To model software, we use the respective de-
sign pattern as described in [11]: CSO:Software? is defined as CSO:Data that
OIO:expresses an OoP:Plan, itself sequencing a set of OoP:Task (see Fig. 3).
We are interested in a perspective on software, as it is available to end-users.
The functionalities offered by the software are modeled as CWO:Functionality, a
specialization of OoP:Task. To describe the plans, describing the purpose-of-use
of a software (e.g. word processing), we model CWO:Scenario as specialization of
OoP:Abstract-Plan. The CWO:Scenario sequences a set of CWO:Functionality.
(D1) CSO:Functionality(x) =g4.y OoP:BagTask(x)

A 3y (DOLCE:part-of(y,x) A ComputationalTask(y))
(D2) Scenario(x) =4e; OoP:Abstract-Plan(x)

A Yy (DnS:defines(x,y) — Functionality(y))
(D3) CSO:Application(x) =g.;y CSO:Software(x)

A 3y (OIO:realizedBy(x,y) A CSO:ComputationalObjects(y)

A 'Y z (OIO:expresses(x,z) — Scenario(z))

As an example, we model the Windows Explorer functionality to open folders

and display files, that was used to identify the form document. We relate a
scenario with the software and assign different functionalities to the scenario.

(Ex1) CSO:Software(windowsExplorer)

(Ex2) Scenario(folderStructurelnteraction)

(Ex3) Functionality(browseFolderStructure)

(Ex4) Functionality(getElementDetails)

(Ex5) Functionality(executeElementWithApplication)

(Ex6) OIO:express(windowsExplorer,folderStructurelnteraction)

(Ex7) DnS:defines(folderStructurelnteraction,browseFolderStructure)

(Ex8) DnS:defines(folderStructurelnteraction,getElementDetails)

(Ex9) DnS:defines(folderStructurelnteraction,
executeElementWithApplication)

3 Throughout the paper entities that belong to CWO are given without prefix. For all
other entities, the respective prefix is given.

8 Schmidt, Paulheim, Stoitsev, Miihlduser

10:InformationObject DnS:Role 10:FormalSystem

CSO:Data Played-By File Ordered-By| FileFormat
o
=4
o

CSO0:AbstractData CSO:Software OoP:AbstractPlan| (= % OoP:BagTask
T |o
% =

2
CSO:Application Scenario L) Functionality CSO:ComputationalTask
Expresses Defines Part-Of

Fig. 3. The classification of software with scenarios, functionalities, and files. Concepts
taken from DOLCE and accompanying ontologies are labeled with the respective name
space.

Information Objects Represented by Files Files realize a connection be-
tween meaningful information and software by data in a digital encoded rep-
resentation. We model a CWO:File as a role played-by only CSO:Data. As
CSO:Software is a subclass of CSO:Data, we cover software as files (see Fig. 3).
CSO:AbstractData is another subclass of CSO:Data, containing data that iden-
tifies something different from itself, e.g., the word tree that stands for a mental
image of a real tree. As a file may be abstract data or software, two aspects of
files are supported: 1) being a static information object 2) being an information
object for execution to make plans accessible in a runtime representation. A file
as a static information object is modeled by relating the file as CSO:Data by
DnS:about with a DnS:description. A file as an executable information object
relates CSO:Software with OoP:Plan by the DnS:expresses relation.

A CWO:File is DnS:ordered-by a CWO:File-Format. A CWO:File with spe-
cific CWO:File-Formats can be input for CWO:Functionality. This connection
organizes the file access by functionalities, which may range from opening the
file to display content in a work processor to the interpretation of a web page
by a web browser.

(D4) File-Format(x) — I0:Formal-System(x)
(D5) specializes(x,y) A File-Format(x) — File-Format(y)
(D6) uses(x,y) A File-Format(x) — File-Format(y)
(D7) File(x) =qcy DnS:Role(x) A Jy(ordered-by(x,y) A File-Format(y))
A Fz(played-by(z,x) A (AbstractData(z) V Software(z)))
A Vi(inputFor(x,f)—Functionality(f))
A Vg(outputFor(x,g —Functionality(g))
In the following, we give two examples for using CSO:File. The first example
is for a file as role played by CSO:Data that is not CSO:Software. This means, the

Formalization of Individual Work Execution 9

aspect of being an information object is of prime importance. For this purpose
we model the form document which is identified in step 1 of the example (see
Sect. 2) and show the connection to a word processor.

(Ex10) IO:Information-Object(document-for-travel-request)
(Ex11) DnS:description(travel)

(Ex12) DnS:about(document-for-travel-request, travel)
(Ex13) File(TravelRequest.docx)

(Ex14) DnS:played-by(Document-for-travel-request, travelRequest.docx)
(Ex15) File-Format(docx)

(Ex16) DnS:ordered-by(travelRequest.docx, docx)

(Ex17) CSO:Software(microsoftWord)

(Ex18) Scenario(textProcessing)

(Ex19) DnS:expresses(microsoftWord,textProcessing)
(Ex20) Functionality(openTextFile)

(Ex21) DnS:defines(textProcessing, openTextFile)

(Ex22) DnS:inputFor(openTextFile, travelRequest.docx)

The second example is for a file as a role played-by CSO:software. This means
that the file as software gives access to functionalities. An interesting example
are web applications interpreted from the perspective of a user. For a user, a
web application is an address to be typed into a browser. By focusing on this
aspect of consumption, the web application is a software that plays the role of a
file. We use step 5 of the example (see Sect. 2), which is opening and interacting
with a web application to book hotels.

(Ex23) CSO:Software(hotelBooker)

(Ex24) Scenario(searchHotel)

(Ex25) DnS:expresses(hotelBooker,searchHotel)

(Ex26) File(www.hotelbooker.net)

(Ex27) File-Format(html4.0)

(Ex28) DnS:ordered-by(www.hotelbooker.net, html4.0)
(Ex29) DOLCE:played-by(www.hotelbooker.net, hotelBooker)
(Ex30) CSO:Software(firefox)

(Ex31) Scenario(webBrowsing)

(Ex32) DnS:expresses(firefox,webBrowsing)

(Ex33) Functionality(accessWebsite)

(Ex34) DnS:defines(webBrowsing, accessWebsite)

(Ex35) DnS:inputFor(openWebsite, www.hotelbooker.net)

5.2 Subject: Task Execution

Following our hierarchy for the action layer of AT (see Sect. 3.1), comprising task
execution (CWO:TaskProcess), knowledge action (CWO:KnowledgeAction), ap-
plication action (CWO:ApplicationAction), and desktop operation (CWO:Desktop-
Operation), we apply the plan pattern of the OoP [2] (see Fig. 4). Modeling
the task execution based on the OoP:AbstractPlan stresses the weak struc-
ture and adaptation of execution processes based on constraints we want to

10 Schmidt, Paulheim, Stoitsev, Miihlduser

OoP:AbstractPlan OoP:BagTask OoP:ActionTask

1 1 1 1

OoPTComplexTa:
k

DnS:Goal ProperPart TaskProcess Uses KnowledgeAction| ses |ApplicationAction| ses [DesktopOperation
o
-
=1
33 ¢
28 3
2=
S5

DiSTRationaPy "
icalOhiect DesktopWorker | cjassifies DnS:Role

Fig. 4. The classification of the action hierarchy including TaskProcess, Knowledge-
Action, ApplicationAction, and DesktopOperation and use of the planning pattern.
Concepts taken from DOLCE and accompanying ontologies are labeled with the re-
spective name space.

stress. An OoP:AbstractPlan describes methods for the execution of a proce-
dure. A CWO:TaskProcess is internally-represented in an agent, has a goal,
and uses at least one CWO:KnowledgeAction. Following a hierarchical model,
each CWO:KnowledgeAction uses an CWO:ApplicationAction, which uses a
CWO:DesktopOperation. A CWO:KnowledgeAction references a description it
is about. An CWO:ApplicationAction references a CWO:SoftwareClass, which
organizes software that shares similarities with respect to the tackled scenarios.
(D8) DesktopWorker(x) =g4.; DnS:rational-physical-object(x)

A 3 y(internally-represented-by(y,x) A TaskProcess(y))
(D9) SoftwareClass(x) =g4e; DnS:Collection(x)

A Vy(DnS:member(x,y)—Software(y))
(D10) TaskProcess(x) =4cy OoP:AbstractPlan(x)

AV y(ComplexTask(y) A uses(x,y) — KnowledgeAction(y))
(D11) KnowledgeAction(x) =4,y ComplexTask(x)

AV y(uses(x,y) — ApplicationAction(y))

A 3 z(references(x,z) A DnS:Description(z))
(D12) ApplicationAction(x) =g4.r BagTask(x)

AV y(uses(x,y) — DesktopOperation(y))

A 3 z(references(x,z) A CSO:SoftwareClass(z))
(D13) DesktopOperation(x) =40 ActionTask(x)

A 3 y(uses(x,z) A Functionality(y))
To give an example, we show the respective decomposition for step 1 in the
initial example of creating a travel request for the manager (see Sect. 2).
(Ex36) DesktopWorker(pete)
(Ex37) TaskProcess(createTravelRequest)
(Ex38) internally-represented-by (createTravelRequest,pete)

Formalization of Individual Work Execution 11

(Ex39) KnowledgeAction(browse)
(Ex40) description(travelRequest)
(Ex41) references(browse, travelRequest)
(Ex42) ApplicationAction(searchFile)
(Ex43) defines(browse,searchFile)
(Ex44) SoftwareClass(fileBrowser)
(Ex45) references(searchFile, fileBrowser)
(Ex46) DesktopOperation(openFolder)
(Ex47) defines(searchFile,openFolder)

5.3 Object: Work Execution

We have described the decomposition of work into a hierarchy of actions, se-
quenced by a plan. Actions in AT are mediated by tools. In the CWO, we
have modeled tools as software expressing scenarios that define functionali-
ties. The mediation by a tool includes a process of tool selection, as the sub-
ject identifies a tool that sufficiently supports a given goal. To model this me-
diation process, we introduce the CWO:sufficient-implementation relation as
a specialization of DnS:intensionally-references. CWO:sufficient-implementation
expresses that a OoP:task can be adequately executed by using a respective
DOLCE:endurant. We use the CWO:sufficient-implementation to connect the
CWO:KnowledgeAction and the CWO:DesktopOperation with software and func-
tionality as tools, to model the possible space of work execution (see Fig. 5).

Although the mediation process is modeled, the actual execution of work is
not represented in the ontology. Such a modeling would require the description
of the actual perdurants carried out by the user, such as clicking with a mouse
or typing with a keyboard [12]. Since our focus is rather on the abstract work
processes themselves than their modality-dependent execution, we have not in-
cluded that level of detail in the CWO.

(D14) KnowledgeAction(x) =4y OoP:ComplexTask

A Vy(sufficient-implementation(x,y)—Scenario(y))
(D15) DesktopOperation(x) =gy OoP:ActionTask

A Vy(sufficient-implementation(x,y)— Functionality(y))

To illustrate the extension we again rely on the first step of the initial example
(see Sect. 2). We connect the decomposition of the task to the different actions
to the software chosen in the example.

(Ex48) TaskProcess(createTravelRequest)
(Ex49) KnowledgeAction(browse)

(Ex50) ApplicationAction(searchFile)
(Ex51) defines(browse,searchFile)

(Ex52) DesktopOperation(openFolder)
(Ex53) defines(searchFile,openFolder)
(Ex54) Software(windowsExplorer)

(Ex55) Scenario(folderStructureInteraction)
(Ex56) Functionality(browseFolderStructure)

12 Schmidt, Paulheim, Stoitsev, Miihlduser

TaskProcess Uses KnowledgeAction| jges [ApplicationAction| geg |DesktopOperation

5 5
- B =1
=] 8
gz g5
o o
&= £ £ E
53 55
n 5 n g
£ £
CSO:Application Expresses Scenario Defines Functionalities

Fig. 5. The connection between the hierarchy of actions and software with scenarios
and functionalities. Concepts taken from DOLCE and accompanying ontologies are
labeled with the respective name space.

(Ex57) OIO:express(windowsExplorer,folderStructureInteraction)
(Ex58) defines(folderStructurelnteraction,browseFolderStructure)
(Ex59) sufficient-implementation(searchFile,folderStructurelnteraction)
(Ex60) sufficient-implementation(openFolder,browseFolderStructure)

6 Related Work

The work presented in this paper uses the DOLCE ontology and describes con-
cepts to model the computer workplace and to model work execution processes as
selection of appropriate tools for fixed goals. In the following we give an overview
of related work in the domain of computer workplace modeling and execution
process modeling.

Computer workplace modeling: Computer workplace modeling exists as
information object modeling and as software application modeling. The personal
information model (PIMO) ontology [14] and the Attention Meta Data [16] are
two examples for formalizations of the existing information objects. Both ap-
proaches capture file types and apply methods of classification and categoriza-
tion to organize files with respect to the content. Definitions of transformations
based on the type of files are not captured by such ontologies, as the application
landscape is out of scope.

Modeling applications may focus on application classes, using taxonomies
of software applications [1]. Another focus is a standalone application and the
interaction of the user with the application. [13] provides the UICO ontology that
connects basic actions with resources and information needs. As UICO focuses
on input for trained machine learning, a detailed model of applications is out of
scope.

Execution process modeling: Formalizations of execution processes gen-
erally provide a vocabulary to specify goals and realize a sequential or hierar-

Formalization of Individual Work Execution 13

chical task decomposition. The decomposition is realized by elements like Object
and Actwity in [4] or Goal and Act in the “Act Formalism” [10]. Modeling of
the domain and knowledge-intensive planning are not tackled in depth by the
reviewed approaches. More formalizations of execution processes can be found
in [2].

Overall related work: The focus on a single subject that organizes a per-
sonal task execution in the sense of an execution process is not in the focus
of the described approaches. Especially, the integration of the computer work-
place as domain and individual planning is not completely covered in any of
the reviewed work. DOLCE with the DnS and the OoP extensions provides the
necessary patterns, but requires additional classes to model the domain and ad-
ditional properties to connect individual planning and the given domain, which
has been realized by the CWO.

7 Conclusion

We have presented the Computer Work Ontology (CWO) that formalizes indi-
vidual work execution in the domain of the computer workplace. Our ontology
is grounded in foundational ontologies and enables the precise modeling of com-
puter workplaces and a modeling of individual execution processes based on the
definition of action in AT. We have shown the applicability of the CWO with
a use case which was realized as running example in this paper. As we have
applied modeling patterns belonging to DOLCE ontology, the CWO shows the
applicability of those patterns for new domains.

The CWO focuses on a task perspective to describe work execution (en-
durants). As discussed above, user interactions like pressing a button on a key-
board, moving the mouse, etc. (perdurants) are out of scope for CWO. In the
future, we are planning to connect our CWO with an already developed ontol-
ogy of user interfaces and interactions [12]. As both ontologies are grounded the
DOLCE ontologies, they are interoperable and can be integrated.

Currently, we use the CWO and DOLCE for two applications:

— Task mining: We enrich sensor events from a computer desktop with the
respective data of the action hierarchy and create abstract patterns of work
execution based on the captured work execution process.

— Capturing document lifecycle: We capture the transformation and dissemina-
tion of documents in a team of collaborative workers. The ontology captures
the lifecycle of documents based on all acts of content enrichment, copying
or disseminating.

In the future, we foresee to use CWO for providing proactive user support
based on captured task instances. Thus, we will focus on the aspect of abstraction
from specific work processes to more generic work processes.

14

Schmidt, Paulheim, Stoitsev, Miihlduser

Acknowledgements

The work presented in this paper has been partly funded by the German Federal
Ministry of Education and Research under grant no. 011A08006.

References

1.

10.

11.

12.

13.

14.

15.

16.

A. Forward and T. C. Lethbridge. A Taxonomy of Software Types to Facilitate
Search and Evidence-Based Software Engineering. In Proceedings of the 2008 con-
ference of the center for advanced studies on collaborative research: meeting of
minds, pages 1-13, 2008.

A. Gangemi, S. Borgo, and C. Catenacci. Task taxonomies for knowledge content.
METOKIS Deliverable, 2004.

A. Gangemi, N. Guarino, and C. Masolo. Sweetening ontologies with DOLCE,
pages 223-233. Springer, 2002.

M. Griininger and C. Menzel. Specification Language (PSL) Theory and Appli-
cations. AI Magazine, 24(3):63-74, 2003.

T. Hadrich. Situation-oriented Provision of Knowledge Services. Dissertation,
Martin Luther Universitat Halle- Wittenberg, 2008.

K. Kuutti. Activity theory as a potential framework for human-computer inter-
action research, pages 17-44. Massachusetts Institute of Technology, Cambridge,
MA, USA, 1995.

A. N. Leontiev. Activity and consciousness. Progress Publishers, 1977.

G. Marchionini. Information Seeking in Electronic Environments. Cambridge Uni-
versity Press, 1995.

C. Masolo, S. Borgo, A. Gangemi, N. Guarino, A. Oltramari, and I. Horrocks.
WonderWeb Deliverable D18 Ontology Library (final) WonderWeb Project .
Communities, 2001.

K. Myers and D. Wilkins. The Act Formalism, Version 2.2. SRI International
Artificial Intelligence Center Technical Report, 1997.

D. Oberle, S. Lamparter, S. Grimm, and D. Vrande. Towards Ontologies for For-
malizing Modularization and Communication in Large Software Systems. Springer,
2006.

H. Paulheim and F. Probst. A Formal Ontology on User Interfaces Yet Another
User Interface Description Language ? In 2nd Workshop on Semantic Models for
Adaptive Interactive Systems (SEMAIS), 2011.

A. S. Rath. UICO: An ontology-based user interaction context model for Auto-
matic Task Detection on the Computer Desktop. CIAO ’09: Proceedings of the 1st
Workshop on Context, Information and Ontologies, pages 1-10, 2009.

L. Sauermann, L. Van Elst, and A. Dengel. Pimo-a framework for representing
personal information models. Proceedings of I-Semantics, 7:270-277, 2007.

W. M. P. van der Aalst and K. van Hee. Workflow Management. Models, Methods,
and Systems. MIT Press Cambridge, 2002.

M. Wolpers, J. Najjar, K. Verbert, and E. Duval. Tracking actual usage: the
attention metadata approach. 10:106, 2007.

