
On Table Extraction from Text Sources with Markups

Lorenz Weizsäcker Johannes Fürnkranz
Technische Universität Darmstadt
{lorenz,juffi}@ke.tu-darmstadt.de

Abstract
Table extraction is the task of locating tables in
documents and extracting their entries along with
the arrangement of the entries inside the tables.
The notion of tables applied in this work ex-
cludes any sort of meta data, e.g. only the con-
tent elements of the tables are to be extracted. We
follow a simple unsupervised approach by select-
ing the tables according to a score that measures
the in-column consistency as pairwise similari-
ties of entries where separators columns are also
taken into account. Since the average is less reli-
able for smaller table this score demands a level-
ling in favor of greater tables for which we make
different propositions that are covered by exper-
iments on a test set of HTML documents. In or-
der to reduce the number of candidate tables we
use assumptions on the entry borders in terms of
markup tags. They only hold for a part of the
test set but allow us to evaluate any potential ta-
ble without referring to the HTML syntax. The
experiments show that the discriminative power
of the in-column similarities are limited but also
considerable given the simplicity of the applied
similarity functions.

1 Introduction
This work is about table extraction on HTML-documents
or on other source types that use mark-up-tags and can eas-
ily be transformed into a sequence of ASCII symbols with-
out impeding the elicitation of tables. As extraction output
we target the entries along with their arrangement in row
and columns letting aside any sort of meta data.

Following [6],[3] the task of table extraction strips
downs to two subtasks. For solving the task of table lo-
cation we have to find the substrings of the input string that
contains the tables. For table recognition we want to get
the tables content and structure out of those substring hav-
ing the input string at hand. A substrings is here defined by
both, the sequence of character it contains and its slice, the
start and the end position, on the string it is taken from.

In principle, mark-up-languages allow addressing tables
with tools for querying the structure induce by the markups.
However, for neither of the two subtasks we can fully rely
on the markups. For instance, in HTML-documents table-
nodes often are used for arbitrary layout porpuses. Further,
the location task also has a significant genuine error in the
sense that for some potential tables it is a matter of tast
wether we takes them as extractioin targets or not. The

correct output is not defined but by the choosen example
set. We do not intend to extract meta data such as titles,
column headers, separating rows that are empty or contain
titles of the subsequent table part. Here again, for many
types of meta there are special node definitions but these
are not always used. For instance, we have often to deal
with column headers which take, according the markups,
the place of first data row of the table.

For the approach presented here we do not consider the
definitions of the mark-up-languages. Instead, we confine
ourself to inspecting the statistical structure inside a col-
umn of a table, where column refers to columns of table
entries and columns of entry separators as well. More pre-
cisely, we measure the consistency of a column by the pair-
wise similarity of its elements, where similarity refers to a
plug-in string kernel. The basic observation is that the en-
tries in a given column of a table tend to be more similar to
each other than to other potential table entries in the doc-
ument [14],[2]. With this report we want to frame out an
extraction algorithm that uses the in-column similarities as
single extraction criterion and see to what extend the ex-
traction of tables can draw thereon.

Our algorithm intends to consider all potential tables
within the input string likewise searching substrings with
certain properties. Without further restriction of the output
space, this is too expensive since we do not only have to
find the substrings of the input covering the tables but also
determine therein all substrings representing the entries. If
we regard any position in the string after a given position
as candidate start point of the next entry, there are far too
many candidate tables. For this reason, we consider doc-
uments with mark-up tags such HTML documents. Obvi-
ously, the search space for these documents is smaller since
the border of a table entry can be assumed to concur with
the border of a tag.

Unfortunately, real world documents contain thousands
of tags such that the search space still is to big for inspect-
ing it element by element. This means that we either have
to use non-exhaustive search, e.g. we evaluate the extrac-
tion criterion only for some elements in the space and find
or hope to find the most promising candidate nevertheless.
Or, we try to further reduce the search space by means of
stronger assumptions on the entry borders. We have chosen
latter option by applying the assumptions given in section 3
which shrink the size of the space of candidate outputs to a
moderate size. The drawback of this choice, as reported in
the experiments section 5, is that the assumptions hold only
for a minority of the documents in the data set we used. We
decided to take this loss in relevance of the results because
at first we wanted elaborate the extraction criterion itself.

And indeed, there is a principle catch with extraction cri-

teria such as the criterion specified in section 4.2 and 4.3.
We intend to evaluate a candidate table by the average in-
column similarity of the table entries. However, the relia-
bility of this average score strongly suffers when the can-
didate table is small and we therefor average over a small
number of similarities only. We respond to this problem by
deliberately decreasing the chances of smaller candidate ta-
ble, an procedure to which we refer to as levelling.

The outline of this paper is the following. An unsorted
review on related work is given in section 2. Section 3
provides notation and specifies the assumptions for the re-
duction of the search space. The extraction criterion, called
table score, is given in section 4 where we also provide dif-
ferent proposals for levelling schemes. In section 5 we re-
port on experimental results based on the set data set from
[14] and section 6 contains conclusions and depicts further
work.

2 Related Work
2.1 Binary Classification with Content Features
The reference most related to this work is [14]. The au-
thors reduce the table location task to a binary classification
problem. First, the leaf table nodes are marked as candi-
date target tables. Then, each candidate table is mapped to
a feature vector that in turn is the input to a classifier which
decides whether the vector represents a target table or not.
The feature vector consists of the feature groups for words,
layout and content respectively.

For word features a bag of words is collected from the
text nodes of each candidate table and mapped to a feature
vector in a TF.IDF fashion with respect to the set of positive
and negative candidate tables in the example set.

The layout features are based on counts of rows,
columns, cells (leaf text nodes) and the lengths of the cells.
Here, rows refer to nodes declared as table rows by HTML-
tags. We have not yet understood to what columns refer to
in cases where the rows differ in the number of entries. The
standard deviation of the number of cells per row is one of
the layout features. All normalization are local in the sense
that they refer to corresponding elements inside the same
table.

Another layout feature is called cumulative length con-
sistency. It is intended to capture the observation that the
lengths of entries for a given column are often similar. The
content-features transfer this concept to consistency with
respect to content types such as hyperlink, image, alphabet-
ical. This concept of consistency has also been the initial
motivation for our work. While in our work this idea is for-
malized in terms of pairwise similarities, the consistencies
in [14] are computed based on a reference value that is the
mean for the lengths and the most frequent value for types.
It might be interesting to draw a clear sight on the relation
of these two formalizations, but we have not done this.

2.2 Display Models
In order to ease the reading of web pages, the developers of
browser invest much effort to translate HTML-files into a
clear arrangement one a 2-dimensional display. In [3], see
also [4], the authors propose to make use of this arrange-
ment result as provided by the mozilla rendering engine for
solving the task of table extraction. We estimate this as a
particularly clever approach. Tables can be characterized
as boxes that are tiled in a regular manner fulfilling certain

constraints. Though the arrangement pattern are of com-
prehensible complexity the approach yields good results on
a large set of web-pages. It works out without any training.

The approach of [4] and the approach presented here are
complementary in sense that the first focuses on topologi-
cal structure of the input without considering the content
of the table while the latter inspects the possible entries
and separators without explicitly modeling the meaning of
the separators for the arrangement. Nonetheless, they also
overlap to some extend. Certainly, string similarity of sep-
arators is correlated to similar local topology. Also, in [4]
congruence in text and background colors is taken into ac-
count which has no influence on the topology but on the
similarity measures applied here.

2.3 Belief Propagation on Line Sequences
Pinto et. al. consider the problem of table extraction as
segmentation of the input string into segments carrying la-
bels such as table-title lines, data-row lines, non-table lines
[10]. The authors target plain input strings and apply the as-
sumption that segment borders are at line breaks such that
entire lines can be used as tokens for linear belief prop-
agation. Under a conditional random field model (CRF)
this yields good results on set of documents fulfilling the
assumption even with a rather simples feature set. In the
provided state, the approach targets the location of the ta-
bles and meta-information on its rows but does not reveal
the row-column structure of a table. To fix that the authors
proposed to apply a 2-dimensional CRF with characters as
token. For such a model, however, the optimization is dif-
ficult [13].

2.4 What is not Discussed
In this work we do not aim to extract meta-data as table
titles or headers ([10]) nor provide additional tags carrying
information that could used for further processing of the
extracted data. The problem of integration of the extracted
data [11] is not considered either, though this work is much
inspired by [5] where data integration is a main application.

3 Notation and Assumptions
In this section we want get a more formal grip on what the
candidate outputs of table extraction are. First, we formally
specify the general output space independent of concrete
ground truths and extractors. Then, we formulate assump-
tion made by the table extractor given in section 4. These
assumptions only hold for less than one out of six input-
output examples from the ground truth we build in section
5 but they allow us to use a reduced output space that is
suited to study table extraction by column-wise similarities
with reduced technical outlay.

3.1 Output Formalization
For table extraction we want to map an input string x over
a fixed alphabet Σ to a list of tables y = (t1, . . . , tq) of
indefinite length q. The k-th table in that list is a list of
rows tk = (r1, . . . , rnk) where the i-th row in turn consists
of mk,i entries ri = (e1, . . . , emk,i). An entry is a string
over Σ.

If mk,i = mk,̄i for all 1 ≤ i, ī ≤ nk, we say the ta-
ble tk is rectangular. In this case the tuples (c1, . . . , cmk)
where cj = (e1

j , . . . , e
nk
j) such that ri = (ei1, . . . , e

i
mk

) are
referred to as columns of tk.

Instead of defining entries as self-contained strings, one
can also represent them as substrings or only as slices on

the input string [7]. The above representation has the ad-
vantages that it is more readable and that it is decoupled
from the input and therefore more robust. Nonetheless,
we assume that the entries occur in the input x as non-
overlapping substrings in the order induced by the table
structure (depth first). When we talk about an entry in the
following section, we may refer to its proper string, its slice
or both, depending on the context.

3.2 Assumptions
In the following we formulate some strong assumptions on
the input string and the tables therein. These assumptions
characterize the cases to which the proposed approach pre-
sented in this paper is restricted to.

The general assumption is that the input string can un-
ambiguously be segmented into an alternating segmenta-
tion of tag segments and content segments. The content
segments are potential entries while tags or groups of tags
form potential separators between entries.

More specially, we assume that table entries always con-
tain at least one non-whitespace character and the markups
are given as non-overlapping tags, substring that start with
< and end with > but have neither of both in-between. This
way we can define a tag segment as sequences of tags only
separated by whitespace. The content segments are seg-
ment between the tag segments.

One major demerit in these assumptions is that table en-
tries can contain tags. But mostly they have formating pur-
pose and surround a single content segment. Let the peel-
ing function γ : Σ∗ → Σ∗ take away any prefix and suffix
of its string argument that consist of tags and whitespace
only. We assume that any table entry, when peeled by γ,
is a content segment. Of course, entries may contain tags
surrounded by content segments. In such cases the assump-
tions do not hold and the algorithm below will fail.

The alternating segmentation is denoted by G and the
separated subsequences of G containing separator seg-
ments and entry segments only by Gs and Ge respectively.

G = (gs
1, g

e
1, g

s
2, g

e
2, . . . , g

s
p, g

e
p),

Gs = (gs
1, . . . , g

s
p), G

e = (gs
1, . . . , g

s
p) (1)

If the assumption does hold, the extraction of the table
entries reduces to the selection of a subsequence ofGe. We
further restrict the output space by additionally assuming
that tables consist of consecutive content segments. This
implies that there are no separating rows, which does not
hold for a rather big fraction of tables. But this additional
assumption reduces the space of candidate tables to a level
that permits exhaustive search.

3.3 Final Output Space
Applying the above assumption, we can specify the out-
put space for given input x in very simple terms. If the
alternating segmentation of x has length p, any candidate
table within x is can be represented as a triple (a,m, n)
where a is the index of its first entry inGe,m the number of
columns, and n the number of rows such that a+mn−1 ≤
p. Let us denote this space of output tables by T (G).

How many table does T (G) contain? Let np(a) be the
number of tables starting at position a, and nc(l) the num-
ber of tables that can be built from at most l consecutive
content segments in Ge.

|T (G)| =
p−1∑
a=0

np(a) =
p∑
l=1

nc(l) (2)

The term nc(l) equals the number of ordered pairs that mul-
tiply to at most l. On limit average it grows as l ln l as
can be seen from the following bounds that hold for any
l ∈ N \ {0}.

l(ln l − 1)− 2
√
l ≤ nc(l) ≤ l(ln l + 2) + 2

√
l (3)

The number of candidate tables is therefore bounded from
above by p2(ln p+ 1).

4 Extraction by Column-Wise Similarities
We want to study a simple score based table extraction
algorithm. The algorithm is named CSE, standing for
column-wise similarity evaluation, as its selects the output
tables according to a table score based on the in-column
similarities.

4.1 Iterative Maximization
The proposed table extraction algorithm tries to solve the
table location and recognition task in one go by maximizing
a table score H over the candidate table in T which will be
given below. The maximizer t̂ of H is one table in the
output list ŷ.

t̂ = argmax
(a,m,n)∈T (G)

H(a,m, n) (4)

The other tables in ŷ are obtained by incrementally exclude
candidate tables that overlap with the tables extracted so far
and retrieve the maximizer from the remaining ones. The
output list is finally sorted by the position of the first entry
a such that the tables appear in the same order as they do
in the input string.

We want to assume that true number k of tables is given
in addition to the input string. That is, we let aside the
problem of detecting where in the sequence of maximizers
the entries stop to be tables. In case that the first l < k table
already cover the sequence such that no further table can be
extracted, the remaining tables are defined as empty tables
that are tables with zero rows.

We refer to an input hint such as the number of tables
above as promise using a notion from complexity theory
[1]. More generally, a promise is a string that is added
to the input and represents certain information on the true
output.

4.2 Table Score
The table score should express how table-like a table is. It
is exclusively obtained from scores on the columns of the
table, where column here means both, column of entries
and column of separator between entries and rows. Row
separators are treaded like entry separators. The difference
is that in a table there is one row separator less than there
are separators between two content columns because we
model a table to start with its first entry and to end with its
last entry.

A table column is represented by a tuple (u, b,m, n)
where u ∈ {e, s} is its type (content- or separator-
segment), b is the index of the first entry of the column
in Gu, n is the number of its entries and m the number of
columns the table to that the column belongs to has. We
denote the score of a column (u, b,m, n) which should ex-
press its column-likeness by hu(b,m, n).

For a given table (a,m, n) ∈ T (G) the table score is the
sum of scores of its columns divided by a normalization

term z(m,n).

H(a,m, n) =
1

z(m,n)
(he(a,m, n)+

m−1∑
j=1

(hs(a+ j,m, n) + he(a+ j,m, n)) +

hs(a+m,m, n− 1)) (5)

For either type u we aim the score of a column
(u, b,m, n) to give a measure of how well the elements of
the column (ga+im)i=0,...n−1 in Gu fit together. We can
model this by the sum of their pairwise similarities. Let
s̄u : Qu × Qu → [0, 1] be a similarity measure where Qu
is the set of possible segments of type u. Then, the score of
a column (u, b,m, n) is given by

hu(b,m, n) =
∑

0≤i<j<n

s̄u(gb+im, gb+jm). (6)

The normalize term is the total number of similarities that
are taken into account

z(m,n) = (2m− 1)
(
n

2

)
+
(
n− 1

2

)
(7)

such thatH is the average similarity between entries or sep-
arators stemming from the same column.

4.3 Entry Similarities
A good design of the similarity functions se and ss is an
important factor for the performance of CSE extraction al-
gorithm. This can be seen by trying different similarity
functions and/or different parameters of these. We did not
undertake systematic studies on this and in this report we
neither want to discuss what adequate similarities may be
nor to what extend one can expect a good choice of simi-
larities can evaluate the performance. In the following we
briefly describe the similarities we applied in our experi-
ments as reported in section 5.

To make sure that a similarity is in the range of 0 to 1
regardless the actual similarity function su, the CSE algo-
rithm always uses the normalized variant s̄u.

s̄u(g, ḡ) =
su(g, ḡ)√

su(g, g)su(ḡ, ḡ)
(8)

For both segment types with apply a similarity sl based
on the segment lengths. Let us write |x| for the length of
a string x. The length similarity of two segments a and b
evaluates the ratio of the greater length to the smaller one
through an exponential decay.

sl(a, b) = exp(−g(a, b)), g(a, b) =
1 + max(|a|, |b|)
1 + min(|a|, |b|)

−1

(9)
While the similarity of separator segments is reduced to

the length similarity, e.g. ss = sl, the similarity on entry
segments additionally checks whether the two string are of
the some type where the type of string is either integer, non-
integer number, or other. This type similarity st(a, b) is 1
if the types of a and b match, and 0 otherwise. The entry
similarity is given as product of length and type similarity:
se(a, b) = st(a, b)sl(a, b).

In principle we can plug-in any string kernel as similarity
function on segments, but it should be noted that the evalu-
ation of the similarities must have moderate costs because
any two segments of the same type are to be compared.

4.4 Score Levelling
Unfortunately, simply averaging over the relevant similar-
ities is not an option because of two reasons. To the first
we refer as subtable problem. Consider two tables, where
one table is a subtable of the other, both having approxi-
mately the same elevated score. In such a case we prefer the
greater table, because we assume that a wrong extension of
a complete table decreases the score while false dropping
of rows does not so.

The second issue is the problem of winning by variance.
The smaller the table shape, e.g. the less candidate en-
tries are taken into account, the less reliable is the table
score as selection criterion. The distribution of scores is
less concentrated for smaller shapes than for larger ones
because we average over fewer similarities and because the
candidate tables have less average overlap to each other.
Also, there are more non-overlapping candidates in abso-
lute numbers. These properties make them more likely to
erroneously exceed the score of the correct target tables.

The two issues differ in their scope. The subtable prob-
lem refers to preferences among certain outputs having
similar score H . In other settings we might use a simi-
lar score although no or other preferences exists. In con-
trast, the winning by variance problem is not related to the
input-output distribution but refers to the different predic-
tive qualities of the scores due to the score structure.

The framework to approach these issues is to apply a
score levelling that maps the scoreH of a candidate table to
a leveled score H̄ . The levelling increasing with the shape
that is the original score is decreased the more the smaller
m and n are. We confine ourself to linear levellings that
have the form below. For better reading, a single term s is
used to denote the shape (m,n).

H̄G(a, s) =
HG(a, s) + bG(s)

cG(s)
(10)

One may try a reasonable guess for c and b and use it
as ad hoc levelling or fit the levelling from a broader class
of functions using a training set. In the subsequent sub-
sections we discuss instead ways to tackle the problem of
winning by variance by levellings of the form (10) directly.
In contrast, we do not respond to the subtable problem ex-
plicitly. We assume that all levellings that do not increase
to slowly will sufficiently solve it. If the subtable is much
smaller, the the score of the supertable is decreased much
less. If, on the other hand, the subtable only misses a few
rows, then its score is unlikely to be much greater since it
contributes the main part to the score of the supertable.

In the following we try to give a better idea of the level-
ling approach and therefore use simplified setting: we as-
sume the input-output pairs Z = (G,K) are drawn from
a distribution P which only supports segmentations G that
have a given length p and contain exactly one true table de-
noted by K. We say P has input length p and output length
1.

Let l be a score loss on candidate tables, for instance
the 01-loss lZ(t) = JHG(t) > HG(K)K or the hinge-loss
lZ(t) = max(0, HG(t) − HG(K)). The risk of the score
RP (H) is the expected sum of losses over all candidate
table in T (G).

RP (H) = EZ∼P
∑

t∈T (G)

lZ(t) (11)

We want to decompose that risk along the shapes. Let Sp
be the set of feasible shapes and Ap(s) the set of feasible

positions given the shape s and let e(s) = EG∼P (eG(s))
with eG(s) =

∑
a∈Ap(s) lZ((a, s)) be the risk at shape s.

RP (H) =
∑
s∈Sp

e(s). (12)

The approach of shape levelling assumes that indepen-
dently of P but due to the structure ofH the risk e is greater
for certain shapes such that reducing the chances of a such
an s reduces e(s) more than it increases the risk at other
shapes and therefore leads to a smaller total risk which in
turn is assumed to correspond to a better extraction perfor-
mance.

Note that we do not further discuss that notion of risk nor
the choice of the underlying score loss. Here, they are only
used in order to explain the concept of levelling but they
are not directly taken into account when we discuss ways
to define levellings below.

Fair Levelling
The idea of fair levelling is to design the levelling such that
the score maximization scheme does not favor any shapes
when the segmentation can be assumed to contain no ta-
bles.

Let P be of input length p and output length 0. The
segmentations drawn according to P do not contain any
tables and we therefor call to such a P table-less. Given a
table-less distribution P , we say that the table score is fair
with respect to P if the shape s∗ of the maximizer of HG

has uniform distribution over Sp.
A sufficient condition for obtaining a fair score is that

that distribution of the maximum does not dependent on the
shape. Since this goal is overstated, we propose a rough ap-
proximation thereof by setting the expectation of the max-
ima for different shapes to one level. Let µp = EG∼PµG
be the expected average score over Sp and Ap(s) and let
νp(s) = EG∼P νG(s) be the expected maximum of the
scores over Ap(s).

µG = avg
s∈Sp,a∈Ap(s)

HG(a, s) νG(s) = max
a∈Ap(s)

HG(a, s)

(13)
With the following levelling, we approximate a fair level-
ling by standardizing the expected maxima given the shape,
e.g. we set EG∼P maxa H̄G(a, s) = 1 for all s in Sp.

H̄G(a, s) =
HG(a, s)− µG
νp(s)− µp

(14)

In praxis, we have to use estimations of µp, νp(s) that we
obtain in our experiments in section 5 simply by averag-
ing νG(s) and µG over a set of segmentations drawn from
some P . The term −µG in the nominator in (14) is irrele-
vant for the maximization but it accents the standardization
character of the levelling.

Table-Less Models
The approach of approximated fair levelling demands that
we have a table-less distribution P , to which we now refer
as segmentation model, at hand. We discuss a few simple
table-less models.

The first model, called Bernoulli model, is a simply iid
model where we draw the segments independently and with
equal chances from {0, 1}. The similarity of two segments
is 1 if they are equal and 0 otherwise. This model has little
to do with the segmentation from which we want to extract
tables but still might be sufficient to design a effective lev-
elling as it does capture the structure of the table scores.

The second model, which is named shuffling model, is
an iid model as well. A segmentation is drawn from an
example set and then we sample the segments for the new
segmentation according to the distribution of segments in
the sampled segmentation. At least with high probability
we can assume that we do not find any table in a segmenta-
tion that is drawn according to either of these iid models.

Last, we consider the empirical model where random
draw from a set of example segmentations containing no
tables is taken are empirical distribution. From one seg-
mentation of length p we obtain sample value of νp(s) for
any s ∈ Sp. But contrary to the iid models, we only get em-
pirical evidence for some p and therefor need a more elabo-
rate smoothing technique than for the iid models where we
can generate segmentation for any p. On the other hand, we
assume the levelling to be monotone in each of its the argu-
mentsm,n and pwhat strongly decreases the data demand.
Nonetheless, the definition of such a smoothing remains fu-
ture work.

The empirical model as as well as the shuffling model
amount, strictly speaking, to supervised table extraction
since we only want to sample segmentation not contain-
ing tables. On the other hand, this binary labeling is very
cheap compared to the actual extraction of tables.

Variance Levelling
A simple variant of the fair levelling is variance levelling
where we standardize the score in the classical sense with
respect to some table-less distribution P . That is, we di-
vide the score by the standard deviation that the tables of
shape s are expected to have when we run over the feasible
positions.

c(s)2 = EG∼P avg
a

(HG(a, s)− µG)2 (15)

With an iid model we can explicitly compute the values
c(s) from two parameters of the underlying segment distri-
bution. For simplicity, we now include the separator subse-
quent to the last entry segment into the table such the table
score is the sum of 2m independent identically distributed
columns scores. Let H be the score of some candidate ta-
ble in G ∼ P with shape (m,n) and let C be the score of a
column in G having n entries. Taking the column score as
U-statistic for a binary kernel, we have

V(H) =
1

2m
V(C) (16)

=
1

mn(n− 1)
(
(n− 2)σ2

1 + σ2
2

)
(17)

where σ2
1 = VX(EY (s(X,Y))) and σ2

2 =
VX,Y (s(X,Y)), see for instance [8]. For the Bernoulli
model the parameters σ1

2 and σ2
2 can easily obtained from

success probability q. In case of the shuffled model we
have to estimate them by sampling.

5 Experiments
For testing the general performance of the CSE algorithm
and for comparing the different levellings presented above
we run experiments on the Wang and Hu data set that was
used in [14].

5.1 Building the Test Set
The Wang and Hu set consists of HTML-documents in
which all target tables are marked using a special boolean

attribute in the table node. This makes the set a ready-to-
use ground truth for the table location task. Since CSE tries
to solve the table recognition task as well, we have to ex-
tend the ground truth provided by Wang and Hu by addi-
tionally solving the recognition of table cores.

We decided to do this automatically with another table
extractor, named RE extractor or REE in short, that uses
regular expressions based on the relevant element names of
HTML. Attempts to use the parsing of the document tree
failed for too many documents where we tried three freely
available parsers including the lxml-library [9].

REE uses a pattern for target tables based on the element
name table and the additional attribute in order to get the
substrings that represent the content of a target table. To
solve the recognition task it applies an entry pattern (ele-
ment name td) on the content of the matches of the row
pattern (element name tr), which in turn is applied on the
substrings matching the target table pattern. Matches of the
row pattern that contain matches for headers (element name
th) are ignored.

REEs capability for solving the table recognition task is
limited. One minor problem is broken HTML in the in-
spected substrings. The main issue is meta data that is not
declared as such. Still, we belief that the output of REE is
sufficient for our experiments since extraction capability of
CSE is low anyway.

In the following we specify two versions of the ground
truth. Both are based on the output of REE but they apply
filters of different strength. While for the full set only weak
filtering is applied, feasible set contains those cases only
that fulfill the assumption made by CSE.

Full Set
The Wang and Hu data set contains a total of 1393 docu-
ments. For the full set we only include the examples that
contain at least one target table. CSE gets the number of
tables k as promise and therefor has nothing to do if the
promise is 0. Further, we bound the segmentation length to
be not greater than 900. Documents with p > 900 are rare
but they take a rather big fraction of the total runtime.

As a third filter criterion we demand that the extraction
by REE is successful in the following sense: each extracted
table should contain at least one row and any extracted row
should have at least one entry. We hope that most cases
where the table recognition by REE does not work as in-
tended are detected by this criterion, while not to many ta-
ble that are extracted as intended by REE fail to fulfill it.
Table 1 shows the number of examples passing the filters
discussed so far plus an additional filter discussed below.

Feasible Set
The feasible set is restricted to those documents from the
full set in which all tables provided by the RE extractor
fulfill the assumptions given in section 3.2. Though CSE
may extract some of the table or part of tables from a docu-
ment not in the feasible set, it is not possible that its output
is entirely correct. The feasible is useful to analyze the dis-
criminative power of in-column similarities as used by CSE
and variants of the algorithm.

In order to fulfill assumptions a table has to be rectangu-
lar and it has to fit in the content sequence of the document.
The latter means that the sequence of the entries in the table
is a consecutive subsequence of the content part Ge of the
alternating segmentation modulo the mapping γ. The con-
junction of this two criteria is necessary for the assumptions
to hold, but unfortunately it is not sufficient because of the

implicit column headers. However, this problem can only
be solved by human inspection and we therefor prefer to
the use the above criteria as approximation. The number of
documents under hold assumptions in table 1 refers to this
approximation.

Although the problem of implicit column headers re-
mains, the fraction of documents from which REE erro-
neously extract meta data should be lower in the feasible set
because the rectangularity condition filters out cases with
implicit titles or separating rows that are given as rows with
one or no entry.

5.2 Performance Measure
For the evaluations of an extractors we need a loss func-
tion Ly that compares its outputs to the output provided
as ground truth and encodes the comparison as a value in
[0, 1]. The definition of the loss goes along the hierarchical
structure of the outputs them self: Ly is an extension of a
loss on tables Lt that is an extension of a loss on rows Lr

which in turn is an extension of a loss on entries Le.
We say that an extension is strict if the resulting loss is

1 whenever the two arguments do not have the same num-
ber of components and otherwise is given as aggregation
of the component losses that are the losses on the pairs of
components one from each of the two arguments having an
identical index. The average extension is a strict extension
which aggregate by the mean and the also strict maximum
extension takes the maximum as aggregation. For instance,
we obtain the 01 loss that checks whether its arguments are
equal down to their entries by applying the maximum ex-
tension at any level of the hierarchy. Here, we want use a
loss on table list which is more soft to several regards as we
define in the following in a bottom-up manner.

The loss Le on two entries is the 01 loss Ls on strings
applied to the entries reduced by the peeling function γ in-
troduced in section 3.2.

Le (e, ē) = Ls (γ(e), γ(ē)) (18)

While the row loss Lr is given as strict maximum extension
of the loss on entries, we want to use a soft table loss Lt

such that dropping rows at the beginning or the end of a
table results only in a gradual increase of loss.

Therefor, we define the table loss Lt not as a strict exten-
sion but as best overlap extension of the row loss. This ex-
tension searches an optimal way to match consecutive sub-
sequence of component indexes of the argument with the
smaller number of components to the longer one. For ev-
ery component of the longer argument that is not matched
a loss of 1 is taken into account.

Let t = (r1, . . . , rn) and t̄ = (r̄1, . . . , r̄n̄) be two tables
that are to be compared where we assume without loss of
generality that n ≤ n̄. In order to simplify the below def-
inition of the loss Lt on the tables, we extend the shorter
table t to t̃ = (r̃1, . . . , r̃n̄+n+n̄) by adding n̄ false rows to
either end of t. A false row is a row r such thatLr(r, r̄) = 1
for any row r̄.

Lt (t, t̄) = min
d=0,...,n+n̄

1
n̄

n̄∑
i=1

Lr
(
r̃d+i, r̄i

)
. (19)

The minimization is needed because we want to define a
loss depending only on the outputs decoupled from the in-
put as pointed out in 3.1. If we toke the entry slices on the
input string into account, we could use them to match the
rows directly.

total k > 0 p ≤ 900 RE successful hold assumptions
1393 774 727 700 162

Table 1: The number of examples in the Wang and Hu set that passed the filters in conjunction from the left to right up to
the filter heading the column.

Finally, the table loss is expanded to a loss on table lists
Ly by applying the average extension. The strictness of the
extension is not an issue here because the CSE extractor
uses promises on the number of tables. We refer to output
loss Ly as best row overlap loss or BRO loss in short.

5.3 Results
We evaluated the performance of the CSE extractor by
comparing its output to the REE-ground-truth discussed in
subsection 5.1 in terms of best row overlap loss defined
subsection 5.2. The CSE extractor gets the number of ta-
bles obtained from REE as promise. To simplify the im-
plementation we let CSE look only for tables with n ≤ 80,
m ≤ 20, other candidate tables were ignored.

In section 4.4 we pointed out that one has to adjust the
scores depending on the shape of the candidate table in
order to make the extraction by average entry similarities
work. The discussed levellings try to do this adjustment in
a specific, roughly motivated way. Alternatively, one may
pass on the motivation and try to make a good guess on a
function of m and n and use this as ad hoc levelling. For
instance, one might multiply the scores by

1
c(m,n)

= γ + nβmαβ (20)

for some α, β and γ. Of course, we do not know a pri-
ory how to these set parameters. One can fit them using
a training set, but we not try this possibility for this work.
Still, we used the above class of ad hoc levellings for two
purposes. First, by varying the parameters we get a rough
impression on the impact of changes in the levelling. Sec-
ond, we consider it as base line in the sense that the results
yielded by levelling from section 4.4 should be comparable
to this ad hoc levelling at least if the chosen parameters had
not seriously been fitted to the test set. As a matter of fact,
it was not difficult to find parameters for the ad hoc level-
ling in (20) that give better result than the more elaborated
levellings discussed in section 4.4.

In general, the extraction performance of CSE with fea-
tures from section is rather poor: the BRO losses are 0.825
and 0.613 for the full set and feasible set respectively us-
ing ad hoc levelling with α = β = γ = 0.5. Results
on the feasible set for fair and variance levelling based on
Bernoulli sampling with different success probabilities q,
for fair levelling with shuffled sampling, as well as for one
ad hoc levelling are given in table 2.

The Parameters for the levellings in table 2 were cho-
sen as follows. For the ad hoc levelling the result refers
to the optimal values where we tested all combination with
α = 0.2, 0.4, 0.6, 0, 08, β = 0.2, 0.3, . . . , 1.4 and γ =
0, 1, 2, 8, 32. The success probability for the iid Bernoulli
segment sampling was tested at q = 0.1, 0, 2, 0.3, 0.4, 0.5
and the values that yielded the best and the worst perfor-
mance respectively are in given in the table. Therefor, nei-
ther of those performances can be stated as performance
for respective type of levelling as the parameters are fitted
to the test set. The fair levelling with shuffled sampling is
based on samples that are also taken from the Wang and Hu

Figure 1: The mean BRO loss obtained by CSE with ad hoc
levelling for different values of α and β measured on the
feasible set. Different values of α are plotted with different
colors while β runs along the x-axis.

set but do not belong to the test set as they do not contain
tables.

Figure 1 shows the BRO losses for ad hoc levelling with
γ = 1. The corresponding plots for other values of γ have
similar shapes where with increasing γ the low loss region
shifts towards greater values of β and the graphs for differ-
ent α approaches to each other.

6 Conclusion
We investigated in a simple approach to the task of table
extraction: first, we reduce the output space such that we
can afford to inspect any candidate output, then, we select
a given number of candidates with high average in-column
similarities. The inspection of a set of HTML documents
revealed that the proposed reduction of the output space
cannot be applied in too many cases. Experiments on the
remaining cases gave a first impression on the discrimina-
tive power of in-column similarities: even with more elab-
orated entry similarities than the simple ones applied here,
it is presumably to weak to sufficiently solve the extraction
task. On the other hand, given the simplicity of the applied
similarities, we find that the extraction performance is on
a level that justifies deeper investigation how we can effec-
tively use the information that lies in similarities of column
entries. In the following we revisit some issues of the this
approach and indicate proposals for future work.

6.1 Alternating Segmentations
In section 3.2 we defined the input segmentation in terms of
SGML tags but the concept of alternating segmentation is
more general. Instead of tag-segments vs non-tag-segments
on texts with markups, one might consider other input types
with other alternating segmentations. A sufficient condi-
tion for an alternating segmentation in general terms is that
no suffix of a separator-segment is a prefix of a content-
segment or vice versa. Further, we can build different al-
ternating segmentations and jointly maximize over the con-
tained candidate tables, provided that the scores functions
yield comparable values.

Ad Hoc Fair Bern. q = 0.5 Fair Bern. q = 0.2 Fair Shuffled Var. Bern. q = 0.1 Var. Bern. q = 0.4
0.598 0.655 0.617 0.623 0.664 0.628

Table 2: BRO losses of CSE using different type of levelling measured on the feasible set. The parameters for the ad hoc
levelling in the first column are α = 0.4, β = 0.6 and γ = 0 yielding the lowest among all tested combinations. For fair
and variance levelling the two given values of q yielded the worst and the best result among five tested values from 0.1 to
0.5.

6.2 Restrictive Assumptions
The assumptions formulated in section 3.2 are too restric-
tive. Only one out four documents from the full set does
fulfill them. Partially this caused by meta data rows in
the ground truth provided by REE but we believe that that
fraction would not increase to reasonable level even if we
cleaned the example output by hand. It should be noted
that most relaxations cause a exponential blowup of the
search space. For instance, if we allow table rows to be
separated by one or two separator segments instead of ex-
actly one, the number of candidate table starting at given
position grows exponentially in the number of rows at least
as long as there are segments left in the segmentation. It is
not obvious how to solve the maximization efficiently un-
der such a relaxation. We cannot apply standard dynamic
programming along the sequence of segments, because the
column scores as given in section 4 does not factorize along
this sequence.

6.3 Evaluation of Levellings
Except for levelling with shuffled sampling, all levellings
that have been applied in our experiments are parametrized.
As long as we do not provide algorithms for pre-test de-
termination of the parameters a comparison of levellings
schemes based on the obtained performances is delicate.
But we might say that fair and variance levelling as pro-
posed in section 4.4 do not provide a adequate technique
for boosting the performance of CSE compared to ad hoc
levelling since competitive parameters can easily be found
for the later. The proximate way to make comparison be-
tween parametrized levellings is to fit each of the levellings
with respect to a training set. This will also give us an idea
to what extend the performances differ on disjoint test sets
which is important to know when we decide on the effort
to put in the selection of the levelling.

6.4 Training of Similarity Functions
The definition of the kernels given in sections 4.3 were
made ad hoc. We belief that more elaborated similarities
can improve the performance of the CSE algorithm. In-
stead of building improved similarities by hand, we may
adapt the kernels with respect to the extraction task us-
ing training examples. The table score H is linear in
any linear parameterization of the similarities, for instance
linear combinations of fixed kernels. Provided such a
parametrization, we can apply generic training schemes for
linear models as the one proposed in [12]. However, for
sake of linearity, we have to restrict ourself to documents
that contain one table only. Further, we depend on a fast
convergence since the evaluation of H is expensive.

References
[1] J. L. Balcazar, J. Diaz, and J. Gabarro. Structural

Complexity I. EATCS Monographs on Theoretical
Computer Science. Springer Verlag, 1993.

[2] H.-H. Chen, S.-C. Tsai, and J.-H. Tsai. Mining ta-
bles from large scale HTML texts. In International
Conference on Computational Linguistics (COLING),
pages 166–172. Morgan Kaufmann, 2000.

[3] W. Gatterbauer and P. Bohunsky. Table extrac-
tion using spatial reasoning on the CSS2 visual box
model. In National Conference on Artificial Intelli-
gence (AAAI). AAAI Press, 2006.

[4] W. Gatterbauer, P. Bohunsky, M. Herzog, B. Krüpl,
and B. Pollak. Towards domain-independent informa-
tion extraction from web tables. In C. L. Williamson,
M. E. Zurko, P. F. Patel-Schneider, and P. J. Shenoy,
editors, Proceedings of the 16th International Confer-
ence on World Wide Web, WWW 2007, Banff, Alberta,
Canada, May 8-12, 2007, pages 71–80. ACM, 2007.

[5] A. Gretton, K. M. Borgwardt, M. J. Rasch,
B. Schölkopf, and A. J. Smola. A kernel method for
the two-sample-problem. In B. Schölkopf, J. C. Platt,
and T. Hoffman, editors, Neural Information Process-
ing Systems, pages 513–520. MIT Press, 2006.

[6] M. Hurst. Layout and language: Challenges for table
understanding on the web. In In Web Document Anal-
ysis, Proceedings of the 1st International Workshop
on Web Document Analysis, pages 27–30, 2001.

[7] N. Kushmerick. Wrapper induction: Efficiency and
expressiveness. Artificial Intelligence, 118(1–2):15–
68, 2000.

[8] A. Lee. U-Statistics: Theory and Applications. Mar-
cel Dekker Inc., New York, 1990.

[9] lxml: pythonic binding for the libxml2 and libxslt li-
braries. http://codespeak.net/lxml/index.html.

[10] D. Pinto, A. McCallum, X. Wei, and W. B. Croft.
Table extraction using conditional random fields. In
Proceedings of the 26th Annual International ACM
SIGIR Conference on Research and Development in
Information. ACM, 2003.

[11] A. Pivk. Automatic ontology generation from web
tabular structures. AI Communications, 19(1):83–85,
2006.

[12] I. Tsochantaridis, T. Hofmann, T. Joachims, and
Y. Altun. Support vector machine learning for inter-
dependent and structured output spaces. In ICML ’04:
Proceedings of the twenty-first international confer-
ence on Machine learning, page 104, New York, NY,
USA, 2004. ACM Press.

[13] M. J. Wainwright and M. I. Jordan. Semidefinite re-
laxations for approximate inference on graphs with
cycles. In S. Thrun, L. K. Saul, and B. Schölkopf,
editors, Neural Information Processing Systems. MIT
Press, 2004. (long version).

[14] Y. Wang and J. Hu. A machine learning based ap-
proach for table detection on the web. In Proceedings
of the Eleventh International World Wide Web Con-
ference, pages 242–250, 2002.

