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Abstract
In this paper, we report the results of experiments
in which we trained four chess evaluation func-
tions on games of weak chess players in four dif-
ferent rating groups, with the goal of reproducing
computer players of that strength. Although the
differences in playing strength between the play-
ers loosely correlates to the playing strength of
the training data, this goal could not be achieved
because the differences are much too small, and
sometimes spurious. Nevertheless, the results are
interesting because the learned functions exhibit
a clear and systematic difference in some of the
learned positional parameters (e.g., the impor-
tance of open ranks and lines), and show some
unexpected but consistent differences to previous
results (e.g., a much lower value for the queen).

1. Introduction
In strategy games, opponent modeling typically addresses
the goal of forming a model of the opponent’s playing
strategies in order to be better able to exploit his or her
weaknesses. Our motivation is different: we do not want
to make the opponent stronger, we want it to play at the
same skill level as the player. We think that this is the first
study following this goal in the realm of strategy games. A
brief discussion of related work in opponent modeling can
be found in (Paulsen & Fürnkranz, 2010).

Commercial chess programs often have simple means of
adjusting the playing strength by limiting the thinking time,
the search depth, or by inserting random moves or blunders.
We intend to follow a different path: we learn chess eval-
uation functions from games of players of different skill
levels, from beginner’s to amateur level, and compare the
functions both qualitatively as well as in match play.
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2. The Chess Program
For our experiments, we used Tom Kerrigan’s Simple
Chess Program (TSCP) 1.811, which is particularly easy to
use and modify. Its main focus is on conceptually clear
programming, not on playing strength and speed, which
were also not our primary objectives. It uses a standard
alpha-beta negamax search with some quiescence search.
According to two rating lists2 it has a playing strength of
approximately 1700, but it is unclear how this strength re-
lates to the playing strengths of the players of the collected
games, because computer ratings and human ratings de-
velop in largely independent pools of players, so that their
scales need not be comeasurable.

TSCP uses a simple linear evaluation function of the form

h(P) =
∑

f

wf · f(P), (1)

where f(P) ∈ {0, 1} are elementary feature values that are
computed for a given chess position P, and wf are their
weights. These weights will later be automatically tuned in
the learning phase. For brevity, we omit the board P from
the notation wherever it is clear from the context.

The features and weights used in TSCP are shown in Ta-
ble 1. In addition, it uses the piece-square values tables,
which are shown in the top row of Figure 2, indicating
a bonus (or malus) for positioning the pieces at a certain
square. As can be seen, the simple tables used in TSCP en-
code simple heuristics like “develop your pieces” (the orig-
inal squares of the pieces are bright), “castle” (the target
squares of the king after castling are dark, and the inter-
mediate squares bright), or “center your pieces” (which is
reasonable for the knight, but rather questionable for the
bishop). There are no piece-square tables for rook and
queen, and there is a separate table for the king in the
endgame, where it typically becomes a very active piece.3

1http://www.tckerrigan.com/Chess/TSCP
2http://www.computerchess.org.uk/ccrl/

404/ and http://wbec-ridderkerk.nl/ (edition 15)
3In TSCP, an endgame begins if the sum of the opponent’s

piece values (except pawns) drops below 1200.
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Table 1: Features and features weights used in TSCP’s
evaluation function.

Piece Values Positional Features
double pawn −10

pawn 100 isolated pawn −20
bishop 300 backward pawn −8
knight 300 passed pawn 20
rook 500 open file 15
queen 900 half-open file 10

rook on 7th rank 20

3. Training
The key idea for using a set of games for training an eval-
uation function is to interpret the move mi(P) played by
a player in a certain position P as a preference statement
mi � mj for all j 6= i, i.e., it is assumed that a player
plays mi because s/he prefers it over all alternatives mj .
Moreover, we assume that a player prefers a move because
s/he prefers the position resulting from this move over all
positions that can be reached via alternative moves, i.e.,

mi � mj ⇔ Pi � Pj

where Pi = mi(P) is the position resulting from making
move mi in position P

These preference statements Pi � Pj are then used for
training the ranking support vector machine of Joachims
(2002).4 Its key idea is to reinterpret the preference state-
ments as constraints on the evaluation function, i.e.,

Pi � Pj ⇔ h(Pi) > h(Pj).

As the function h is linear, the latter part is equivalent to

h(Pi − Pj) =
∑

f

wf · (f(Pi)− f(Pj)) > 0

Thus, essentially, the training of the ranking SVM corre-
sponds to the training of a classification SVM on the pair-
wise differences Pi − Pj between positions Pi and Pj .

A remaining problem is how to integrate the learning into
the search algorithm. In particular, we have to face the
problem that the characteristics of the position at the root
node of the search are often completely different from the
characteristics of the positions at the leaf, which are those
that are actually evaluated with the evaluation function h.
Thus, we do not want to adapt the evaluation of the root

4Available from http://svmlight.joachims.org.
We used SV M light in preference mode, i.e., svm_learn -z
p. The optimized and faster SV Mrank was not yet available at
the time of the experiments.

Table 2: Characteristics of the training data.

Elo # games # positions # examples
1000 3.000 20.732 614.246
1200 5.499 39.170 1.185.524
1400 10.499 75.196 2.325.861
1600 10.500 75.114 2.352.536

position, but the evaluation of the so-called dominant posi-
tion of the search, i.e., the leaf position in the search tree
from which the evaluation has been propagated back to the
root of the search tree. To this end, each of the positions
Pi in the training data is encoded with the features of the
position d(Pi) encountered in the principal variation start-
ing with m(Pi). This problem has already been recognized
and solved by Samuel (1959) but seemed to have been for-
gotten later on. It was rediscovered independently in the
context of reinforcement learning by (Beal & Smith, 1997)
and (Baxter et al., 1998).

4. Data
For training evaluation functions with different strengths,
we collected game protocols of players with approximately
1000, 1200, 1400, and 1600 Elo rating points.5 The choice
of these rating ranges was primarily motivated by the fact
that we intended to weaken TSCP, whose strength was
listed with 1700 rating points (but on a separate computer
rating, which may not be entirely comparable to the human
rating pool).

The games were selected from a 3.5 million game
database,6 so that the white player had one of the four rat-
ings above, with a tolerance of ± 25 points. From each
game, we extracted all positions that occurred after inter-
vals of 10 plies (5 moves). For each such position, we
trained the ranking SVM so that it will prefer the posi-
tion after the played move over all alternative positions. On
average, we had about 29 alternatives (negative examples)
for each position (positive example). Table 2 shows the
number of games, position, and generated training exam-
ples. Note that we imposed an upper limit on the number
of games for playing strength 1600. Each training position
was characterized with 332 features, as described above.

5Elo ratings are a commonly used rating scale for chess play-
ers. Roughly, players with 1000 Elo points are beginners, with
1600 average club players, with 2000 strong club players, with
2400 grandmasters, and with 2800 world champion. The rating
scale is designed so that a 200 points difference roughly corre-
sponds to a winning probability of 0.75 for the stronger player
(Elo, 1978).

6Available from http://chessdb.sourceforge.
net/
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Table 3: Run-time and ξα-estimates of error, recall, and
precision of the trained SVMs.

Elo run-time error recall precision
1000 24,098 34.46% 66.96% 72.42%
1200 17,251 33.26% 67.84% 73.30%
1400 87,603 33.55% 67.28% 72.74%
1600 86,638 33.40% 67.18% 72.89%

5. Results
5.1. Move Prediction

Table 3 shows the results of a ξα-estimation of the predic-
tive performance of the trained SVMs.7 It seems that the
correct move can be predicted reasonably well for all dif-
ferent training sets. About 2/3 of the correct moves (moves
that were actually made and thus labeled as positive) are
correctly predicted as having a positive label, and about 3/4
of the predictions for a positive label are correct.

5.2. Piece Values

Figure 1 shows the learned feature weights for the four
learned evaluation functions. Before we look at the results
in more detail, we note that in general, the very low vari-
ance between the values of the four independently trained
functions is quite encouraging and supports the view that
the observed regularities and differences are not due to
chance phenomena.

For some of the pieces, the learned values are quite consis-
tent with those found in (Beal & Smith, 2000) and (Droste
& Fürnkranz, 2008). For example, we can see in Fig-
ure 1(a) that a bishop is only worth about 2 1

2 pawns (usually
3), and a rook equals only a pawn and a bishop (usually 2P
+ 1B). This correspondence to previous results is not self-
evident, because the values obtained in these publications
have been learned from different data (strong master vs.
weak amateur games) and with an entirely different learn-
ing algorithm (reinforcement vs. supervised learning).

However, other results differ a bit from common chess
knowledge. For example, a bishop is generally found to
have a slightly higher value than a knight (see, e.g., Fischer
et al., 1972), while in our results, knights were consistently
learned to have a somewhat higher value in all four playing
strengths. Although the difference is rather small (approxi-
mately 10 points on average), its consistent appearance lets
us assume that this is systematic, and that weaker players
tend to give a somewhat higher value to knights, or at least
are more willing to trade bishops for knights.

7ξα-error is an upper bound on the leave-one out cross-
validation error, but has the advantage that it can be easily com-
puted from a trained SVM without the need for performing addi-
tional training via cross-validation (Joachims, 2000).

(a) piece values

(b) pawn evaluation

(c) rook evaluation

Figure 1: Development of evaluation function weights

Noticeable are also the comparably low values for rook and
queen. For example, a rook is typically worth 5 pawns,
while we here observe only about 3.3 pawns. Interestingly,
this has also been observed in (Droste & Fürnkranz, 2008;
Table 1), where a rook is worth about 3.6 pawns. More
striking is the low value of the queen with slightly more
than 5 pawns, which is unprecedented. This can also not
been explained with a possibly too high value for the pawn,
because the queen’s value is also degraded in comparison
to the other pieces. It is unclear how to interpret this devia-
tion, but our best guess is that games of weak chess players
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Dataset Pawn Knight Bishop King Endgame King

TSCP

1000

1200

1400

1600

Figure 2: Original piece-square value tables of TSCP and those learned for four different playing strengths. Dark squares
indicate a high positive value for a piece at this square, bright squares are high negative, and medium gray is neutral.

are much more erratic than games of strong chess players.
While the advantage of a minor piece is typically more than
enough to guarantee victory among stronger players, weak
players have a much higher probability of blundering even
after a strong advantage, like the win of a queen. Maybe
this is reflected in these learned piece values. The slight
increase of the queen’s value at the transition from 1400
to 1600 is consistent with that hypothesis, but additional
evidence is needed to back up this hypothesis.

5.3. Positional Features

Figure 1(b) shows the evolution of the pawn-related fea-
tures. We first observe, encouragingly, that the sign has
always been learned correctly, i.e., good (passed pawns)
and bad features (double, isolated, and backward pawns)
have been recognized as such. The most striking differ-
ence to the manually set values of Table 1 is the much
higher (absolute) value of a double pawn, which is con-

sistent with the heuristic “avoid double pawns”, which is
typically highly over-rated by weaker players. Most inter-
esting are the results on the evolution on the rook-related
features (Figure 1(c)). In all three cases, the importance of
these positional features, which together essentially encode
the rooks’ mobility and their potential to invade the enemy
camp, show a consistent increase in importance. This re-
sult is quite plausible and it is tempting to assume that this
reflects the increased playing strength of the players.

However, it is not entirely clear, whether common miscon-
ceptions of weaker players (e.g., over-rating double pawns,
under-rating the importance of free lines for the rooks) can
be found in the game traces. This would imply that, if a cer-
tain feature is deemed overly important by a player, it actu-
ally receives a higher importance in game play. While such
self-fulfilling prophecies are not entirely implausible (one
can, e.g., imagine that a weak player tries harder to avoid a
double pawn than a stronger player, so that he will only get
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a double pawns in much weaker positions, and their influ-
ence on the outcome is, indeed, higher), we have to keep in
mind that this is all speculation. An alternative interpreta-
tion is simply that as playing strength increases, positional
features like open files have a stronger and stronger influ-
ence on the final outcome of the game, whereas the results
of weaker players are primarily dominated by tactical blun-
ders such as losing a piece.

5.4. Piece-Square Tables

Figure 2 shows a graphical visualization of the learned
piece-square tables for the four playing strengths.8 Some of
the values appear to have a high variance, which happens
primarily for piece-square combinations that rarely occur
in practical play. For example, most of the king’s posi-
tions only occur a few times in the training data, which may
cause a few erratic values like the high value for the king
at c5 for the 1400 rating function. However, most of the
values are perfectly sensible, and one can clearly recognize
typical chess heuristics such as “move the center pawns in
the opening”, “advanced pawns are good” “a knight on the
rim is grim”, the bishop fianchetto on g2, the king in the
center is dangerous in the opening (castle quickly!) but es-
sential in the endgame. Overall, these values are quite rea-
sonable, but, again, no clear patterns can be detected over
an increase in playing strength.

5.5. Match Play

While the above qualitative results looked quite encourag-
ing, the final test, of course, has to be to see how the four
different evaluation functions fare in competition. For per-
forming round robin tournaments between the players we
used the Galis Winboard Tournament Manager.9 We played
three series of 100 games between each pair of opponents,
each series for search depths 1, 2, and 4 ply (plus quies-
cence search). For search depths 2 and 4 we also included
the original TSCP program into the comparison, making up
for a total of 300 + 400 + 400 = 1, 100 games for each of
the four variants. Table 4 shows the results.

For a 1-ply search, the results are dominated by a large
number of draws, which were caused by frequent three-
move repetitions. We had expected, that for this search
depth, the advantage of a better heuristic should be most
apparent. The expected effect then showed, to some extent,
for a 2-ply search. Here we can clearly observe a decrease
in playing strength that correlates with our expectations,
except that no difference could be observed for the evalua-
tion functions at the 1200 and 1400 level, and that there are

8The exact numerical values can be found in the appendix of
(Paulsen, 2009).

9http://wbec-ridderkerk.nl/html/
downloada/Galis.html

Table 5: Results of play on the FICS chess server under
varying time controls and search depths. The last column
shows the average rating difference to the 1000 player.

1 ply flexible depth avg.
Blitz Stnd Blitz Stnd ±

1000 1088 1348 1839 2003 0.00
1200 1143 1383 1874 2075 +49.25
1400 1122 1397 1891 2043 +43.75
1600 1105 1398 1898 2029 +38.00

some minor outliers in the pairwise comparisons (e.g., the
1400 evaluation functions scores worse than the 1200 func-
tion against both 1000 and 1600). However, the differences
in playing strength are much too small in comparison to
the differences in playing strength from the original games.
A difference of 200 Elo rating points should correspond to
a winning percentage of roughly 75%, whereas even 1600
wins somewhat less than 2/3 of its games against 1000,
which corresponds to a difference in playing strength of
approximately 100 rating points. For 4-ply search, the re-
sults are quite irregular again, with all functions from 1200
to 1600 performing roughly at the same level, with only the
1000 evaluation function being clearly inferior.

In summary, we can observe differences in the learned
functions which correlate roughly with our expectations,
but the magnitude of the differences is considerably smaller
than we hoped for.

5.6. Internet Play

As a final test, we let the four players loose on the free
internet chess server FICS,10 where they can meet compe-
tition of varying strengths, primarily human but also com-
puters. All programs played in two different modes, blitz
(time controls 3 minutes or 5 minutes for an entire game,
or 2 minutes with a 12 seconds increment per move) and
standard (15 or 20 minutes for the game). In both cases we
played with a search depth limitation to 1 ply and without
such a limitation (the depth was then chosen dynamically
to fit the chosen time controls). Thus, each evaluation func-
tion was run in four different configurations.

Table 5 shows the results after about 1000 Blitz games and
ca. 500 Standard games for each search depth. The re-
sults essentially confirm the findings of the previous sec-
tion: only the 1000 player is reliably worse than the others,
whereas the differences between the other three are spuri-
ous, and within the regular variance of chess ratings.11

10http://www.freechess.org/
11Ratings on chess servers are updated incrementally after each

game. Typical rating changes after a won game are 0 to 15 points,
depending on the strength of the opponent.
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Table 4: Results of the four trained functions against each other and against TSCP’s functions. The winner is shown in the
columns (e.g., 1600 scores 63.5 points against 1000 in the 2-ply setting).

1 ply 2 ply 4 ply
1000 1200 1400 1600 1000 1200 1400 1600 1000 1200 1400 1600

1000 — 49.5 50.5 45.0 — 59.0 56.0 63.5 — 68.5 58.0 53.0
1200 50.5 — 54.0 53.0 41.0 — 54.0 57.0 31.5 — 46.5 61.5
1400 49.5 46.0 — 50.0 44.0 46.0 — 61.0 42.0 53.5 — 54.0
1600 55.0 47.0 50.0 — 36.5 43.0 39.0 — 47.0 38.5 46.0 —
TSCP — — — — 36.5 37.0 36.5 43.5 22.0 35.5 38.0 26.5∑

155.0 142.5 154.5 148.0 158.0 185.0 185.5 225.0 142.5 196.0 188.5 195.0
+ 35 12 18 19 130 171 167 210 121 174 171 173
= 240 261 273 258 56 28 37 30 43 44 35 44
− 25 27 9 23 214 201 196 160 236 182 194 183

6. Conclusions
In this paper we reported the results of a study that aimed at
adjusting the parameters of a chess evaluation function to
the skill level of a class of human players in a database of
games. In the light of the results of match play among the
learned players and the results against a variety of players
on the free internet chess server, we have to conclude that
this goal could not be achieved.

Nevertheless, we have also seen evidence that the learned
functions were, indeed, of different strengths, albeit at a
much smaller scale. Larger performance differences could
only be observed by variations in the search depths, not by
minor variations in the evaluation function. In retrospect,
this result is not entirely unexpected, because fine-tuning
an evaluation function of a chess program is a difficult,
time-consuming process with small gains. In a sense, we
have now complemented this knowledge with the experi-
ence that one can also not do much harm, even if one de-
liberately tries to construct a weak (but still sensible) eval-
uation function.

As a side result of this study, we also note that supervised
training of ranking SVMs on game playing data seems to
work. Even though some aspects of the learned evalua-
tion functions looked surprising (e.g., the low value of the
queen), the low variance in the four learned functions reas-
sures us that this is not due to chance. We speculated about
possible reasons for these unexpected results, but further
studies are necessary to obtain a definite answer.
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