
Technische Universität Darmstadt
Knowledge Engineering Group

Hochschulstrasse 10, D-64289 Darmstadt, Germany

http://www.ke.informatik.tu-darmstadt.de

Technical Report TUD–KE–2007–01

Klaus Brinker, Johannes Fürnkranz,
Eyke Hüllermeier

Label Ranking by Learning Pairwise
Preferences

Label Ranking by Learning Pairwise Preferences

Klaus Brinker brinker@iti.cs.uni-magdeburg.de
Data and Knowledge Engineering Group
Fakultät für Informatik
Otto-von-Guericke-Universität Magdeburg, Germany

Johannes Fürnkranz fuernkranz@informatik.tu-darmstadt.de
Knowledge Engineering Group
Department of Computer Science
TU Darmstadt, Germany

Eyke Hüllermeier huellerm@iti.cs.uni-magdeburg.de

Data and Knowledge Engineering Group
Fakultät für Informatik
Otto-von-Guericke-Universität Magdeburg, Germany

Abstract

Preference learning is a challenging problem that involves the prediction of complex
structures, such as weak or partial order relations. In the recent literature, the problem
appears in many different guises, which we will first put into a coherent framework. This
work then focuses on a particular learning scenario called label ranking, where the problem
is to learn a mapping from instances to rankings over a finite number of labels. Our ap-
proach for learning such a ranking function, ranking by pairwise comparison (RPC), first
induces a binary preference relation from suitable training data using a natural extension
of pairwise classification. A ranking is then derived from the learned relation by means
of a ranking procedure, whereby different ranking methods can be used for minimizing
different loss functions. In particular, we show that (weighted) voting as a rank aggre-
gation technique minimizes the Spearman rank correlation. Finally, we compare RPC to
constraint classification, an alternative approach to label ranking, and show empirically
and theoretically that RPC is computationally more efficient.

1. Introduction

Recently, the topic of preferences has attracted considerable attention in Artificial Intelli-
gence (AI) research, notably in fields such as agents, non-monotonic reasoning, constraint
satisfaction, planning, and qualitative decision theory (Doyle, 2004).1 Preferences provide
a means for specifying desires in a declarative way, which is a point of critical importance
for AI. In fact, consider AI’s paradigm of a rationally acting (decision-theoretic) agent:
The behavior of such an agent has to be driven by an underlying preference model, and an
agent recommending decisions or acting on behalf of a user should clearly reflect that user’s
preferences. Therefore, the formal modeling of preferences can be considered an essential
aspect of autonomous agent design.

1. The increasing activity in this area is also witnessed by several workshops that have been devoted to
preference learning and related topics, such as those at the NIPS-02, KI-03, SIGIR-03, NIPS-04, GfKl-05,
IJCAI-05 and ECAI-2006 conferences (the second and fifth organized by two of the authors).

1

Drawing on past research on knowledge representation and reasoning, AI offers quali-
tative and symbolic methods for treating preferences that can reasonably complement tra-
ditional approaches that have been developed for quite a while in fields such as economic
decision theory. Needless to say, however, the acquisition of preferences is not always an easy
task. Therefore, not only are modeling languages and representation formalisms needed,
but also methods for the automatic learning, discovery and adaptation of preferences. For
example, computerized methods for discovering the preferences of individuals are useful in
e-commerce and various other fields where an increasing trend toward personalization of
products and services can be recognized.

It is hence hardly surprising that methods for learning and predicting preferences in an
automatic way are among the very recent research topics in disciplines such as machine
learning, knowledge discovery, and recommender systems. Many approaches have been
subsumed under the terms of ranking and preference learning, even though some of them
are quite different and are not sufficiently well discriminated by existing terminology. We
will thus start our paper with a clarification of its contribution. In Section 2, we discriminate
between object ranking problems, where the task is to order a set of objects according to a
preference function, and label ranking problems, where the task is to assign a permutation
of a fixed set of labels to a given object.

Subsequently, we observe that there are two principal approaches to address preference
learning tasks. One possibility is to learn a utility function which induces the sought ranking
by scoring individual objects. The assumption behind this approach is that the observed
preferences are based on a hidden (latent) numerical preference model, that produces a
numerical score for each object or label. The alternative is to compare pairs of objects,
that is, to learn a binary preference relation. The assumption here is that for deriving a
total order, it suffices to be able to predict which one of each pair of objects or labels is
preferable. While this approach sounds logical, it is complicated by the fact that preference
predicates learned from data are typically not transitive and consequently do not induce a
natural total order.

Out of the resulting four groups of problem categories (each combination of the two
learning tasks and two modeling approaches), three have already been addressed in the
literature, while the fourth is the subject of this paper. More specifically, the learning sce-
nario that we will consider in this paper consists of a collection of training examples which
are associated with a finite set of decision alternatives. Following the common notation of
supervised learning, we shall refer to the latter as labels. However, contrary to standard
classification, a training example is not assigned a single label, but a set of pairwise prefer-
ences between labels (which neither has to be complete nor entirely consistent), each one
expressing that one label is preferred over another. The goal is to use pairwise preferences
from training examples for predicting a total order, a ranking, of all possible labels for a new
training example. The ranking by pairwise comparison (RPC) algorithm, that we introduce
and investigate in this paper, has a modular structure works in two phases. First, pairwise
preferences are learned from suitable training data, using a natural extension of so-called
pairwise classification. Then, a ranking is derived from a set of such preferences by means
of a ranking procedure.

The remainder of the paper is organized as follows. Section 2 gives a more thorough
introduction to preference learning and a systematic overview of learning problems and

2

existing approaches in this field. Our learning algorithm (RPC) is described in detail
in Section 3. Formal properties of RPC, including complexity and optimality issues, are
discussed in Section 4. Finally, Section 5 is devoted to an experimental evaluation of RPC
and a comparison with an alternative approach applicable to the same learning problem.
Parts of this paper are based on (Fürnkranz and Hüllermeier, 2003; 2005; Hüllermeier and
Fürnkranz, 2004a).

1.1 Notation

A binary relation R on a set A of objects (alternatives) is a subset of A×A. For a, b ∈ A,
R(a, b) means that a is related to b, i.e., the tuple (a, b) belongs to the relation R. In
agreement with our preference semantics, we shall also write a � b which is interpreted as
“alternative a is at least as good as alternative b”. A weak preference relation � induces a
strict preference relation � and an indifference relation ∼ as follows: a � b iff (a � b) and
(b 6� a); moreover, a ∼ b iff (a � b) and (b � a).

A relation � is reflexive if a � a for all a ∈ A, irreflexive if a 6� a for all a, total if a � b
or b � a for all a 6= b, antisymmetric if a � b and b � a implies a = b, transitive if a � b
and b � c implies a � c for all a, b, c ∈ A.

A relation R is a total strict order (ranking) if it is total, irreflexive and transitive (and
hence antisymmetric). Typically, we will use the symbol � to denote a ranking. If A is
a finite set {a1 . . . am}, a ranking can be identified with a permutation τ of {1 . . .m}. In
fact, given a ranking � on A, there is a unique permutation τ such that ai � aj if and
only if τ(i) < τ(j) (τ(i) is the position of ai in the ranking). We shall denote the class of
all permutations of {1 . . .m} by Sm. Moreover, by abuse of notation, we shall sometimes
employ the terms “ranking” and “permutation” synonymously.

We use the symbol R for the set of real numbers, and P(·) for probabilities.

2. Learning from Preferences

In this section, we will motivate preference learning as a theoretically interesting and prac-
tically relevant subfield of machine learning. One can distinguish two types of preference
learning problems, namely learning from object preferences and learning from label prefer-
ences, as well as two different approaches for modeling the preferences, namely by evaluating
individual alternatives, or by comparing (pairs of) competing alternatives. All four combi-
nations of these possibilities are possible (cf. Table 1). In this section, we shall discuss these
options and show that our approach, label ranking by pairwise comparison, is still missing
in the literature and hence a novel contribution.

Before discussing these four settings in more detail, let us note that the term “preference”
should not be taken literally and instead always be interpreted in a wide sense as a kind of
order relation. Thus, a � b can indeed mean that alternative a is more liked by a person
than b, but also that a is an algorithm that outperforms b on a certain problem, that a is
an event that is more probable than b, that a is a student finishing her studies before b, etc.

3

modeling modeling
utility functions pairwise preferences

object ranking comparison training learning to order things
(Tesauro, 1989) (Cohen et al., 1999)

label ranking constraint classification this work
(Har-Peled et al., 2002) (Fürnkranz and Hüllermeier, 2003)

Table 1: Four different approaches to learning from preference information together with
representative references

Given:

• a (potentially infinite) set X of objects
(each object typically represented by a feature vector)

• a finite set of pairwise preferences xi � xj , (xi, xj) ∈ X × X

Find:

• a ranking function r(·) that returns a permutation (ranking) of each set of objects
O ⊆ X

Figure 1: Learning from object preferences

2.1 Learning from Object Preferences

The most frequently studied problem in learning from preferences is to induce a ranking
function r(·) that is able to order any subset O of an underlying class X of objects. That
is, r(·) assumes as input a subset O = {x1 . . . xn} ⊆ X of objects and returns as output
a permutation τ of {1 . . . n}. The interpretation of this permutation is that object xi is
preferred to xj whenever τ(i) < τ(j). The objects themselves (e.g. websites) are typically
characterized by a finite set of features as in conventional attribute-value learning. The
training data consists of a set of exemplary pairwise preferences. This scenario, summarized
in Figure 1, is also known as “learning to order things” (Cohen et al., 1999).

As an example consider the problem of learning to rank query results of a search engine
(Joachims, 2002; Radlinski and Joachims, 2005). The training information is provided
implicitly by the user who clicks on some of the links in the query result and not on others.
This information can be turned into binary preferences by assuming that the selected pages
are preferred over nearby pages that are not clicked on (Joachims et al., 2005).

4

Given:

• a set of training instances {xk | k = 1 . . . n} ⊆ X
(each instance typically represented by a feature vector)

• a set of labels L = {λi | i = 1 . . .m}

• for each training instance xk: a set of pairwise preferences of the form
λi �xk

λj

Find:

• a ranking function that maps any x ∈ X to a ranking �x of L (permutation τx ∈ Sm)

Figure 2: Learning from label preferences

2.2 Learning from Label Preferences

In this learning scenario, the problem is to predict, for any instance x (e.g., a person) from
an instance space X , a preference relation �x⊆ L × L among a finite set L = {λ1 . . . λm}
of labels or alternatives, where λi �x λj means that instance x prefers the label λi to
the label λj . More specifically, as we are especially interested in the case where �x is a
total strict order, the problem is to predict a permutation of L. The training information
consists of a set of instances for which (partial) knowledge about the associated preference
relation is available (cf. Figure 2). More precisely, each training instance x is associated
with a subset of all pairwise preferences. Thus, even though we assume the existence of an
underlying (“true”) ranking, we do not expect the training data to provide full information
about that ranking. Besides, in order to increase the practical usefulness of the approach,
we even allow for inconsistencies, such as pairwise preferences which are conflicting due to
observation errors.

It has been observed by several authors (Har-Peled et al., 2002; Fürnkranz and Hüllermeier,
2003; Dekel et al., 2004) that the above setting may be viewed as a generalization of sev-
eral standard learning settings. In particular, the following problems are special cases of
learning label preferences:

• Classification: A single class label λi is assigned to each example xk. This implicitly
defines the set of preferences {λi �xk

λj | 1 ≤ j 6= i ≤ m}.

• Multi-label classification: Each training example xk is associated with a subset Lk ⊆ L
of possible labels. This implicitly defines the set of preferences
{λi �xk

λj |λi ∈ Lk, λj ∈ L \ Lk}.

• Ranking: Each training example xk is associated with a ranking (total strict order)
of the labels.

5

In each of the former scenarios, a ranking model f : X → Sm is learned from a subset
of all possible pairwise preferences. A suitable projection may be applied to the ranking
model (which outputs permutations) as a postprocessing step, for example a projection to
the top-rank in classification learning where only this label is relevant.

As in the case of object ranking, the learning scenario introduced in this section has
a large number of practical applications. To illustrate, consider the problem of tailoring
the order of questions in a questionnaire to the characteristics of a particular respondent,
with the motivation to to maximize his motivation to complete the questionnaire. Another
example is learning to predict the best order in which to supply a certain set of stores (i.e.,
the route of a truck), depending on external conditions like, e.g., traffic, weather, purchase
order quantities (which define the features of the instance). A challenging learning scenario,
which is also included in the empirical evaluation study, originates from the bioinformatics
field where structured data can frequently be found. In the empirical part, we investigate
the task of predicting a “qualitative” representation of a gene expression profile as measured
by microarray analysis from phylogenetic profile features (Balasubramaniyan et al., 2005).
Yet another application scenario is meta-learning, where the task is to rank learning algo-
rithms according to their suitability for a new dataset, based on the characteristics of this
dataset (Brazdil et al., 2003). Finally, every preference statement in the well-known CP-nets
approach Boutilier et al. (2004), a qualitative graphical representation that reflects condi-
tional dependence and independence of preferences under a ceteris paribus interpretation,
formally corresponds to a label ranking.

2.3 Learning Utility Functions

As mentioned above, one natural way to represent preferences is to evaluate individual
alternatives by means of a (real-valued) utility function. In the object preferences scenario,
such a function is a mapping f : X → R that assigns a utility degree f(x) to each object
x and, hence, induces a complete order on X . In the label preferences scenario, a utility
function fi : X → R is needed for each of the labels λi, i = 1 . . .m. Here, fi(x) is the
utility assigned to alternative λi by instance x. To obtain a ranking for x, the alternatives
are ordered according to these utility scores, i.e., λi �x λj ⇔ fi(x) ≥ fj(x).

If the training data would offer the utility scores directly, preference learning would
reduce to a standard regression problem (up to a monotonic transformation of the utility
values). This information can rarely be assumed, however. Instead, usually only constraints
derived from comparative preference information of the form “This object (or label) should
have a higher utility score than that object (or label)” are given. Thus, the challenge for the
learner is to find a function that is as much as possible in agreement with all constraints.

For object ranking approaches, this idea has first been formalized by Tesauro (1989)
under the name comparison training. He proposed a symmetric neural-network architecture
that can be trained with representations of two states and a training signal that indicates
which of the two states is preferable. The elegance of this approach comes from the property
that one can replace the two symmetric components of the network with a single network,
which can subsequently provide a real-valued evaluation of single states. Similarly, Haddawy
et al. (2003) use training data in the form of pairwise comparisons of objects to train a neural
network. The network learns a function that takes two objects as input and outputs either

6

0 or 1, depending on whether or not the first object is preferred to the second one. The
structure of the network is not arbitrary, but is chosen in a way that allows one to combine
domain knowledge about partial preferences between the feature-based state descriptions
of the objects. This work is based on an earlier approach by Wang (1994).

Similar ideas have also been investigated for training other types of classifiers, in par-
ticular support vector machines. We already mentioned Joachims (2002) who analyzed
“click-through data” in order to rank documents retrieved by a search engine according
to their relevance. Earlier, Herbrich et al. (1998) have proposed an algorithm for training
SVMs from pairwise preference relations between objects.

For the case of label ranking, a corresponding method for learning the functions fi(·), i =
1 . . .m, from training data has been proposed in the framework of constraint classification,
introduced as an extension of standard classification by Har-Peled et al. (2002; 2003). The
learning method proposed in this work constructs two training examples for each preference
λi � λj , where the original N -dimensional training examples are mapped into a (m ×
N)-dimensional space. The positive example copies the original training vector into the
components ((i−1)×N +1) . . . (i×N) and its negation into the components ((j−1)×N +
1) . . . (j ×N) of a vector in the new space. The remaining entries are filled with 0, and the
negative example has the same elements with reversed signs. In this (m×N)-dimensional
space, the learner tries to find a separating hyperplane. For classifying a new example e,
the labels are ordered according to the response resulting from multiplying e with the i-th
N -element section of the hyperplane vector.

Dekel et al. (2004) suggest a variation of boosting for learning a utility function in the
form of a linear combination of a set of pre-defined base functions. They show that the
resulting algorithm minimizes a generalized ranking error function that assumes a procedure
for decomposing a preference graph into subgraphs, and defines the generalized error as the
fraction of subgraphs that are misranked by the learned utility function.

2.4 Learning Preference Relations

It has already been noted that observed preferences are usually of the relational type, since
utility scores are difficult to elicit. For example, it is very hard to ensure a consistent scale
even if all utility evaluations are performed by the same user. Pyle (1999, p.16) claims that
it is easier for a human to determine an order between several items if one makes pairwise
comparisons between the individual items and then adds up the wins for each item, instead
of trying to order the items right away.2 The situation becomes even more problematic if
utility scores are elicited from different users, which may not have a uniform scale of their
scores (Cohen et al., 1999).

For the learning of preferences, one may bring up a similar argument. It will typically
be easier to learn a separate theory for each individual preference that compares two objects
or two labels and determines which one is better. This technique essentially reduces the
problem of learning preferences to a binary classification task. The learner is trained to
predict for each pair of objects/labels which one is preferable. Pyle (1999) proposes a very

2. The aspect of being able to rank the available classifications for each example (as an intermediate version
between predicting only a class value and providing a full probability distribution) is another interesting
aspect of round robin binarization, which might be worth exploring in more depth.

7

similar technique called pairwise ranking in order to facilitate human decision-making in
ranking problems. Of course, every learned utility function that assigns a score to a set of
labels L induces such a binary preference relation on these labels.

Note that the preference relation induced by a utility function is necessarily a total
order, whereas the converse is not true: not every learned binary preference relation induces
a total order that could be represented by a utility function. The point is that the learned
preference relation does not necessarily have the typical properties of order relations, for
example, it is not necessarily transitive. In fact, to obtain a ranking (total strict order) of
the items, one has to apply a ranking procedure that accepts a binary preference relation as
input and produces a ranking as output. The simplest approach is ranking by scoring : A
score, such as the number of pairwise comparisons in which an item is preferred, is derived
from the binary relation, and the items are then ordered according to their scores. For
alternative (more complex) combination schemes see e.g. (Wu et al., 2004; Hüllermeier and
Fürnkranz, 2004b).

For object ranking problems, the pairwise approach has been pursued in (Cohen et al.,
1999). The authors propose to solve object ranking problems by learning a binary preference
predicate Q(x, x′), which predicts whether x is preferred to x′ or vice versa. A final ordering
is found in a second phase by deriving a ranking that is maximally consistent with these
predictions.

For label ranking problems, the pairwise approach has been introduced by Fürnkranz
and Hüllermeier (2003). The key idea, to be described in more detail in Section 3, is to learn,
for each pair of labels (λi, λj), a binary predicate Mij(x) that predicts whether λi �x λj

or λj �x λi for an input x. In order to rank the labels for a new object, predictions for
all pairwise label preferences are obtained and a ranking that is maximally consistent with
these preferences is derived. This approach is a natural extension of pairwise classification,
i.e., the idea to solve a multi-class classification problem by learning separate theories for
each pair of classes.

3. Label Ranking by Learning Pairwise Preferences

We consider a formal setting which can be considered as an extension of the conventional
setting of classification learning. Roughly speaking, the former is obtained from the latter
through replacing single class labels by complete label rankings: Instead of associating
every instance x from an instance space X with one among a finite set of class labels
L = {λ1 . . . λm}, we now associate x with a complete ranking τ ∈ Sm over these labels.
More specifically, and again in analogy with the classification setting, every instance is
associated with a probability distribution over the class of rankings (permutations) Sm.3

That is, for every instance x, there exists a probability distribution P(· |x) such that, for
every τ ∈ Sm, P(τ |x) is the probability to observe the ranking τ as an output, given the
instance x as an input.

The key idea of pairwise learning is well-known in the context of classification (Fürnkranz,
2002), where it allows one to transform a multi-class classification problem, i.e., a problem
involving m > 2 classes L = {λ1 . . . λm}, into a number of binary problems. To this

3. As one consequence of this assumption, note that one can observe ‘clashes’ in the training data (different
label rankings for the same input).

8

end, a separate model (base learner) Mij is trained for each pair of labels (λi, λj) ∈ L,
1 ≤ i < j ≤ m; thus, a total number of m(m − 1)/2 models is needed. Mij is intended to
separate the objects with label λi from those having label λj , i.e., for any given example x,
the model decides whether λi �x λj or λj �x λi holds. Thus, Mij can be implemented as
a binary classifier that outputs 1 if λi �x λj and 0 if λj �x λi, i.e., which is intended to
learn the mapping

x 7→
{

1 if λi �x λj

0 if λj �x λi
. (1)

The model is trained with all examples xk for which either λi �xk
λj or λj �xk

λi is known.
Examples for which nothing is known about the preference between λi and λj are ignored.

At classification time, a given instance x is submitted to all models Mij and their
predictions are combined into an overall prediction. In the simplest case, each prediction
Mij(x) is interpreted as a vote for a label. If Mij(x) = 1, this is counted as a vote for
λi. Conversely, the prediction Mij(x) = 0 would be considered as a vote for λj . The label
with the highest number of votes is proposed as a prediction. Ties can be broken in favor
or prevalent classes, i.e., according to the class distribution in the classification setting.

Pairwise classification has been tried in the areas of statistics (Bradley and Terry, 1952;
Friedman, 1996), neural networks (Knerr et al., 1990; 1992; Price et al., 1995; Lu and
Ito, 1999), support vector machines (Schmidt and Gish, 1996; Hastie and Tibshirani, 1998;
Kreßel, 1999; Hsu and Lin, 2002), and others. Typically, the technique learns more accurate
theories than the more commonly used one-against-all classification method, which learns
one theory for each class, using the examples of this class as positive examples and all
others as negative examples.4 Surprisingly, it can be shown that pairwise classification is
also computationally more efficient than one-against-all class binarization (cf. Section 4.1).

The above procedure can be extended to the case of preference learning in a natural way
(Fürnkranz and Hüllermeier, 2003). Again, a preference information of the form λi �x λj

is turned into a training example (x, y) for the learner Mab, where a = min(i, j) and
b = max(i, j). Moreover, y = 1 if i < j and y = 0 otherwise. Figure 3 shows an illustration
of this problem for a hypothetical dataset with eight examples that are described with three
binary attributes (A1, A2, A3) and preferences among three labels (a, b, c).

The mapping (1) can be realized by any binary classifier. Alternatively, one might of
course employ a classifier that maps into the unit interval [0, 1] instead of {0, 1}. The
output of such a “soft” binary classifier can usually be interpreted as a probability or, more
generally, a kind of confidence in the classification: the closer the output of Mab to 1, the
stronger the preference λa �x λb is supported.

A preference learner composed of an ensemble of soft binary classifiers assigns a valued
preference relation Rx to every (query) instance x ∈ X :

Rx(λi, λj) =
{

Mij(x) if i < j
1−Mij(x) if i > j

(2)

for all λi 6= λj ∈ L. Given such a preference relation Rx for an instance x, the next question
is how to derive an associated ranking τx. As already discussed above, this question is non-
trivial, since a relation Rx does not always suggest a unique ranking in an unequivocal

4. Rifkin and Klautau (2004) have argued that, at least in the case of support vector machines, one-against-
all can be as effective provided that the binary base classifiers are carefully tuned.

9

Figure 3: Schematic illustration of a preference learning dataset (left) and its conversion
into pairwise binary datasets (right)

way. In fact, the problem of inducing a ranking from a (valued) preference relation has
received a lot of attention in several research fields, e.g., in fuzzy preference modeling and
(multi-attribute) decision making (Fodor and Roubens, 1994). In the context of pairwise
classification and preference learning, several studies have empirically compared different
ways of combining the predictions of individual classifiers (Wu et al., 2004; Allwein et al.,
2000; Hüllermeier and Fürnkranz, 2004b; Fürnkranz, 2003).

The perhaps most simple approach is to make use of a straightforward extension of
the aforementioned voting strategy for classification: The alternatives λi are evaluated by
means of the sum of (weighted) votes

S(λi) =
∑

λj 6=λi

Rx(λi, λj) (3)

and then ordered according to these evaluations, i.e.,

(λi � λj) ⇔ (S(λi) ≥ S(λj)). (4)

10

This is a particular type of “ranking by scoring” strategy, where the scoring function is
given by (3).5 Even though this ranking procedure may appear rather ad hoc at first
sight, we shall give a theoretical justification in Section 4.2, where it will be shown that
ordering the labels according to (3) minimizes a reasonable loss function on rankings. In
the experimental section, we shall also include a “binary” variant of RPC, called RPC-bin.
Here, the idea is to map the “soft” prediction Mij(x) of a learner to {0, 1} before scoring
the labels. In other words, the relation (2) is replaced by

Rx(λi, λj) =
{

1 if Mij(x) ≥ 0.5
0 if Mij(x) < 0.5

(5)

Even though (5) seems to come along with a loss of information, it turns out that this
transformation might be useful under certain conditions. The point is that (5) can be
considered as a kind of “reinforcement” of a prediction (e.g., it turns a 0.9 into a 1), which
might be reasonable if the original predictions are already reliable enough (i.e., in the case
of strong enough base learners); see (Hüllermeier and Fürnkranz, 2004b) for a detailed
discussion of this issue.

In summary, our approach, referred to as ranking by pairwise comparison (RPC), con-
sists of the following two steps:

• the derivation of a valued preference relation (2) by training an ensemble of (soft)
binary classifiers, and

• the subsequent ranking of labels, using a ranking procedure such as (3–4).

We like to emphasize the modularity of RPC thus defined as a particular advantage of
the approach. This modularity allows, for example, to adapt the ranking procedure in the
second step to the problem at hand. In fact, as will be seen in Section 4.2, this allows
to adjust RPC to minimize different loss functions on label rankings without the need for
re-training the pairwise classifiers.

4. Formal Analysis

In this section, we will discuss several properties of RPC, starting with its computational
complexity (Section 4.1). In Section 4.2, we will demonstrate that the same ensemble
of pairwise classifiers can be used to minimize different ranking loss functions, including
Spearman rank correlation and Kendall’s tau. In Section 4.3, we discuss the relation of RPC
to voting theory. Finally, Section 4.4 addresses limitations and potential improvements of
the approach.

4.1 Complexity

As noted above, ranking by pairwise comparison is a straightforward generalization of pair-
wise aka one-against-one or round robin classification. In previous work, Fürnkranz (2002)

5. Strictly speaking, (3) does not necessarily define a ranking, as it does not exclude the case of indifference
between labels. In such cases, a ranking can be enforced by any tie braking strategy.

11

analyzed the computational complexity of this approach and showed that, despite its com-
plexity being quadratic in the number of classes, the algorithm is no slower than the conven-
tional one-against-all technique. To understand this result, note that each training example
is used m times (namely in each of the m binary problems) in the one-against-all case but
only m − 1 times in round robin (namely in those binary problems where its own class is
paired with one of the other m − 1 classes). Furthermore, the advantage of pairwise clas-
sification increases for computationally expensive (super-linear) learning algorithms. The
reason is that expensive learning algorithms learn many small problems much faster than
a few large problems. For details we refer to (Fürnkranz, 2002).

In this section, we will generalize these results for preference learning. In particular, we
will show that this approach can be expected to be computationally more efficient than the
approach of Har-Peled et al. (2002), which transforms the preference learning problem into
a binary classification problem in a higher-dimensional space.

First, we will bound the number of training examples used by the pairwise approach.
Recall that |Pk| is the number of preferences that are associated with example xk. We define
d as the maximum of these values.

Theorem 1 The total number of training examples constructed by RPC is bounded by nd,
which is in turn bounded by nm(m− 1)/2, i.e.,

n∑
k=1

|Pk| ≤ nd ≤ n
m(m− 1)

2

Proof: Each of the n training examples will be added to all |Pk| binary training sets
that correspond to one of its preferences. Thus, the total number of training examples
is

∑n
k=1 |Pk|. As the number of preferences for each example is bounded from above by

d = maxk |Pk|, this number is no larger than dn, which in turn is bounded from above by
the size of a complete set of preferences nm(m− 1)/2. �

For the particular case of classification, the above result can be specialized, as has been
shown by Fürnkranz (2002):

Theorem 2 For a classification problem, the total number of training examples is only
linear in the number of classes.

Proof: A single class label expands to m − 1 preferences, because it is preferred over all
other class labels. Therefore,

∑n
k=1 |Pk| = (m− 1)n. �

For comparison, the constraint classification approach of Har-Peled et al. (2002; 2003)
converts each example into a set of examples, one positive and one negative example for each
preference. Therefore, the original training data is transformed into a set of 2

∑n
k=1 |Pk|

examples, which means that constraint classification constructs twice as many training
examples as RPC.

Also note that the newly constructed examples are projected into a space that has m
times as many attributes as the original space. However, Har-Peled et al. (2002; 2003) also
note that when perceptrons are used as the base classifier, the algorithm can be implemented

12

more efficiently in the form of a multi-output perceptron that is trained on each individual
preference, quite similar to the approach of Crammer and Singer (2003a).

So far, we only considered the number of training examples, but not the complexity of
the learner that runs on these examples. For an algorithm with a linear run-time complexity
O(n) it follows immediately that the total run-time is O(dn), where d is the maximum (or
average) number of preferences given for each training example.

Theorem 3 For a base learner with complexity O(na), the total complexity of RPC is
O(m2na).

Proof: RPC constructs one learning problem for each of the m(m − 1)/2 possible pref-
erences. In the worst case (a complete preference set), each problem may contain all n
training examples, and the complexity for learning each problem is O(na). Thus, the total
complexity is (m(m− 1)/2)O(na) = O(m2na). �

As discussed above, however, this bound is not tight. For example, one can show that
for pairwise classification, the complexity is only linear in the number of classes O(mna)
(Fürnkranz, 2002).

Theorem 4 For a base learner with complexity O(na), the total complexity of constraint
classification is O(m2ana).

Proof: Constraint classification constructs a single learning problem with, in the worst
case, 2nm(m− 1)/2 = O(m2n) training examples. If this problem is solved with a learner
of complexity O(na), the total complexity is O(m2n)a = O(m2ana). �

In summary, the overall complexity of pairwise constraint classification depends on the
(maximum or average) number of preferences that are given for each training example.
While being quadratic in the number of labels if a complete ranking is given, it is only
linear for the classification setting. In any case, it is no more expensive than the technique
proposed by Har-Peled et al. (2002), and can be considerably cheaper if the complexity of
the base learner is super-linear (i.e., a > 1).

However, it should be noted that a possible disadvantage is the large number of classifiers
that have to be stored. In principle, pairwise classification is more expensive than alternative
approaches at classification time, because it has to query a quadratic number of classifiers,
whereas one-against-all approaches or the multi-output perceptron advocated by Har-Peled
et al. (2002; 2003) only need to compute a linear number of outputs. However, as binary
classifiers resulting from RPC are constructed from fewer training examples and hence are
typically less complex, it is possible to reduce the computational complexity at query time
for certain base classifiers (such as support vector machines) with smart bookkeeping such
that RPC is actually more efficient that one-against-all (Platt, 1999).

4.2 Risk Minimization

Even though the approach to pairwise ranking as outlined in Section 3 appears intuitively
appealing, one might argue that it lacks a solid foundation and remains ad-hoc to some
extent. For example, one might easily think of ranking procedures other than (3), leading

13

to different predictions. In any case, one might wonder whether the rankings predicted on
the basis of (2) and (3) do have any kind of optimality property. An affirmative answer to
this question will be given in this section.

4.2.1 Preliminaries

The quality of a model M (induced by a learning algorithm) is commonly measured in
terms of its expected loss or risk

E (D(y,M(x))) , (6)

where D(·) is a loss or distance function, M(x) denotes the prediction made by the model
for the instance x, and y is the true outcome. The expectation E is taken over X ×Y, where
Y is the output space (e.g., the set L of classes in classification).6

4.2.2 Spearman rank correlation

An important and frequently applied similarity measure for rankings is the Spearman rank
correlation. It was originally proposed as a nonparametric rank statistic by Spearman
(1904) to measure the strength of the associations between two variables (Lehmann and
D’Abrera, 1998). Formally, it is defined as follows:

1− 6D(τ, τ ′)
m(m2 − 1)

(7)

which is a linear transformation (normalization) of the sum of squared rank distances

D(τ ′, τ) df=
m∑

i=1

(
τ ′(i)− τ(i)

)2 (8)

to the interval [−1, 1]. As will now be shown, RPC is a risk minimizer with respect to (8)
(and hence Spearman rank correlation) as a distance measure under the condition that the
binary models Mij provide correct probability estimates, i.e.,

Rx(λi, λj) = Mij(x) = P(λi �x λj). (9)

That is, if (9) holds, then RPC yields a risk minimizing prediction

τ̂x = arg min
τ∈Sm

∑
τ ′∈Sm

D(τ, τ ′) · P(τ ′ |x) (10)

if D(·) is given by (8). Admittedly, (9) is a relatively strong assumption, as it requires
the pairwise preference probabilities to be perfectly learnable. Yet, the result (10) sheds
light on the aggregation properties of our technique under ideal conditions and provides a
valuable basis for further analysis. In fact, recalling that RPC consists of two steps, namely
pairwise learning and ranking, it is clear that in order to study properties of the latter,
some assumptions about the result of the former step have to be made. And even though

6. The existence of a probability measure over X × Y must of course be assumed.

14

(9) might at best hold approximately in practice, it seems to be at least as natural as any
other assumption about the output of the ensemble of pairwise learners.7

Lemma 1 Let si, i = 1 . . .m, be real numbers such that 0 ≤ s1 ≤ s2 . . . ≤ sm. Then, for
all permutations τ ∈ Sm,

m∑
i=1

(i− si)2 ≤
m∑

i=1

(i− sτ(i))
2 (11)

Proof: We have

m∑
i=1

(i− sτ(i))
2 =

m∑
i=1

(i− si + si − sτ(i))
2

=
m∑

i=1

(i− si)2 + 2
m∑

i=1

(i− si)(si − sτ(i)) +
m∑

i=1

(si − sτ(i))
2.

Expanding the last equation and exploiting that
∑m

i=1 s2
i =

∑m
i=1 s2

τ(i) yields

m∑
i=1

(i− sτ(i))
2 =

m∑
i=1

(i− si)2 + 2
m∑

i=1

i si − 2
m∑

i=1

i sτ(i).

On the right-hand side of the last equation, only the last term
∑m

i=1 i sτ(i) depends on τ .
This term is maximal for τ(i) = i, because si ≤ sj for i < j, and therefore maxi=1...m msi =
msm, maxi=1...m−1(m − 1)si = (m − 1)sm−1, etc. Thus, the difference of the two sums
is always positive, and the right-hand side is larger than or equal to

∑m
i=1(i − si)2, which

proves the lemma. �

Lemma 2 Let P(· |x) be a probability distribution over Sm. Moreover, let

si
df= m−

∑
j 6=i

P(λi �x λj) (12)

with
P(λi �x λj) =

∑
τ : τ(i)<τ(j)

P(τ |x). (13)

Then, si =
∑

j 6=i P(τ |x) τ(i).

7. Besides, note that so far the exact complexity of computing a Spearman-optimal aggregation for a set
of rankings has been an open research problem (Dwork et al., 2001) and is now being solved as a special
case of the result to be presented in this section. More precisely, the previously best-known technique
for solving this aggregation problem is based on finding a minimum cost perfect matching in a bipartite
graph (Dwork et al., 2001), which requires computational time of order O(m3) (Ball and Derigs, 1983).

15

Proof: We have

si = m−
∑
j 6=i

P(λi �x λj)

= 1 +
∑
j 6=i

(1− P(λi �x λj))

= 1 +
∑
j 6=i

P(λj �x λi)

= 1 +
∑
j 6=i

∑
τ : τ(j)<τ(i)

P(τ |x)

= 1 +
∑

τ

P(τ |x)
∑
j 6=i

{
1 if τ(i) > τ(j)
0 if τ(i) < τ(j)

= 1 +
∑

τ

P(τ |x)(τ(i)− 1)

=
∑

τ

P(τ |x) τ(i)

�

Note that si ≤ sj is equivalent to S(λi) ≥ S(λj) (as defined in (3)) under the assumption
(9). Thus, ranking the alternatives according to S(λi) (in decreasing order) is equivalent to
ranking them according to si (in increasing order).

Theorem 5 The expected distance

E(D(τ ′, τ) | x) =
∑

τ

P(τ | x) ·D(τ ′, τ) =
∑

τ

P(τ | x)
m∑

i=1

(τ ′(i)− τ(i))2

becomes minimal by choosing τ ′ such that τ ′(i) ≤ τ ′(j) whenever si ≤ sj, with si given by
(12).

16

Proof: We have

E(D(τ ′, τ) | x) =
∑

τ

P(τ | x)
m∑

i=1

(τ ′(i)− τ(i))2

=
m∑

i=1

∑
τ

P(τ | x)(τ ′(i)− τ(i))2

=
m∑

i=1

∑
τ

P(τ | x)(τ ′(i)− si + si − τ(i))2

=
m∑

i=1

∑
τ

P(τ | x)
[
(τ(i)− si)2 − 2(τ(i)− si)(si − τ ′(i))

+(si − τ ′(i))2
]

=
m∑

i=1

[∑
τ

P(τ | x)(τ(i)− si)2 − 2(si − τ ′(i)) ·

·
∑

τ

P(τ | x)(τ(i)− si) +
∑

τ

P(τ | x)(si − τ ′(i))2
]

In the last equation, the mid-term on the right-hand side becomes 0 according to Lemma 2.
Moreover, the last term obviously simplifies to (si − τ ′(i)), and the first term is a constant
c =

∑
τ P(τ | x)(τ(i)− si)2 that does not depend on τ ′. Thus, we obtain E(D(τ ′, τ) | x) =

c +
∑m

i=1(si − τ ′(i))2 and the theorem follows from Lemma 1. �

4.2.3 Kendall’s tau

The above result shows that our approach to label ranking in the form presented in Section
3 is particularly tailored to (8) as a loss function. We like to point out, however, that
RPC is not restricted to this measure but can also minimize other loss functions.8 As
mentioned previously, this can be accomplished by replacing the ranking procedure in the
second step of RPC in a suitable way. To illustrate, consider the well-known Kendall tau
measure Kendall (1955) as an alternative loss function. This measure essentially calculates
the number of pairwise rank inversions on labels to measure the ordinal correlation of two
rankings; more formally, with

D(τ ′, τ) df= #{(i, j) | i < j, τ(i) > τ(j) ∧ τ ′(i) < τ ′(j)} (14)

denoting the number of discordant pairs of items (labels), the Kendall tau coefficient is
given by 1 − 4D(τ ′, τ)/(m(m − 1)), that is, by a linear scaling of D(τ ′, τ) to the interval
[−1,+1].

8. Even though it is true that not every loss function can be minimized, as will be shown in Section 4.4.2.

17

Now, for every ranking τ ′,

E(D(τ ′, τ) | x) =
∑

τ∈Sm

P(τ)×D(τ ′, τ) (15)

=
∑

τ∈Sm

P(τ | x)×
∑

i<j | τ ′(i)<τ ′(j)

{
1 if τ(i) > τ(j)
0 if τ(i) < τ(j)

=
∑

i<j | τ ′(i)<τ ′(j)

∑
τ∈Sm

P(τ | x)×
{

1 if τ(i) > τ(j)
0 if τ(i) < τ(j)

=
∑

i<j | τ ′(i)<τ ′(j)

P(λi �x λj)

Thus, knowing the pairwise probabilities P(λi �x λj) is again enough to derive the expected
loss for every ranking τ ′. In other words, RPC can also make predictions which are optimal
for (14) as an underlying loss function. To this end, only the ranking procedure has to be
adapted while the same pairwise probabilities (predictions of the pairwise learners) can be
used.

Finding the ranking that minimizes (15) is formally equivalent to solving the graph-
theoretical feedback arc set problem (for weighted tournaments) which is known to be NP
complete Alon (2000). Of course, in the context of label ranking, this result should be
put into perspective, because the set of class labels is typically of small to moderate size.
Nevertheless, from a computational point of view, the ranking procedure that minimizes
Kendall’s tau is definitely more complex than the procedure for minimizing Spearman’s
rank correlation.

4.3 Connections with Voting Theory

It is worth mentioning that RPC is closely related to the so-called Borda-count, a voting
rule that is well-known in social choice theory (Brams and Fishburn, 2002): Suppose that
the preferences of n voters are expressed in terms of rankings τ1, τ2 . . . τn of m alternatives.
From a ranking τi, the following scores are derived for the alternatives: The best alternative
receives m − 1 points, the second best m − 2 points, and so on. The overall score of an
alternative is the sum of points that it has received from all voters, and a representative
ranking τ̂ (aggregation of the single voters’ rankings) is obtained by ordering the alternatives
according to these scores.

Now, it is readily verified that the result obtained by this procedure corresponds exactly
to the result of RPC if the probability distribution over the class Sm of rankings is defined
by the corresponding relative frequencies. In other words, the ranking τ̂ obtained by RPC
minimizes the sum of all distances:

τ̂ = arg min
τ∈Sm

n∑
i=1

D(τ, τi). (16)

In connection with social choice theory it is also interesting to note that RPC does not
satisfy the so-called Condorcet criterion: As the pairwise preferences in our above example
show, it is thoroughly possible that an alternative (in this case λ1) is preferred in all pairwise

18

comparisons (R(λ1, λ2) > .5 and R(λ1, λ3) > .5) without being the overall winner of the
election (top-label in the ranking). Of course, this apparently paradoxical property is not
only relevant for ranking but also for classification. In this context, it has already been
recognized by Hastie and Tibshirani (1998).

A distance (similarity) measure for rankings, which plays an important role in voting
theory, is the aforementioned Kendall tau. When using the number of discordant pairs
(14) as a distance measure D(·) in (16), τ̂ is also called the Kemeny-optimal ranking.
Kendall’s tau is intuitively quite appealing and Kemeny-optimal rankings have several nice
properties. However, one drawback of using Kendall’ tau instead of rank correlation as a
distance measure in (16) is a loss of computational efficiency. In fact, the computation of
Kemeny-optimal rankings is known to be NP-hard (Bartholdi et al., 1989).

4.4 Properties and Consequences of Pairwise Decomposition

Our pairwise learning scheme, in the basic version presented so far, decomposes preference
information into pairwise relations in a first step. Intuitively, this decomposition should
come along with a certain loss of information. Besides, one may wonder whether learning
pairwise preferences independently of each other may perhaps neglect certain interdepen-
dencies between such preferences. This section is meant to briefly touch on corresponding
limitations and potential improvements of our approach to learning by pairwise comparison.

4.4.1 Interdependencies between Pairwise Models

Regarding potential interdependencies between pairwise preferences, an obvious candidate
is transitivity, which is one of the most important properties in preference modeling. Indeed,
the pairwise preferences induced by a single ranking are obviously transitive. What is less
clear, however, is whether this property is preserved when “merging” different rankings in
a probabilistic way.

In fact, recall that every instance x ∈ X is associated with a probability distribution over
Sm. Such a distribution induces a unique probability distribution for pairwise preferences
via

pij = P(λi � λj) =
∑

τ∈Sm : τ(i)<τ(j)

P(τ). (17)

An interesting finding is that the pairwise preferences (17) do indeed satisfy a form of
transitivity, albeit a relatively weak one:

∀ i, j, k ∈ {1 . . .m} : pik ≥ pij + pjk − 1 (18)

More formally, we can prove the following theorem.

Theorem 6 Consider any probability distribution on the set of rankings Sm. The pairwise
preferences induced by this distribution via (17) satisfy (18).

Proof: Consider any three labels λi, λj , λk. Obviously, there is no need to distinguish the
rankings which put these labels in the same order. Thus, we can partition Sm into six

19

equivalence classes Sijk, Sikj . . . Skij , where Sijk = {τ ∈ Sm | τ(i) < τ(j) < τ(k)} and the
other classes are defined analogously. Let

qijk
df= P(Sijk) =

∑
τ∈Sm : τ(i)<τ(j)<τ(k)

P(τ)

and q = (qijk, qikj , qjik, qjki, qkij , qkji)> ∈ [0, 1]6.
Now, consider probabilities p = (pij , pjk, pik)> for the pairwise probabilities (17). Find-

ing a distribution on rankings which induces these probabilities obviously comes down to
solving a system of linear equations of the form A×q = p, where A is a matrix of dimension
3× 6 with 0/1 entries, and

qijk + qikj + qjik + qjki + qkij + qkji = 1.

The set of solutions to this problem can be expressed as

qijk

qikj

qjik

qjki

qkij

qkji

 =



pij + pjk − 1 + v
1− pjk − u− v
pik − pij + u

1− pik − u− v
u
v


where u, v ∈ [0, 1]. Additionally, the components of q must be non-negative. If this is
satisfied for u = v = 0, then pik ≥ pij (fourth entry) and (18) holds. In the case where
non-negativity is violated, either pij + pjk < 1 or pik < pij . In the second case, u must be
increased to (at least) pij − pik, and one obtains the solution vector

(pij + pjk − 1, 1 + pik − (pij + pjk), 0, 1− pij , pij − pik, 0)>

which is non-negative if and only if pik ≥ pij +pjk−1. In the first case, v must be increased
to (at least) 1− (pij + pjk), and one obtains the solution vector

(0, pij , pik − pij , pij + pjk − pik, 0, 1− (pij + pjk))
>

which is non-negative if and only if pik ≤ pij + pjk. This latter inequality is equivalent to
pkj ≥ pkj + pji − 1, where pkj = 1 − pjk, so the transitivity property (18) now holds for
the reciprocal probabilities. In a similar way one verifies that (18) must hold in the case
where both pij +pjk < 1 and pik < pij . In summary, a probability distribution on Sm which
induces the probabilities pij , pjk, pik exists if and only if these probabilities satisfy (18). �

It is interesting to note that (18) is a special type of >-transitivity. A so-called t-norm
is a generalized logical conjunction, namely a binary operator > : [0, 1]2 → [0, 1] which
is associative, commutative, monotone, and satisfies >(0, x) = 0, >(1, x) = x for all x.
Operators of that kind have been introduced in the context of probabilistic metric spaces
(Schweizer and Sklar, 1983) and have been studied intensively in fuzzy set theory in recent
years (Klement et al., 2002). A binary relation R ⊂ A × A is called >-transitive if it

20

satisfies R(a, c) ≥ >(R(a, b),R(b, c)) for all a, b, c ∈ A. Therefore, what the condition (18)
expresses is just >-transitivity with respect to the Lukasiewicz t-norm which is defined by
>(x, y) = max(x + y − 1, 0).

The above result has shown that, roughly speaking, if pij and pjk are large, then pik

must not be too small, and vice versa, if pij and pjk are small, then pik must not be too
large; more precisely,

pij + pjk − 1 ≤ pik ≤ pij + pjk. (19)

These constraints are relatively weak. In particular, only one of the two constraints can
really grab, since the left one becomes trivial if pij+pjk ≤ 1 and the right one if pij+pjk ≥ 1.
Nevertheless, the predictions obtained by an ensemble of pairwise learners should actually
satisfy (19). In other words, training the learners independently of each other is indeed
not fully legitimate. Fortunately, our experience so far has shown that the probability to
violate (19) is not very high. Still, forcing (19) to hold is a potential point of improvement,
and there seem to exist different approaches in which this could be done. A simple idea, for
example, it to replace the original ensemble of pairwise predictions by its>-transitive closure
Naessens et al. (2002), where > is the aforementioned Lukasiewicz t-norm. Elaborating
on ideas of that kind in more detail is an important topic of future work.

4.4.2 Inherent Loss of Information

Even if complete rankings are available for training, the principle of pairwise learning dic-
tates to split these rankings into pairwise preferences, which are then submitted to the
base learners Mij . Correspondingly, a probability measure over complete rankings (the
output space in the label ranking problem) is replaced by pairwise probabilities of the form
P(λi � λj) according to (17). As already mentioned before, this decomposition may come
along with a certain loss of information. Indeed, note that the transformation (17) is ir-
reversible: Given the probabilities P(λi � λj) for pairwise preferences, it is not possible
to recover the underlying distribution P(·) on Sm. To illustrate, consider the following
distributions P(· |x) 6= P′(· |x) for an instance x:

P(τ |x) =


1/2 if τ = (1 2 3 4)
1/2 if τ = (4 3 2 1)
0 otherwise

, P′(τ |x) =


1/2 if τ = (1 3 2 4)
1/2 if τ = (4 2 3 1)
0 otherwise

(20)

¿From both distributions, one derives the same probabilities P(λi �x λj) for pairwise pref-
erences:

Rx =


− 1/2 1/2 1/2

1/2 − 1/2 1/2
1/2 1/2 − 1/2
1/2 1/2 1/2 −


Consequently, RPC cannot distinguish between the original distributions on Sm. As one
consequence of this information loss, we note that RPC cannot minimize every loss function.
For example, consider the simple 0/1–loss which is commonly employed in classification:
D(y, ŷ) = 0 for y = ŷ and = 1 otherwise. If this loss function is used, the optimal (Bayes)
prediction for a specific instance x is obviously given by the most probable outcome y.
In the classification setting, for example, where Y = L, this estimate is the class with

21

maximum posterior probability P(λi |x). A straightforward generalization of this principle
to the ranking setting, where Y is the class of rankings over L, leads to the prediction

τ̂x ∈ arg max
τ∈Sm

P(τ |x), (21)

where P(τ |x) is the conditional probability of a ranking (permutation) given an instance x.
Obviously, (21) leads to different predictions for the two distributions P(· |x) and P′(· |x)
in (20), which means that a risk minimizing prediction cannot be delivered by RPC.

Even though the above example shows that pairwise decomposition surely causes a loss
of information, it is not obvious how bad this loss actually is, for example with respect
to risk minimization. The fact that the 0/1–loss cannot be minimized is indeed tolerable,
since this is definitely not a reasonable distance measure for rankings. The general question
which loss functions can be minimized by RPC and which cannot is still an open problem.

5. Empirical Evaluation

The experimental evaluation presented in this section compares the pairwise ranking (RPC)
with the constraint classification (CC) approach in terms of accuracy and computational
efficiency. We considered three different scenarios, which can be roughly categorized as
real-world, semi-synthetic, and synthetic, in order to provide a comprehensive analysis
under varying conditions. The real-world scenario includes bioinformatics datasets of quite
different complexity and is generally rather challenging. In order to generate the semi-
synthetic data, we replaced single class labels in a variety of standard multiclass benchmark
datasets with complete rankings. For the synthetic experimental data, we replicated a
setting proposed by Fürnkranz and Hüllermeier (2003) which operates in the context of
expected utility theory and allows us to control the complexity of the problem by means of
adjusting the input dimension and the label set size.

5.1 Experimental Data

5.1.1 Real-world Data

This scenario originates from the bioinformatics fields where ranking and multilabeled data,
respectively, can frequently be found. More precisely, our experiments considered two types
of genetic data, namely phylogenetic profiles and DNA microarray expression data for the
Yeast genome, consisting of 2465 genes.9 Every gene was represented by an associated
phylogenetic profile of length 24. Using these profiles as input features, we investigated
the task of predicting a “qualitative” representation of an expression profile: Actually,
the expression profile of a gene is a sequence of real-valued measurements, each of which
represents the expression level of that gene measured at a particular time point. Converting
the expression levels into ranks, i.e., ordering the time points (= labels) according to the
associated expression values and using the Spearman correlation as a similarity measure
between profiles was motivated in (Balasubramaniyan et al., 2005).10

We used data from five microarray experiments (spo, heat, dtt, cold, diau), giving rise
to five prediction problems all using the same input features but different target rankings.

9. This data is publicly available at http://www1.cs.columbia.edu/compbio/exp-phylo

10. This transformation can be motivated from both a biological as well as data analysis point of view.

22

dataset #examples #classes #features
iris 150 3 4
wine 178 3 13
glass 214 6 9
vowel 528 10 10
vehicle 846 4 18

Table 2: Dataset statistics

It is worth mentioning that these experiments involve different numbers of measurements,
ranging from 4 to 11.11 Since in our context, each measurement corresponds to a label,
we obtain ranking problems of quite different complexity. Besides, even though the origi-
nal measurements are real-valued, there are expression profiles containing ties which were
broken randomly. Each of the datasets was randomly split into a training and a test set
comprising 500 and 1965 instances, respectively. In compliance with (Balasubramaniyan
et al., 2005), we measured accuracy in terms of the Spearman rank correlation coefficient
(see Section 4.2).

5.1.2 Semi-Synthetic Data

In order to complement the former real-world scenario with problems originating from
several different domains, the following multiclass datasets from the UCI Repository of
machine learning databases (Blake and Merz, 1998) and the Statlog collection (Michie
et al., 1994) were included in the experimental evaluation: iris, wine, glass, vowel, vehicle
(a summary of dataset properties is given in Table 2). This collection describes a subset of
the datasets tested in a recent experimental study on multiclass support vector machines
(Hsu and Lin, 2002). Containing at least 2,000 examples, the remaining five datasets had
to be excluded due to computational efficiency issues.

For each of these datasets, a corresponding ranking dataset was generated in the fol-
lowing manner: We trained a naive Bayes classifier12 on the respective dataset. Then, for
each example all the labels present in the dataset were ordered with respect to decreasing
predicted class probabilities (in the case of ties, labels with lower indices are ranked first).
Thus, by substituting the single labels contained in the original multiclass datasets with
the complete rankings, we obtain the label ranking datasets required for our experiments.
The fundamental underlying learning problem may also be viewed as learning a qualitative
replication of the probability estimates of a naive Bayes classifier.

5.1.3 Synthetic Data

We replicated a setting proposed by Fürnkranz and Hüllermeier (2003) which operates in
the context of expected utility theory: An expected utility maximizing agent is given a set

11. We excluded three additional subproblems with more measurements due to the prohibitive computational
demands of the constraint classification approach.

12. We employed the implementation for naive Bayes classification on numerical datasets
(NaiveBayesSimple) contained in the Weka machine learning package (Witten and Frank, 2000).

23

{λ1, . . . , λm} of alternative actions to choose from. The agent faces a problem of decision
under uncertainty where alternative λi yields a utility value denoted by the matrix entry
Uij ∈ R if the world is in state ωj ∈ Ω = {ω1, . . . , ωN}. The probability of state ωj is
denoted by the jth component pj of the probability vector p = (p1, . . . , pN)> and therefore
the expected utility of alternative λi evaluates to

E(λi) =
N∑

j=1

pj Uij . (22)

Expected utility theory justifies (22) as a criterion for ordering actions, hence, giving rise
to a natural order over the set of alternative actions: We assume the set of alternatives to
be in decreasing order with respect to expected utility in the following. Let us assume the
probability vector p = (p1, . . . , pN)> to be the feature vector of a ranking example where
the number of alternatives c and the set of world states Ω are fixed and the m×N utility
matrix U has independently and uniformly distributed entries Uij ∈ [0, 1]. Then, for a given
probability vector p the above-defined decision-theoretic scenario gives rise to an order over
the set of alternative actions. Now, a set of d feature vectors are independently drawn
from a uniform distribution over {p ∈ RN | p1 + · · · + pN = 1, pi ≥ 0 for i = 1, . . . , N}
and assigned to the corresponding permutations in order to generate a ranking dataset.
Note that this setting corresponds to a noise-free scenario in the constraint classification
framework (with linear kernels) since for a given feature vector p an alternative way of
expressing the corresponding ranking is argsortλ1,...,λm

〈ū>i , p〉 (with ūi denoting the ith row
vector of U).

5.2 Experimental Setup

We used a kernelized version of the perceptron algorithm as the binary base learner in
all experiments. In order to obtain more robust binary classifiers, we averaged the weight
vectors generated by the kernel perceptron algorithm over 10 random permutations of the
given training sets. This technique has also been proposed for extending the Bayes-point ap-
proach to large-scale learning problems (Herbrich and Graepel, 2001) and can be viewed as
an approximate method to compute the center of the so-called version space13: The weight
vectors generated by the perceptron algorithm on random permutations of the training set
provide (pseudo) random samples from the version space and, thus, their average approx-
imates the center of mass of the convex version space. Moreover, in the case of pairwise
label ranking with soft voting, we adopted a common approach from the field of support
vector learning to convert real-valued scores (classification scores before thresholding) into
(pseudo-)probabilities using a logistic regression technique (Platt, 1999). Soft voting is
computationally much more expensive than binary voting since computing the probabilities
requires solving an optimization problem and makes use of an internal 3-fold cross-validation
procedure for robustness.

In the experiments, the actual true rankings τ ∈ Sm on the test sets were compared
to the corresponding predicted rankings τ ′ ∈ Sm. Recall that we denote by τ(i) and τ ′(i),

13. The version space is the set of all hypothesis consistent with a given training set.

24

respectively, the rank of a particular label λi in the given complete ranking. We computed
the average accuracy for each of the approaches with respect to the following standard
evaluation measures on complete rankings, that we already introduced in Section 4.2 and
recall here for convenience:
Spearman Rank Correlation calculates the sum of squared rank distances and is nor-
malized such that it evaluates to −1 for reversed and to +1 for identical rankings. Formally,
it is defined as follows:

(τ, τ ′) 7→ 1−
6

∑m
i=1(τ(i)− τ ′(i))2

m(m2 − 1)
. (23)

As shown in Section 4.2, RPC with ranking by weighted voting is particularly tailored to
this evaluation measure since it yields a risk minimizing prediction of the corresponding
loss function.

Kendall tau calculates the number of pairwise rank inversions on labels to measure the
ordinal correlation of two rankings (Kendall, 1955):

(τ, τ ′) 7→ 1−
4
∣∣{(i, j) | i < j, τ(i) < τ(j) ∧ τ ′(i) > τ ′(j)}

∣∣
m(m− 1)

. (24)

Recall from Section 4.2 that RPC can also be adjusted to Kendall tau as a loss function,
simply by changing the ranking procedure. For computational reasons, however, we did not
use this more complex procedure. Instead, we again resorted to the much more efficient
voting approach (3–4). Interestingly, the constraint classification approach is instead more
focused on the Kendall tau measure: Minimization of the 0/1-loss on the expanded set of
(binary) classification examples yields an implicit minimization of the empirical Kendall
tau statistic of the label ranking function on the training set. Thus, one may expect that
constraint classification is slightly privileged by the Kendall tau measure while RPC is
favored by Spearman rank correlation. One should also note, however, that all distance
(similarity) measures on rankings are of course more or less closely related. For example,
it has recently been shown in Coppersmith et al. (2006) that optimizing rank correlation
yields a 5-approximation to the ranking which is optimal for the Kendall measure.

Note that for both measures we consider a normalization such that a higher degree of
similarity results in a higher score. However, a straightforward transformation integrates
these measures into the common loss/risk-framework.

In order to conduct a fair experimental study, we performed model selection on the real-
world and semi-synthetic datasets with respect to the kernel parameters separately for each
of the approaches. Note that in compliance with related studies in classification learning,
the kernel parameters for pairwise ranking were selected in a global manner such that they
are the same for all binary classifiers. We considered linear kernels with a penalty param-
eter C ∈ {2−4, 2−3, . . . , 210}. For each choice of the penalty parameter C, we estimated
the generalization accuracy of the label ranking function with respect to the particular
measure considered in the given experiment by conducting 10-fold cross-validation on the
training set. Then, the label ranking function was trained on the whole training set using
the penalty parameter with the highest estimated accuracy. The actual generalization ac-
curacy with respect to the rank correlation and Kendall tau was estimated using the 10-fold

25

Real-world Setting (Yeast)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1 2 3 4 5

Sp
ea

rm
an

 R
an

k
C

or
re

la
tio

n

RPC (bin-vote) RPC (soft-vote) CC

(a) Rank Correlation

Real-world Setting (Yeast)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

1 2 3 4 5

K
en

da
ll

ta
u

RPC (bin-vote) RPC (soft-vote) CC

(b) Kendall Tau

Figure 4: Real-world Setting (Yeast)

approach iris wine glass vowel vehicle
RPC (bin-vote) 12.2 (1.0) 17.1 (1.0) 157.8 (1.0) 4977.2 (1.0) 1956.7 (1.0)
RPC (soft-vote) 45.5 (3.7) 64.0 (3.7) 498.5 (3.2) 14167.3 (2.8) 6201.0 (3.2)
CC 36.9 (3.0) 62.0 (3.6) 1756.8 (11.1) 281194.8 (56.5) 6799.1 (3.5)

Table 3: Overall experimental running times in seconds (normalized results are given in
brackets)

cross-validation technique again. Hence, the experimental setup consists of a nested two-
level architecture where 10-fold cross-validation forms an essential building block on each
level: The inner level estimation is necessary for selecting hyperparameters and the outer
estimation for measuring accuracy.

The synthetic data setting was incorporated into the experimental setup to conduct
controlled experiments under various training conditions. We varied both the number of
alternatives (m ∈ {5, 10, 15, 20}) with the number of training examples being fixed to n =
1000 and the number of training examples (n ∈ {100, 250, 500, 750, 1000}) with the number
of alternatives being fixed to m = 10. The number of test examples was fixed to 1000 in all
cases. For each of the configurations, we generated 10 different pairs of training and test
sets, each pair originating from a different randomly chosen utility matrix U . Moreover,
as linear pairwise decision boundaries are optimal in this setting (see Equation (22)) we
refrained from using a kernel parameter selection technique and employed a linear kernel
(with C = 1000) for the pairwise ranking and the constraint classification techniques in all
experiments.

26

Semi-Synthetic Setting

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

iris wine glass vowel vehicle

Sp
ea

rm
an

 R
an

k
C

or
re

la
tio

n

RPC (bin-vote) RPC (soft-vote) CC

(a) Rank Correlation

Semi-Synthetic Setting

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

iris wine glass vowel vehicle

K
en

da
ll

ta
u

RPC (bin-vote) RPC (soft-vote) CC

(b) Kendall Tau

Figure 5: Semi-Synthetic Setting

5.3 Experimental Results

5.3.1 Complete Preference Information

Real-world Data: The experimental results of the pairwise ranking approach (RPC) with
binary voting (bin-vote) and soft voting (soft-vote) in comparison to the constraint classi-
fication approach (CC) are depicted in Figure 4 (cf. also Tables 4 and 5 in the Appendix).
Except for one experimental configuration, the ranking by pairwise comparison with soft
voting always achieves the best accuracy. Moreover, there is no substantial difference be-
tween pairwise ranking with binary voting and the constraint classification approach. This
scenario forms a particularly challenging test bed (as indicated by the absolute level of ac-
curacy) and experimentally underpins a finding from (Hüllermeier and Fürnkranz, 2004a)
claiming that binary voting is expected to be superior to soft voting in the high accuracy
regime while the reverse holds for more challenging problems. As mentioned previously,
binary voting can be interpreted as a reinforcement of soft predictions which is a reasonable
technique if these predictions are sufficiently accurate.

Semi-Synthetic Data: Figure 5 shows experimental results of the pairwise ranking ap-
proach (RPC) with binary voting (bin-vote) and soft voting (soft-vote) in comparison to
the constraint classification approach (CC) (cf. also Tables 6 and 9 in the Appendix). More-
over, Table 3 shows overall running times (in seconds) for the considered approaches. As
indicated by the normalized experimental running times, the soft voting approach requires
additional computational time by an average factor of approximately 3.3 compared to its
binary voting counterpart in pairwise ranking (for converting output scores into probabil-
ities). The constraint classification approach becomes increasingly more inefficient with
respect to computational time with the number of possible labels growing. In particular,
constraint classification is approximately 50 times slower than pairwise ranking with binary
voting for the vowel dataset where the number of different classes amounts to 10. As shown
in Theorem 4, pairwise expansion of constraints yields an algorithm with O(m2ana) com-
putational training complexity, thus limiting the range of application to a small number of
alternatives in the case of a superlinear base learning algorithm.

27

Synthetic Setting

0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

100 250 500 750 1000
Number of Examples

Sp
ea

rm
an

 R
an

k
C

or
re

la
tio

n

RPC (bin-vote) RPC (soft-vote) CC

(a) Rank Correlation

Synthetic Setting

0.78
0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

100 250 500 750 1000
Number of Examples

K
en

da
ll

Ta
u

RPC (bin-vote) RPC (soft-vote) CC

(b) Kendall tau

Figure 6: Synthetic Setting with varying numbers of training examples

Synthetic Setting

0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

5 10 15 20
Number of Alternatives

Sp
ea

rm
an

 R
an

k
C

or
re

la
tio

n

RPC (bin-vote) RPC (soft-vote) CC

(a) Rank correlation

Synthetic Setting

0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

5 10 15 20
Number of Alternatives

K
en

da
ll

Ta
u

RPC (bin-vote) RPC (soft-vote) CC

(b) Kendall tau

Figure 7: Synthetic Setting with varying numbers of alternatives

Synthetic Data: In order to provide a more detailed empirical analysis, we conducted a
series of controlled experiments with varying numbers of alternatives and training exam-
ples using the synthetic setting in Section 5.1. As expected, the accuracy of all approaches
measured by the Spearman rank correlation coefficient and the Kendall tau increases in the
number of training examples (see Figure 6). Moreover, there is a constant ranking among
the different techniques with the constraint classification approach always performing best
(as expected, the advantage of constraint classification is stronger for the Kendall tau than
for rank correlation measure). An analogous observation can be made in the case of a
varying number of alternatives with the number of training examples being fixed (see Fig-
ure 7). This pattern is not surprising since the considered synthetic setting clearly favors
this technique as mentioned before: Constraint classification is based on precisely the hy-
pothesis class which has been used for generating the datasets. Nevertheless, the difference
in generalization accuracy between RPC with soft-voting and constraint classification turns

28

Training Time

0.1

1

10

100

1000

0 200 400 600 800 1000
Number of Examples

Se
co

nd
s

RPC (bin-vote) RPC (soft-vote) CC

Testing Time

0.01

0.1

1

10

0 200 400 600 800 1000
Number of Examples

Se
co

nd
s

RPC (bin-vote) RPC (soft-vote) CC

Figure 8: Training and testing times for the synthetic setting with varying numbers of
training examples (plotted on a log-scale)

Training Time

1

10

100

1000

10000

5 10 15 20
Number of Alternatives

Se
co

nd
s

RPC (bin-vote) RPC (soft-vote) CC

Testing Time

0.1

1

10

100

5 10 15 20
Number of Alternatives

Se
co

nd
s

RPC (bin-vote) RPC (soft-vote) CC

Figure 9: Training and testing times for the synthetic setting with varying numbers of
alternatives (plotted on a log-scale)

out to be limited, thus, it still may become the favorable technique in this setting if aspects
like training time are considered a major design issue for the preference learning system.

In terms of the computational complexity required for training, pairwise ranking sub-
stantially outperforms constraint classification (see Figures 8 and 9). The soft voting tech-
nique requires additional computational time by an average factor of approximately 3.0
compared to its binary voting counterpart in pairwise ranking. Conversely, in terms of test-
ing complexity, the constraint classification approach substantially outperforms the pairwise
ranking approaches, thus, complementing our theoretical analysis which pointed out that
the number of binary classifiers to be evaluated scales linearly in the number of alternatives
in the case of constraint classification and quadratically in the case of pairwise ranking.

29

Semi-Synthetic Setting (50% Missing)

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

iris wine glass vowel vehicle

Sp
ea

rm
an

 R
an

k
C

or
re

la
tio

n

RPC (bin-vote) RPC (soft-vote) CC

(a) Rank correlation

Semi-Synthetic Setting (50% Missing)

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

iris wine glass vowel vehicle

K
en

da
ll

ta
u

RPC (bin-vote) RPC (soft-vote) CC

(b) Kendall tau

Figure 10: Semi-Synthetic Setting with 50% missing labels

Semi-Synthetic Setting (70% Missing)

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

iris wine glass vowel vehicle

Sp
ea

rm
an

 R
an

k
C

or
re

la
tio

n

RPC (bin-vote) RPC (soft-vote) CC

(a) Rank correlation

Semi-Synthetic Setting (70% Missing)

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

iris wine glass vowel vehicle

K
en

da
ll

ta
u

RPC (bin-vote) RPC (soft-vote) CC

(b) Kendall tau

Figure 11: Semi-Synthetic Setting 70% missing labels

5.3.2 Incomplete Preference Information

In Section 5.3.1, we provided an empirical study on learning label ranking functions assum-
ing that the complete ranking is available for each example in the training set. However, in
practical settings, we will often not have access to a total order of all possible labels for an
object. Instead, in many cases, only a few pairs of preferences are known for each object.

In the following, we will model missing preferences by assuming that a complete ranking
is available for a subset of possible labels, i.e., when only partial rankings are submitted
to the learning algorithms. More precisely, we randomly deleted a fraction of 50% and
70% respectively of all the labels given in the rankings of the training sets, such that
an original ranking λ1 � λ2 � λ3 � λ4 � λ5 may be reduced to λ1 � λ3 � λ4, and
hence, pairwise preferences were generated only from the partial rankings. As we assumed
a uniform distribution over the entire set of labels present in the dataset for the process
of deleting labels, in general, the resulting datasets consisted of examples associated with
partial rankings of varying size.

30

iris wine glass vowel vehicle
70% missing
50% missing
complete preferences

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Kendall tau

Semi-Synthetic Setting / RPC (bin-vote)

70% missing 50% missing complete preferences

Figure 12: Semi-Synthetic Setting with RPC and 0%, 50% and 70% missing labels (Evalu-
ation measure: Kendall tau)

A modification of the evaluation measures used in the inner cross-validation estimation
for selecting hyperparameters was necessary since the predicted complete rankings had to
be evaluated on the partial rankings in the cross-validation test sets. To this end, we used
the following adaptation: Given a partial ranking (e.g., λ1 � λ3 � λ4) and a complete
ranking (e.g, λ1 � λ2 � λ3 � λ4 � λ5), all the labels not present in the partial ranking are
deleted from the complete ranking ((λ1 � λ2 � λ3 � λ4 � λ5) 7→ (λ1 � λ4 � λ3)) and then
the specific measure of accuracy is evaluated on the normalized partial rankings, i.e., on
the ranking where the maximal rank corresponds to the number of remaining labels (in our
example, the normalized true ranking is λ1 � λ2 � λ3 and the normalized predicted ranking
is λ1 � λ3 � λ2). Note that the number of possible labels m necessary for evaluating the
rank correlation and the Kendall tau, respectively, has to be substituted by the effective
number of labels for the given normalized rankings (in the aforementioned example, m = 3).

Figures 10 and 11 visualize the experimental result for a fraction of 50% and 70%,
respectively, being randomly deleted from the dataset (cf. also Tables 7, 8, 10 and 11 in
the Appendix). As expected, the accuracy measured by the Spearman rank correlation
and the Kendall tau of the respective label ranking functions decreases with the amount
of incomplete preference information increasing. However, both RPC with binary- and
soft-voting and constraint classification can deal with the more realistic case of limited pref-
erence information remarkably well and still achieve a high level of accuracy (see Figure 12
for an exemplary visualization for RPC-bin with Kendall tau). Furthermore, none of the
considered approaches substantially outperforms the others.

6. Related Work

As mentioned in Section 2, label ranking via pairwise preference models may be viewed as
a generalization of various other learning tasks. There has been a considerable amount of
recent work on many of such tasks. In particular, pairwise classification has been studied
in-depth in the area of support vector machines (Hsu and Lin, 2002, and references therein).

31

We refer to (Fürnkranz, 2002, Section 8) for a brief survey of work on pairwise classification,
and its relation to other learning class binarization techniques, most notably the general
framework of Allwein et al. (2000).

There has also been some recent work on label ranking algorithms for multi-label prob-
lems. For example, Crammer and Singer (2003b) consider a variety of on-line learning
algorithms for the problem of ranking possible labels in a multi-label text categorization
task. They investigate a set of algorithms that maintain a prototype for each possible label,
and order the labels of an example according to the response signal returned by each of the
prototypes. ¿From a more theoretical perspective, Usunier et al. (2006) analyze the gen-
eralization properties of binary classifiers trained on interdependent data for certain types
of structured learning problems such as bipartite ranking. We are aware of only one work
that actually uses a complete ranking of the available labels for each example for training
or evaluation: Brazdil et al. (2003) investigate the meta-learning task of ranking learning
algorithms according to their suitability for a new dataset, based on the characteristics of
this dataset.

Depending on the underlying utility scale one can distinguish between learning a nu-
merical function and learning a function that maps into an ordinal (ordered categorical)
scale. These two cases involve, respectively, a problem of standard regression and ordinal
regression (also called ordinal classification). The problem of learning (eliciting) real-valued
utility functions has been investigated in fields such as decision theory and economics for
a long time, and has more recently become a topic of research in AI and machine learning
as well. Ordinal regression has been investigated thoroughly in statistics and econometrics
(McCullagh and Nelder, 1983) and has recently also received attention in machine learn-
ing. For example, a method for ordinal regression based on a modification of regression
tree learning has been proposed by Kramer et al. (2001). Frank and Hall (2001) suggest a
method for translating an ordinal regression problem into a set of ordinary (binary) classifi-
cation problems. Herbich et al. (2000) approach ordinal regression in the context of support
vector machines, using a special type of loss function suitable for comparing predictions on
an ordered categorical scale. Cao-Van and De Baets (2003) consider the task to learn a
monotone decision tree, a problem they refer to as supervised ranking. Here, monotonicity
refers to the dependency of the (ordinal) output attribute on the input attributes, which
are assumed to be criteria (i.e., ordinal “the higher the better” attributes).

Chajewska et al. (1998) simplify the elicitation of utility functions by clustering exem-
plary utility functions, deriving prototypes from the clusters, and inducing a decision tree
whose inner nodes are associated with properties of utility functions (questions about a
person’s preferences that can be directly asked to the person) and whose leaf nodes are
identified with the prototypes. The idea of Chajewska et al. (1999) is to simplify elicitation
by exploiting the additive independence of variables. Given a database of exemplary util-
ity functions, statistical learning (model selection) methods are used in order to induce a
factorization of utility functions into additive subutility functions. Chajewska et al. (2000)
accomplish learning of a utility function by treating utility as a random variable. Starting
with some prior distribution (derived from analyzing a database of available utility func-
tions), the model is incrementally updated based on information elicited from the user. In
order to decide on which questions should be asked next to the user, the authors fall back
on the principle underlying the value of information. Chajewska et al. (2001) study the

32

problem of learning the utility function that determines the behavior of an agent which is
rational in the sense of expected utility theory. The approach proposed by the authors pro-
ceeds from a prior probability distribution over a class of utility functions having a certain
(linear) structure. The agent’s decisions are then used for defining constraints on its true
utility function (see (Ng and Russell, 2000) for a quite similar approach). Finally, these
constraints are employed in order to turn the prior distribution over the class of utility
functions into a posterior distribution.

Learning preferences is also a key topic in recommender systems and collaborative fil-
tering (Goldberg et al., 1992; Resnick and Varian, 1997; Kautz, 1998). Methods proposed
in this field are closer to learning utility functions, but are often specifically adjusted to
commercial applications where the set of alternatives (labels) to be recommended is usually
very large. The method of choice is quite often a case-based or memory-based approach,
where the basic idea is to estimate a user’s preferences from the preferences of other users
that appear to be similar (see, e.g., Ha and Haddawy, 2003; Nakamura and Abe, 1998;
Billsus and Pazzani, 1998).

Aiolli (2005) proposed an interesting general framework that allows to specify both
qualitative and quantitative preference constraints on an underlying utility function. In
addition to the pairwise preference constraints that we also use (which he interprets as
constraints on a utility function), Aiolli (2005) also allows constraints of the type λi �x τ ,
which means that the value of the utility function fi(x) > ti, where ti is a numerical
threshold.

7. Conclusions

In this paper, we have given a systematic overview of recent research activities in pref-
erence learning, a subfield of machine learning which is concerned with the problem of
learning preference models from empirical preference data. Certainly, preference learning
thus defined is of major importance for research on preferences in artificial intelligence, as
it complements methods for the modeling of and the reasoning with preferences.

Focusing on a particular type of preference model, namely rankings, we have suggested
a learning algorithm for a problem called label ranking. The merits of our method, ranking
by pairwise comparison (RPC), can be summarized as follows: Firstly, we find that RPC
is a simple yet intuitively appealing and elegant approach, especially as it is a natural
generalization of pairwise classification. Secondly, the modular conception of RPC allows
for combining different (pairwise) learning and ranking methods in a convenient way. For
example, different loss functions can be minimized by simply changing the ranking procedure
but without the need to retrain the binary models (see Section 4.2). Thirdly, RPC is
superior to alternative approaches with regard to efficiency and computational complexity,
as we have shown both theoretically and experimentally (cf. Sections 4.1 and 5).

Research in preference learning has only started, and many interesting problems remain
to be solved. For example, recall our discussion about the connection between the ranking
procedure used in RPC and risk minimization with regard to a particular loss function.
We already know that some loss functions can be minimized by using a suitable ranking
procedure, whereas the nature of the pairwise approach makes risk minimization principally
impossible for other distance measures. What is missing, however, is a more complete

33

characterization of the type of loss functions that can can be minimized and those that
cannot. Another open issue is an extension of label ranking to the learning of more general
preference relations on the label set L. In fact, in many practical applications it might
be reasonable to relax the assumption of strictness, i.e., to allow for indifference between
labels, or even to represent preferences in terms of partial instead of total orders.

References

Fabio Aiolli A preference model for structured supervised learning tasks. In Proceedings
of the Fifth IEEE International Conference on Data Mining (ICDM-05), pages 557–560.
IEEE Computer Society, 2005.

Erin L. Allwein, Robert E. Schapire, and Yoram Singer. Reducing multiclass to binary:
A unifying approach for margin classifiers. Journal of Machine Learning Research, 1:
113–141, 2000.

N. Alon. Ranking Tournaments. SIAM Journal on Discrete Mathematics 20(1), pages
137–142.

Rajarajeswari Balasubramaniyan, Eyke Hüllermeier, Nils Weskamp, and Jörg Kämper.
Clustering of gene expression data using a local shape-based similarity measure. Bioin-
formatics, 21(7):1069–1077, 2005.

Michael O. Ball and Ulrich Derigs. An analysis of alternative strategies for implementing
matching algorithms. Networks, 13:517–549, 1983.

John J. Bartholdi III, Craig A. Tovey, and Michael A. Trick. Voting schemes for which it
can be difficult to tell who won the election. Social Choice and Welfare, 6(2):157–165,
1989.

Daniel Billsus and Michael Pazzani. Learning collaborative information filters. In Proceed-
ings of the 15th International Conference on Machine Learning (ICML-98), pages 46–54.
Morgan Kaufmann, 1998.

Catherine L. Blake and Christopher J. Merz. UCI repository of machine learning databases,
1998. Data available at http://www.ics.uci.edu/∼mlearn/MLRepository.html.

Craig Boutilier, Ronen Brafman, Carmel Domshlak, Holger Hoos, David Poole. CP-nets:
A Tool for Representing and Reasoning with Conditional Ceteris Paribus Preference
Statements Journal of Artificial Intelligence Research 21:135–191.

Ralph A. Bradley and Milton E. Terry The rank analysis of incomplete block designs — I.
The method of paired comparisons. Biometrika, 39:324–345, 1952.

Steven J. Brams and Peter C. Fishburn. Voting procedures. In K. J. Arrow, A. K. Sen,
and K. Suzumura, editors, Handbook of Social Choice and Welfare (Vol. 1), chapter 4.
Elsevier, 2002.

34

Pavel B. Brazdil, Carlos Soares, and J. P. da Costa. Ranking learning algorithms: Using
IBL and meta-learning on accuracy and time results. Machine Learning, 50(3):251–277,
March 2003.

Kim Cao-Van and Bernard De Baets. Growing decision trees in an ordinal setting. Inter-
national Journal of Intelligent Systems 18, pages 733-750, 2003.

Urszula Chajewska, Lise Getoor, Joseph Norman, and Yuval Shahar. Utility elicitation as
a classification problem. In G. F. Cooper and S. Moral, editors, Proceedings of the 14th
Conference on Uncertainty in AI (UAI-98), pages 79–88, 1998.

Urszula Chajewska, M. Kuppermann, and Daphne Koller. Discovering the structure of
utility functions based on additive and conditionally additive independence properties
between utility attributes. In Proceedings of the 21st Annual Meeting of the Society for
Medical Decision Making (MDM-99), 1999.

Urszula Chajewska, Daphne Koller, and Ronald Parr. Making rational decisions using
adaptive utility elicitation. In Proceedings of the 17th National Conference on Artificial
Intelligence (AAAI-00), pages 363–369, 2000.

Urszula Chajewska, Daphne Koller, and Dirk Ormoneit. Learning an agent’s utility function
by observing behavior. In Proceedings of the 18th International Conference on Machine
Learning (ICML-01), pages 35–42, 2001.

William W. Cohen, Robert E. Schapire, and Yoram Singer. Learning to order things.
Journal of Artificial Intelligence Research, 10:243–270, 1999.

D. Coppersmith, L. Fleischer, and A. Rudra. Ordering by weighted number of wins gives a
good ranking for weighted tournaments. ACM-SIAM Symposium on Discrete Algorithms
(SODA), 776–782, 2006.

Koby Crammer and Yoram Singer. Ultraconservative online algorithms for multiclass prob-
lems. Journal of Machine Learning Research, 3:951–991, 2003a.

Koby Crammer and Yoram Singer. A family of additive online algorithms for category
ranking. Journal of Machine Learning Research, 3:1025–1058, 2003b.

Ofer Dekel, Christopher D. Manning, and Yoram Singer. Log-Linear Models for Label
Ranking. In S. Thrun, L. K. Saul, and B. Schölkopf (eds.) Advances in Neural Information
Processing Systems 16 (NIPS-2003), MIT Press 2004.

Jon Doyle. Prospects for preferences. Computational Intelligence, 20(2):111–136, 2004.

Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. Rank aggregation methods
for the Web. In Proceedings of the 10th International World Wide Web Conference, pages
613–622, 2001.

János Fodor and Marc Roubens. Fuzzy Preference Modelling and Multicriteria Decision
Support. Kluwer Academic Publishers, 1994.

35

Eibe Frank and Mark Hall. A simple approach to ordinal classification. In L. De Raedt
and P. Flach, editors, Proceedings of the 12th European Conference on Machine Learning
(ECML-01), pages 145–156, Freiburg, Germany, 2001. Springer-Verlag.

Jerome H. Friedman. Another approach to polychotomous classification. Technical report,
Department of Statistics, Stanford University, Stanford, CA, 1996.

Johannes Fürnkranz. Round robin ensembles. Intelligent Data Analysis, 7(5):385–404, 2003.

Johannes Fürnkranz. Round robin classification. Journal of Machine Learning Research,
2:721–747, 2002.

Johannes Fürnkranz and Eyke Hüllermeier. Pairwise preference learning and ranking. In
N. Lavrač, D. Gamberger, H. Blockeel, and L. Todorovski, editors, Proceedings of the 14th
European Conference on Machine Learning (ECML-03), volume 2837 of Lecture Notes in
Artificial Intelligence, pages 145–156, Cavtat, Croatia, 2003. Springer-Verlag.

Johannes Fürnkranz and Eyke Hüllermeier. Preference learning. Künstliche Intelligenz, 19
(1):60–61, 2005.

David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry. Using collaborative
filtering to weave and information tapestry. Communications of the ACM, 35(12):61–70,
December 1992.

Vu Ha and Peter Haddawy. Similarity of personal preferences: Theoretical foundations and
empirical analysis. Artificial Intelligence, 146:149–173, 2003.

Peter Haddawy, Vu Ha, Angelo Restificar, Benjamin Geisler, and John Miyamoto. Prefer-
ence elicitation via theory refinement. Journal of Machine Learning Research, 4:317–337,
2003.

Sariel Har-Peled, Dan Roth, and Dav Zimak. Constraint classification: A new approach
to multiclass classification. In N. Cesa-Bianchi, M. Numao, and R. Reischuk, editors,
Proceedings of the 13th International Conference on Algorithmic Learning Theory (ALT-
02), pages 365–379, Lübeck, Germany, 2002. Springer.

Sariel Har-Peled, Dan Roth, and Dav Zimak. Constraint classification for multiclass classifi-
cation and ranking. In Suzanna Becker, Sebastian Thrun, and Klaus Obermayer, editors,
Advances in Neural Information Processing Systems 15 (NIPS-02), pages 785–792, 2003.

Trevor Hastie and Robert Tibshirani. Classification by pairwise coupling. In M.I. Jordan,
M.J. Kearns, and S.A. Solla, editors, Advances in Neural Information Processing Systems
10 (NIPS-97), pages 507–513. MIT Press, 1998.

Ralf Herbich, Thore Graepel, and Klaus Obermayer. Large margin rank boundaries for
ordinal regression. In A. J. Smola, P. J. Bartless, B Schölkopf, and D. Schuurmans,
editors, Advances in Large Margin Classifiers, pages 115–132. MIT Press, 2000.

Ralf Herbrich and Thore Graepel. Large scale bayes point machines. In Todd K. Leen,
Thomas G. Dietterich, and Volker Tresp, editors, Advances in Neural Information Pro-
cessing Systems 13 (NIPS 2000), pages 528–534. MIT Press, 2001.

36

Ralf Herbrich, Thore Graepel, Peter Bollmann-Sdorra, and Klaus Obermayer. Supervised
learning of preference relations. In Proceedings des Fachgruppentreffens Maschinelles
Lernen (FGML-98), pages 43–47, 1998.

Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multi-class support vector
machines. IEEE Transactions on Neural Networks, 13(2):415–425, March 2002.

Eyke Hüllermeier and Johannes Fürnkranz. Ranking by pairwise comparison: A note on
risk minimization. In Proceedings of the IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE-04), Budapest, Hungary, 2004a.

Eyke Hüllermeier and Johannes Fürnkranz. Learning label preferences: Ranking error
versus position error. In Advances in Intelligent Data Analysis: Proceedings of the 6th
International Symposium (IDA-05), pages 180–191. Springer-Verlag, 2005.

Eyke Hüllermeier and Johannes Fürnkranz. Comparison of ranking procedures in pairwise
preference learning. In Proceedings of the 10th International Conference on Information
Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU-04),
Perugia, Italy, 2004b.

Thorsten Joachims. Optimizing search engines using clickthrough data. In Proceedings
of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD-02), pages 133–142. ACM Press, 2002.

Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and Geri Gay. Accurately
interpreting clickthrough data as implicit feedback. In Proceedings of the 28th Annual
International ACM Conference on Research and Development in Information Retrieval
(SIGIR-05), 2005.

Henry Kautz, editor. Recommender Systems: Papers from the AAAI Workshop, Menlo
Park, CA, 1998. AAAI Press. Technical Report WS-98-08.

Maurice G. Kendall. Rank correlation methods. Charles Griffin, London, 1955.

Erich-Peter Klement, Radko Mesiar and Endre Pap. Triangular Norms. Kluwer Academic
Publishers, 2002.

Stefan Knerr, Léon Personnaz, and Gérard Dreyfus. Single-layer learning revisited: A
stepwise procedure for building and training a neural network. In F. Fogelman Soulié
and J. Hérault, editors, Neurocomputing: Algorithms, Architectures and Applications,
volume F68 of NATO ASI Series, pages 41–50. Springer-Verlag, 1990.

Stefan Knerr, Léon Personnaz, and Gérard Dreyfus. Handwritten digit recognition by
neural networks with single-layer training. IEEE Transactions on Neural Networks, 3(6):
962–968, 1992.

Stefan Kramer, Gerhard Widmer, Bernhard Pfahringer, and Michael DeGroeve. Prediction
of ordinal classes using regression trees. Fundamenta Informaticae, XXI:1001–1013, 2001.

37

Ulrich H.-G. Kreßel. Pairwise classification and support vector machines. In B. Schölkopf,
C.J.C. Burges, and A.J. Smola, editors, Advances in Kernel Methods: Support Vector
Learning, chapter 15, pages 255–268. MIT Press, Cambridge, MA, 1999.

Erich L. Lehmann and H. J. M. D’Abrera. Nonparametrics: Statistical Methods Based on
Ranks, rev. ed. Prentice-Hall, Englewood Cliffs, NJ, 1998.

Bao-Liang Lu and Masami Ito. Task decomposition and module combination based on
class relations: A modular neural network for pattern classification. IEEE Transactions
on Neural Networks, 10(5):1244–1256, September 1999.

Peter McCullagh and John A. Nelder. Generalized Linear Models. Chapman & Hall,
London, 1983.

Donald Michie, David J. Spiegelhalter, and C. C. Taylor. Machine Learning,
Neural and Statistical Classification. Ellis Horwood, 1994. Data available at
ftp.ncc.up.pt/pub/statlog/.

H. Naessens, H. De Meyer, and B. De Baets. Algorithms for the computation of T-transitive
closures. IEEE Trans. on Fuzzy Systems 10:541–551, 2002.

Atsuyoshi Nakamura and Naoki Abe. Collaborative filtering using weighted majority predic-
tion algorithms. In Proceedings of the 15th International Conference on Machine Learning
(ICML-98), pages 395–403. Morgan Kaufmann, 1998.

Andrew Ng and Stuart Russell. Algorithms for inverse reinforcement learning. In Proceed-
ings of the 17th International Conference on Machine Learning (ICML-00), 2000.

John Platt. Probabilistic outputs for support vector machines and comparison to regularized
likelihood methods. In A.J. Smola, P. Bartlett, B. Schoelkopf, and D. Schuurmans,
editors, Advances in Large Margin Classifiers, pages 61–74, Cambridge, MA, 1999. MIT
Press.

David Price, Stefan Knerr, Léon Personnaz, and Gérard Dreyfus. Pairwise neural network
classifiers with probabilistic outputs. In G. Tesauro, D. Touretzky, and T. Leen, editors,
Advances in Neural Information Processing Systems 7 (NIPS-94), pages 1109–1116. MIT
Press, 1995.

Dorian Pyle. Data Preparation for Data Mining. Morgan Kaufmann, San Francisco, CA,
1999.

Filip Radlinski and Thorsten Joachims. Learning to rank from implicit feedback. In Pro-
ceedings of the ACM Conference on Knowledge Discovery and Data Mining (KDD-05),
2005.

Paul Resnick and Hal R. Varian. Special issue on recommender systems. Communications
of the ACM, 40(3), 1997.

Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classification. Journal of
Machine Learning Research, 5:101–141, 2004.

38

Michael S. Schmidt and Herbert Gish. Speaker identification via support vector classifiers. In
Proceedings of the 21st IEEE International Conference Conference on Acoustics, Speech,
and Signal Processing (ICASSP-96), pages 105–108, Atlanta, GA, 1996.

B. Schweizer and A. Sklar. Probabilistic Metric Spaces, North-Holland, New York, 1983.

Charles Spearman. The proof and measurement of association between two things. Amer-
ican Journal of Psychology, 15:72–101, 1904.

Gerald Tesauro. Connectionist learning of expert preferences by comparison training. In
D. Touretzky, editor, Advances in Neural Information Processing Systems 1 (NIPS-88),
pages 99–106. Morgan Kaufmann, 1989.

Nicolas Usunier, Massih-Reza Amini, and Patrick Gallinari. Generalization error bounds
for classifiers trained with interdependent data. In Y. Weiss, B. Schölkopf, and J. Platt,
editors, Advances in Neural Information Processing Systems 18 (NIPS 2005), pages 1369–
1376. MIT Press, 2006.

Jun Wang. Artificial neural networks versus natural neural networks: A connectionist
paradigm for preference assessment. Decision Support Systems, 11:415–429, 1994.

Ian H. Witten and Eibe Frank. Data Mining: Practical machine learning tools with Java
implementations. Morgan Kaufmann, San Francisco, 2000.

Ting-Fan Wu, Chih-Jen Lin, and Ruby C. Weng. Probability estimates for multi-class
classification by pairwise coupling. Journal of Machine Learning Research, 5(Aug):975–
1005, 2004.

39

Appendix A.

approach 1 2 3 4 5
RPC (bin-vote) 0.116 ±0.009 0.112 ±0.009 0.120 ±0.012 0.188 ±0.011 0.285 ±0.008

RPC (soft-vote) 0.122 ±0.009 0.114 ±0.009 0.145 ±0.011 0.196 ±0.010 0.327 ±0.007

CC 0.114 ±0.008 0.107 ±0.009 0.148 ±0.011 0.186 ±0.010 0.287 ±0.008

Table 4: Experimental results: Real-world Setting (Spearman rank correlation)

approach 1 2 3 4 5
RPC (bin-vote) 0.146 ±0.011 0.134 ±0.011 0.176 ±0.013 0.218 ±0.012 0.356 ±0.010

RPC (soft-vote) 0.158 ±0.011 0.141 ±0.011 0.179 ±0.013 0.242 ±0.012 0.414 ±0.009

CC 0.151 ±0.011 0.126 ±0.011 0.172 ±0.013 0.218 ±0.012 0.364 ±0.010

Table 5: Experimental results: Real-world Setting (Kendall tau)

approacy8h iris wine glass vowel vehicle
RPC (bin-vote) 0.850 ±0.019 0.952 ±0.013 0.891 ±0.017 0.730 ±0.013 0.861 ±0.005

RPC (soft-vote) 0.890 ±0.019 0.952 ±0.017 0.878 ±0.017 0.732 ±0.011 0.865 ±0.005

CC 0.847 ±0.017 0.944 ±0.014 0.874 ±0.016 0.723 ±0.012 0.863 ±0.003

Table 6: Experimental results (Spearman rank correlation)

approach iris wine glass vowel vehicle
RPC (bin-vote) 0.817 ±0.026 0.940 ±0.018 0.882 ±0.012 0.707 ±0.012 0.835 ±0.008

RPC (soft-vote) 0.833 ±0.024 0.918 ±0.015 0.846 ±0.019 0.718 ±0.013 0.828 ±0.008

CC 0.847 ±0.019 0.938 ±0.015 0.865 ±0.016 0.708 ±0.012 0.839 ±0.006

Table 7: Experimental results for 50% missing labels (Spearman rank correlation)

40

approach iris wine glass vowel vehicle
RPC (bin-vote) 0.780 ±0.036 0.907 ±0.018 0.794 ±0.019 0.683 ±0.011 0.816 ±0.010

RPC (soft-vote) 0.760 ±0.032 0.856 ±0.024 0.739 ±0.021 0.694 ±0.012 0.799 ±0.014

CC 0.800 ±0.035 0.829 ±0.016 0.817 ±0.014 0.691 ±0.010 0.815 ±0.014

Table 8: Experimental results for 70% missing labels (Spearman rank correlation)

approach iris wine glass vowel vehicle
RPC (bin-vote) 0.791 ±0.028 0.933 ±0.021 0.866 ±0.016 0.637 ±0.012 0.825 ±0.006

RPC (soft-vote) 0.853 ±0.016 0.936 ±0.018 0.851 ±0.015 0.619 ±0.010 0.823 ±0.006

CC 0.796 ±0.027 0.936 ±0.017 0.829 ±0.018 0.596 ±0.011 0.810 ±0.006

Table 9: Experimental results (Kendall tau)

approach iris wine glass vowel vehicle
RPC (bin-vote) 0.747 ±0.023 0.936 ±0.020 0.846 ±0.014 0.603 ±0.010 0.790 ±0.008

RPC (soft-vote) 0.787 ±0.024 0.910 ±0.024 0.818 ±0.017 0.586 ±0.011 0.793 ±0.007

CC 0.796 ±0.026 0.914 ±0.017 0.824 ±0.016 0.575 ±0.010 0.795 ±0.006

Table 10: Experimental results for 50% missing labels (Kendall tau)

approach iris wine glass vowel vehicle
RPC (bin-vote) 0.724 ±0.037 0.888 ±0.016 0.763 ±0.024 0.575 ±0.010 0.770 ±0.01

RPC (soft-vote) 0.716 ±0.040 0.849 ±0.016 0.685 ±0.022 0.554 ±0.011 0.746 ±0.01

CC 0.764 ±0.025 0.798 ±0.015 0.771 ±0.014 0.562 ±0.009 0.771 ±0.015

Table 11: Experimental results for 70% missing labels (Kendall tau)

41

