
Technische Universität Darmstadt
Department of Computer Science

Knowledge Engineering Group

Bachelor Thesis
July 2009

Specialization of a General
Ontology Engineering Platform for
Semantic Information Integration

Boyan Yurukov
Technische Universität Darmstadt

Academic Supervisor: Prof. Johannes Fürnkranz
Knowledge Engineering Group
Technische Universität Darmstadt

Industrial Partner: Software AG, Darmstadt
Supervisor: Dr. Walter Waterfeld

i

ii

Acknowledgments

First, and foremost, I would like to thank Prof. Dr. Johannes Fürnkranz for
giving me the opportunity to write this thesis. I am deeply grateful to my
industrial supervisor, Dr. Walter Waterfeld, for his detailed and constructive
remarks. I would also like to thank the R&D team of Software AG for all
their help and support throughout my work.

Declaration

This thesis is my original work and has not been submitted, in whole or in
part, for a degree at this or any other university. Nor does it contain, to the
best of my knowledge and belief, any material published or written by
another person, except as acknowledged in the text.

Date:................................ Signature:.................................

iii

iv

Abstract

Information integration is an integral part of the corporate
computer systems and is gaining momentum in the government
sector. Many II business solutions use semantic technology as
a basis for mapping information sources and producing an
integrated view over the whole enterprise data. Most products
however, focus either on solving only a few of the tasks related
to semantic II or add semantic capabilities as an addition to
other integration technologies. In this paper I explore an
alternate approach - the possibility of using a readily available
ontology engineering platform for the purposes of semantic
information integration. I also describe an abstract solution for
how such an environment can be adapted. Furthermore, I
provide a practical example of that solution by adapting the
NeOn Toolkit [NEON09]. By extending the tools provided by
this development platform, altering its workspace and
visualizing the project data in a proper way, I offer the users
new functionality and visualization of the information sources
they have. This could enable them to make better decisions
about their information integration projects.

v

vi

Contents

1. Introduction... 1

1.1. Principles and Platforms.. 1

1.2. Problem Description...4

1.3. Use Cases .. 5

1.4. Related Work... 7

1.5. Alternative Solutions.. 9

2. Proposed Design.. 11

2.1. Design of a Semantic Information Integration..11

2.2. Artifact Model... 11

3. Semantic II as a NTK Extension.. 14

3.1. NTK Capabilities.. 14

3.2. Extending the Platform...15

3.3. Components and Tools..16

4. EII Navigator.. 18

4.1. Artifact Extraction and Data Model.. 20

4.2. Graph Representation ...21

4.3. Deployment to a Registry...25

4.4. XML Mapping...26

4.5. Branding and Packaging..27

5. Conclusion.. 28

6. References.. 29

vii

viii

1. Introduction

1.1. Principles and Platforms

1.1.1. Information Integration

In business and in government software systems the requirement to work with
different data sources is more and more common. These data sources can be
relational or XML databases, web services and even formated text. More often these
data sources are heterogeneous and contain different parts of required data for an
application.

In their paper “Information Integration - Goals and Challenges”, Stefan Deßloch,
Albert Maier, Nelson Mattos and Dan Wolfson [DMMW03] define the goals of
Information Integration, namely:

● Let applications access the information required as if it were physically
stored in a local, single database, regardless of the form and location
requested and regardless of the quality of service needs (e.g. timeliness
of information),

● offer sophisticated services for searching transforming and analyzing the
integrated information

● offers a comprehensive set of services enabling II systems to interact
with other middleware systems (e.g. Messaging systems and web
services).

[DMMW03] Section 2; Page 7

Furthermore, it provides us with clues of what problems contribute to the complexity
of EII designs:

● Heterogeneity of data – Information integration needs to cover structured,
semi-structured, and unstructured data.

● Federation and distribution of data – the information to be integrated is
contained in an increasing number of different, possibly autonomous data
sources throughout an enterprise. To perform integration, one can
consolidate information in a single data store, usually resulting in a
(mostly read-only) data store that is not connected back to the original
sources containing the operational data.

1

● Produce business intelligence from data - Complex analysis,
aggregation, and mining operations over increasingly heterogeneous
data needs to be performed in order to harvest valuable information that
helps drive business decisions or provides competitive advantage.
Analysis can be either applied to single information items or to collections
of information items.

[DMMW03] Section 2; Page 8.

1.1.2. Semantic Information Integration

In a semantic Information Integrator, ontologies are used to describe the integrated
view. These ontologies may use other, more common ontologies and extract data
from a number of different external data sources. This abstract description of the
integrated view allows automated transformation and mapping though ontology
reasoning.

In the Software AG product webMethods Information Integrator, exactly this
approach is applied. An II Studio has been developed based on the Eclipse Platform
and using components from Ontoprise. The Studio is used to import external data
sources and map them to an integrated view with the help of ontologies. Queries are
then written on that integrated view and web services are automatically created from
those queries. The Studio uses CentraSite as a registry/repository and publishes all
developed elements. When published, the web services are exposed to users and
provide access to the integrated view. When a request comes in, the semantic server
evaluates the queries and returns a response based on the current state of the
external data sources.

2

1.1.3. The NeOn Toolkit

The NeOn Toolkit (Illustration 1.) is based on the Eclipse platform and offers a variety
of editing and visualization tools for ontology editing and matching. The core tools
are developed as part of the EU-financed NeOn Project and are mostly open source.
They consist of different data model layers that offer the capability to handle
ontologies in several standards like RDF and OWL. There are also conversion tools
that allow an import and export of ontologies represented in different formats from
the file system, repositories or in between projects. The core Eclipse plugins include
an user interface for editing concepts, attributes, rules and queries. Since the toolkit
is based on Eclipse, it enables developers to write additional plugins and extinctions
for it. Such extensions offer mapping and matching between ontologies, consistency
and coherence checks, development, testing and deployment for more advances
queries, text recognition and so on. All these, while very useful, are aimed at
enabling the user to do one specific task and are not intended as being part of such a
specialized tool as an Enterprise Information Integrator.

3

Illustration 1: Standard NeOn Toolkit platform

1.2. Problem Description
The goal of this Bachelor Thesis is the specialization of a general ontology
development platform, such as the NeOn Toolkit, for the purposes of semantic
information integration. This platform consists of a variety of tools that are needed for
the creation and testing of ontologies. It however lacks and overview that will guide
the developer though the integration process, as well as some important features,
that will allow lifecycle management of the integrated view and the related ontologies
and information services. Such ontology development environments have some
means of connecting with external information sources, so they need to be extended,
allowing the use of such data sources as XML, web services and proprietary
database engines. Finally all additional plugins should allow for extendability of the
platform, so that any tools that will add new features to the development
environment, could be integrated with the information integration overview and
lifecycle management capabilities.

Although integrating information sources though ontologies is not a new idea and
may be accomplished with existing tools, including the NeOn Toolkit, there is a lack
of a complete product that enables the user to develop, test and publish ontologies
and in the same time import data source schemes, match, map and test those
mapping in order to have a complete integration system. While the individual tool
exist, combining them together with a comprehensive visual representation of the
whole process is what will help non-professionals in ontology development
environment integrate their information sources. The extendability of NeOn Toolkit
and the plugins developed within this Bachelor Thesis will ensure that all further tools
and plugin, developed by the collaborative effort of the NeOn community can be also
be used with the EII Navigator.

4

1.3. Use Cases

5

Illustration 2: Diagram of the FAO fisheries [SCBJ08,FAO09]

1.3.1. FAO Fisheries

Description: [SCBJ08,FAO09] The effective management of shared fish stocks is
one of the great challenges facing the way towards achieving long-term sustainable
fisheries. The fisheries department of the UN has several information and knowledge
organization systems to facilitate and secure the long-term sustainable development
and utilization of the world's fisheries and aquaculture. Although much of the data are
'structured', they are not necessarily inter-operable. Additionally, there are
information resources that are not available through databases but are available as
parts of websites as individual documents, images, etc. These data sources could be
better exploited by bringing together related and relevant information, along with the
use of the fishery ontology, to provide inference-based services, language
independent extraction and discovery for policy makers and national governments to
make informed decisions.

Goal: [SCBJ08,FAO09] In this project, the description of the abstract terms is kept in
relational databases – RTMS (Illustration 2). In the same time, we have XML files -
FIGIS - with the actual data, that is described with these terms. The goal of this use
case is to map the existing description with the data to form an integrated view.

1.3.2. Internet Shop Merger

Description: One Internet shop buys another. Both keep their data in relational
databases and communicate with product vendors, delivery companies and banks
though web services. The schema of their databases is however different and they
need to merge them. Furthermore, they need to give to their clients and partners
access to some information services like profile information, product search and
statistics. This information is however divided between the databases and some of it
comes from web services of partners, like for example availability of a product.

Goal: Create an integrated view containing all the information in the new Internet
shop. Developing new software and databases would be too expensive, so this view
should be able to retrieve its data from the existing databases and web services.
Finally some parts of that view should be made available to the partners and clients.

6

1.4. Related Work
In their paper “Unsichere - Informationen bei der Datenbankintegration und ihre
Behandlung im Integrationsprozess” [AC03], Evguenia Altareva and Stefan Conrad
describe in great detail several methods for automated matching data sources and
extraction schemes during the integration process. It also evaluates the reliability of
such methods and the issues that influence it:

● Old systems where schemes are not quite known - This is a very
common case in big companies where mainframes are still used for
essential tasks. As those legacy systems need to be modernized,
extracting metadata from the information services is often hard if not
impossible due to the lack of documentation or trained personnel.

● New systems with unfinished semantics – In new information systems,
where either business logic is not quite developed yet, providing
metadata is often hard. This problem may also occur when merging two
companies with very different IT solutions where there is an urgent need
for and integrated view over the business operations, but there is no
concept of how the systems should be matched.

● Semi-structured or unstructured data – In many businesses, academic
and state institutions, information is often kept in the form of written
documents or website. Extracting reliable knowledge from such sources
is hard, but very important in big enterprises.

● Unknown or unclear relations and equivalence – During integration
projects the user may assume that there is a relation between concepts
in two different data sources (for example “User” and “Person”). However
there may not be enough metadata or context information to support that
assumption, which may lead to wrong matching and unreliable data.

[AC03] Section 2; Page 15

This paper also provides us with the layers of an information integration project in
which different types of mapping and extraction of knowledge occur: Data Source
Layer, Data Source Metadata, Integration ontology and Integrated View. (Illustration
3)

7

The next paper - “Repräsentations- und Anfragesprachen für Ontologien - eine
Übersicht” [MM03] by Alexander Mädche and Boris Motik deals with different
ontology representation and query languages. It discusses the advantages and
disadvantages of the entity relationship model, OO model, RDF(S), topic maps and
F-logic. It also looks into hybrid solutions as KAON, which is used in the Neon
Toolkit. There wan find a good overview of why ontologies are a good for
representing metadata in an integration project, namely: Often schemes match only
partly, but not uniquely. Ontology languages can represent those relations best and
are usually better for modeling and mapping. Furthermore there are many formal
ontologies that represent general knowledge which is either public domain, or is
provided by partners for better understanding of various domains. Such formal
ontologies can help with automatic matching and check of consistency as well as
development and improvement of queries.

8

Illustration 3: Integration process - [AC03] Abb. 8; Page 21

1.5. Alternative Solutions

1.5.1. Direct Data Source Mapping

A possible solution would be to map the external data sources directly to ontologies
as it is shown on Illustration 4. Thus each ontology will contain both the rules for
accessing the external system and those for transforming the data. This method
however poses two serious problems: during the development, the user will not be
able to see the DS schema, because it will be effectively hidden between the
access/transformation rules. This may cause confusion and wrong design decisions
on the users behalf. Also, this method does not provide re-usability and flexibility,
since the data source access rules will be defined in each ontology that wishes to
map to them. A change in the DS schema or access properties will result in repetitive
changes in all integration ontologies, which is unnecessary from the design point of
view.

9

Illustration 4: Direct data source mapping

1.5.2. Adapters in NTK

Instead of building additional tools for semantic Information Integration, we could use
the NeOn Toolkit base functionality for editing and mapping ontologies. The mapping
to external data sources can be done with adapters written in Java that would import
the data and it's schema to existing ontologies. The main issue with this approach is
that the existing NTK tools are created for the general purpose of ontology
development. There is no model that matches the conceptual architecture of
semantic Information Integration. It may be still possible for ontology specialists to do
semantic II on such a platform, but the usability and representation issues will make
that process slow and hard to understand.

10

2. Proposed Design

2.1. Design of a Semantic Information Integration
I propose that external information sources should be mapped to ontologies which
contain almost the same schema as that in the data source (DS). These data source
ontologies will allow transparent access to the external data and will do the required
information transformation automatically. Furthermore we propose that integration
ontologies should be created, which provide the needed integrated view of all
external data sources. These integration ontologies should be mapped to the DS
ontologies, as well as to other integration ontologies. This method provides a flexible
development environment which allows automation of task, re-usability of mapping
information and clear view over the integration process.

Thus the ontology information model has 3 layers – DS ontologies, integration
ontologies and queries. The queries will be done on the integration ontologies and
will pose as an information access point for external applications. They are the final
goal of the integration process.

During runtime, requests will be posted on the queries and following the ontology
mappings, parts of the query will be forwarded to other ontologies in the first and
second layer. When the query reaches a DS ontology, it will be transformed into a
SQL, XQuery, SOAP, etc. request, corresponding to the type of external data source.
Then the returned data will be forwarded up the layers of the information model and
will be automatically transformed along the way. Finally an integrated response will
be returned to the external application.

2.2. Artifact Model
In order to present this architecture to the user, we need to identify the individual
artifacts. These should be the items of interest throughout the integration process
and the main areas where a developer would alter the implementation. Thus we
distinguish 5 types of artifacts (Illustration 5):

● External data sources – these represent the source data schema and the
data itself. This artifact should allow editing of the parameters which allow
the system to access the data sources itself, like: security access, server
location, query input and so on.

● Data source ontologies – this type of ontologies are automatically created
when importing an external data source. Still though these artifacts the
user should be able to view the underlying ontology implementation and
mapping to the external data source.

11

● Ontology mappings – these are the mappings between the data source
ontologies and the integration ontologies. It is also possible that such
mappings may also occur between integration ontologies. Though these
artifacts, the user should be able to add, edit or remove mappings.

● Integration ontologies – these are the ontologies that contain the
integrated view over the whole data. They should be created by the user
and be available for mapping or editing. It is possible to have more than
one integration ontology, as this will allow for reuse of third-party and
formal ontologies.

● Queries – this type of artifacts consists of the information endpoints
though which external users would post requests on the integrated view.
This includes the query implementations, the query interfaces and the
query web services. This type of queries should be distinguished from
those, which are created for testing purposes. Though these artifacts, the
user should be able to edit the query interface and implementation, test
the query and publish it to an application server as a web service.

12

Illustration 5: The artifact of information integration ordered
into four layers

2.2.1. Required Development Tools for the Specific Artifacts

For the purposes of the development process a series of tools are needed, namely:

● An overview of the whole integration process containing a layered
representation of the artifacts

● Development tools for creation and modification of each artifact

● Testing tools for ensuring the consistency of the ontologies and debugging
the mappings and final queries

● A deployment tool for registering the artifacts in a registry as well as
deploying the endpoint queries as web services in a runtime environment

2.2.2. Specialized Information Integration Navigator

A specialized navigator is needed in order to present an overview of the integration
process to the user. This navigator should give direct access to all tools for editing
ontologies, importing data sources, deploying queries, etc. It should be configurable
in such a way, so that the user can easily rearrange the artifacts for the purposes of
task at hand. It would serve as a central view of the platform during the integration
process.

Although this element of the development environment does not add any new
features, testing or editing tools, it changes the layout and display of the platform in
such a way, that the user could navigate though a different kind of projects. Also, the
required aggregation of information and its visualization will aid those that are not
experts in ontology development in reusing information sources and ontologies and
quickly producing a working integrated view.

13

3. Semantic II as a NTK Extension

3.1. NTK Capabilities
The NeOn Toolkit contains a number of plug-ins that are essential for Information
Integration like ontology importing and mapping. A detailed description can be found
in section 3.3. However all the Eclipse views and editors are organized in different
perspectives and therefore it is hard to get a comprehensive view of the whole
project. The extendability of this toolkit, although very useful, makes the design
process even more challenging. This is why the NeOn Toolkit should be extended
with a series of plug-ins that would enable the user to do information integration
easier and faster.

The main one will be the Semantic Information Integration Navigator, which will give
a visual overview of the whole integration process. Though this Navigator the user
will not only view the current state of all ontologies, mappings, data sources and
queries, but will have quick access to important commands and editors. With one
click, he/she will be able to open the corresponding perspective for editing and
ontology, for testing a query or for mapping several ontologies.

For the purposes of the runtime, in which the web services will run, we need to
register all artifacts and their elements in a registry and save their implementation
sources in a repository. Thus the integration structure of the data will be accessible
both in runtime and in design time. Furthermore the web services should be
registered in a UDDI registry, which would allow discovery. For that purpose we will
use CentraSite, because it combines all that functionality. It will be necessary to write
a matching registry object schema for CentraSite and create a plug-ins that deploys
all the project data to the registry and repository. Also we should allow the user to
retrieve the projects from the repository by using a repository explorer.

There already are plugins for importing data sources from relational databases and
the file system, but we also need such that can import XML documents and web
services and create data source ontologies from them. The difficulty in these cases is
that these types of data sources usually have more than one schema and a different
ontology should be created for each of them.

A plugin that would also be useful is one that allows versioning of ontologies when
saving them to the repository. This is an important part of the ontology development
and lifecycle and will allow easier maintainability. Also, we need to extend the
searching capabilities of the NTK to allow finding the artifacts by their properties and
type.

All these plug-ins and extensions will add the missing functionality to the existing
NeOn Toolkit and will give the user a fully functioning Enterprise Information
Integrator. We also believe that it will speed up and simplify the integration process
since the designer will be able to concentrate on the integration itself and not the
inter-operation of the tools.

14

3.2. Extending the Platform
In Illustration 6 you can find a diagram of the plugins that the Neon Toolkit is
composed of and some of the additional plugins, that when added to the
environment, transform it in an information integration platform. On the left you can
see the data model plugins as well as those responsible for parsing, importing and
exporting ontologies. On the right there are the most important UI plugins including
the EII Navigator which is explained in detail in section 4. In the section 3.3 you can
find details for all involved plugins.

Infrastructure GUI

15

Illustration 6: NeOn plugin architecture with additional plugins, some of which are
developed as part of this thesis

3.3. Components and Tools
The available open source plugins in the NeOn Toolkit are as follows [NEON09]
(Illustration 7):

● com.ontoprise.jpowergraph – custom methods and extensions for the
standard graph visualization framework

● com.ontoprise.ontostudio.datamodel – base datamodel for the eclipse
representation

● com.ontoprise.ontostudio.dependencies – third party library dependencies

● com.ontoprise.ontostudio.gui – graphical tools such as an ontology project
navigator, property editor and base wizards

● com.ontoprise.ontostudio.io – methods for transformation between formats
and data models

● com.ontoprise.ontostudio.ontovisualize - visualization of the concepts and
attributes of an ontology

● com.ontoprise.ontostudio.owl.gui – graphical property editor extension for
OWL ontologies

● com.ontoprise.ontostudio.owl.model – OWL data model

● com.ontoprise.ontostudio.refactor – refactoring services

● com.ontoprise.ontostudio.search – Eclipse search extensions

● com.ontoprise.swt – graphical tools and dialogs

● org.neontoolkit.gui – NeOn Toolkit specific interfaces for Eclipse viewers and
dialogs

Furthermore, the core includes the following closed-source plugins that are
distributed freely as part of the toolkit:

● com.ontoprise.dependencies and dependencies – third party library
dependencies

● datamodel and datamodelBase – data model and reasoning tools

● flogic-parser – parser and serializer for F-Logic, which are used for
persistence

● kernel-g3 – Ontoprise Kernel

16

● ontobroker-core and server – connection to different data sources and
reasoning aid

● ontoprise-licensechecker – checks for licenses required by some Ontoprise
products

● touchgraph – third party visualization plugin

● util – Ontoprise utilities

Other plugins relevant to the Information Integration process are as follows:

● com.ontoprise.datamodel.objectmodel.api – object model API for the
datamodel

● com.ontoprise.ontostudio.dbschemaimport – rule generator and wizard for
creating data source ontologies

● com.ontoprise.ontostudio.imports – import wizard extensions

● com.ontoprise.ontostudio.ontomap – a graphical ontology mapping tool

● com.ontoprise.ontostudio.query – graphical tool for creating and testing
queries

17

Illustration 7: Development workspace with the
NeOn plugins

4. EII Navigator
The Information Integrator Navigator will contain a comprehensive overview of the
whole integration process. It should visualize the main artifacts in such a manner that
it allows the quickest access to all available commands.

For that purpose we will separate the artifacts in 4 layers and visualize them as
nodes of a directed graph. The relationships and mappings will be visualized as
connections. These layers will contain the following artifacts in that order: data
sources, data source ontologies, integration ontologies and endpoint queries. The
data source mappings, which are part of the data source ontologies will be
represented by connections between the first and the second layer. The integration
mapping will be represented as connections between nodes from the second and the
third layer, as well as between nodes in the third layer. Finally the connections
between the third and the forth layer will show which ontology is the respective query
ran on.

To improve the visibility of the overview, the user should be able to move around the
artifacts. It should also be possible to minimize some layers and hide certain element
to lower the complexity of the overview and accommodate the efficiency in different
parts of the integration process. The location of all items in this overview should
retain their position in between sessions, while new items should be placed after the
already existing ones.

Predefined layouts of the overview would accommodate the presentation. These
layouts should reflect the most needed information during the most common tasks.

● The first layout will show each layer equally and display only the
connections between the layers. This would help the understanding of the
overall structure of the integrated view.

● The second layout will display mostly the integration and data source
ontologies and the import/uses relations among them. This layout is useful
during the viewing of the data source schema and creation of the
integration ontologies.

● The third layout will again focus on the ontologies, but will display the
mapping connections between them, as well as the testing queries that go
with each ontology. This layout will be useful for creating mappings and
testing the existing implementation. It can also be used to promote queries
as end-point that will later be published as web services.

In this integration overview, running command and opening the respective editors
and wizards should be possible though several actions. First there should be a drop
down menu for each type of artifact, containing the standard commands. Also, upon
selecting an artifact, a summary of its properties and commands should be presented
next to the overview. This is a key feature of the EII Navigator, because apart from
the presentation, it will also be a central hub for quick access to the various tools.

18

In order to create an overview of the system, we need to first categorize all elements
in the integration project in the different types of artifacts. This is a complex step,
because the logic of the integration process may not be necessarily applied in the
data model representation of each individual ontology, query or data source. Thus
we need to express the features through which a user would distinguish one artifact
from another.

The main problem in this aspect of developing the overview will be distinguishing
integration from data source ontologies as well as testing from end-point queries. In
most ontology development environments, all ontologies are presented in one and
same way. That is why we have to depend on their secondary features like rules,
queries as well as mappings, uses and imports of other ontologies. In the case of
data source ontologies, we can expect rules that make the connection to an external
data source. Recognizing these rules from the rest could be done by detecting the
use modules, specific for the developing environment, that are responsible for
accessing databases, XML files, web services and so on. Integration ontologies on
the other hand would not necessarily have any rules, mappings and queries or at
least not during the development process. Thus we will recognize all ontologies in
the workspace, that don't have a connection with an external data source, as
integration ontologies.

A problem with this method may occur when importing XML documents and web
services as data sources. In those cases, the data source has more than one
schema and thus a separate ontology is created for each one. Depending on the
specific data representation model for the ontology development environment, the
rules responsible for making the connection to the physical data source may be
contained in only one of those ontologies. Thus we should evaluate the relations of
that ontology and the contents of the corresponding rules, in order to see which are
the related ontologies. Important relations in that case would be the import/uses
ones, since the generated ontologies match one and the same data source schema.

An alternative to this method would be to extend the data source importing
mechanism, which generates the data source ontologies. Since this type of
ontologies are created automatically and are not meant to be altered, we can leave a
marker that indicates their type. Likewise, all other ontologies in the workspace will
be recognized as integration ontologies.

Furthermore, we need to distinguish between the different types of queries. An
important feature of the end-point queries is that they are published as web services,
that would give access to external users to the integrated view. This is an excellent
way to separate the testing from the end-point queries, however, during the
development process, the queries that are intended as end-points will not yet be
deployed. One option is to make the distinction is to allow the user to manually
choose that he/she is developing a particular query for as end-point. Another way to
recognize it would be when the user deploys the query as web service. In both
cases, the query will be moved to the queries layer and thus separated from the
testing queries.

19

The other artifacts and relations can be easily distinguished as follows: information
about the data sources can be extracted from the rules that link them with the DS
ontologies; all rules that are not detected as links to external data sources can be
viewed as mappings; import/uses relations can be gathered from the internal
structure of each ontology.

4.1. Artifact Extraction and Data Model
There are several data models in the Neon Toolkit. The most basic one is that of the
ontology reasoner/repository – KAON2. It consists of numerous logic predicates such
as functional terms, literals, ontologies, predicate symbols, annotation properties,
data properties, individuals, data types, variables and so on. All ontologies in the
development environment are represented though this data model. Due to recent
improvements in the Neon Toolkit, this data model also includes OWL related
predicates, which however are not relevant to this project.

There are also some higher level data models that are included in the GUI and IO
plugins such as com.ontoprise.ontostudio.gui, com.ontoprise.ontostudio.io and
com.ontoprise.ontostudio.datamodel. There the ontologies, classes, attributes,
queries and rules are represented in such a way, that it is suitable for quick editing,
delayed change of information in the base KAON2 repository and presentation in
various table formats. For example, in many of the data model classes there are
conversion methods that encapsulate the information in protected implementations of
jFace table raw interfaces. Although quite convenient for the Neon Toolkit GUI
plugins, using those to gather information about the required artifacts would be time
consuming and hard. It would also be unreliable, because any small change in the
ontology representation would propagate in the underlying data model. Thus,
changed should also be made to the EII Navigator plugins that may also affect it's
reliability.

Extracting data directly from the KAON2 repository using its data model seems as
the best choice. All plugins, including those, which are not included in the original
Neon Toolkit, eventually store the generated rules and other predicates in that
repository. Such plugins include the XML Mapping plugin that imports XML
documents and schemes and the Radon plugin that detects any inconsistencies in
the ontologies and tries to correct them. Furthermore, the KAON2 API offers a visitor
interface that makes exploration of the repository easy.

20

Illustration 8: Artifact datamodel

The first step of the implementation is to build the artifact data model (Illustration 8).
It consists of several classes that correspond to the artifacts in section 2.3 – Data
Source, Ontology, Mapping and Query (Illustration 8). The properties and methods
that are common to all artifacts such as id, namespace, qname conversion,
serialization, etc. are implemented in the abstract class Artifact. WSQuery is the
class that extend the normal Query and adds the properties needed for a query that
is published as a Web Service in the CentraSite registry and repository. The class
Ontology represents both data source ontologies, which are created automatically by
importing an external schema or a database and integration ontologies, which are
developed my the user and serve as an integrated view over the whole system. The
distinction between the two types of ontologies is done by searching the artifact
repository for any data sources that reference the specific artifact. Thus that ontology
is recognized as a data source ontologies. Finally, due to the functionality of the
Neon Toolkit that only allows importing of databases, the Data Source class has
support only for that king of data source links. It contains the location, type,
database, username and password of the source schema and data. It is possible to
extend that functionality so that other third party plugins may include their data
sources in the EII Navigator view.

All Artifacts are created via a ArtifactFactory. It contains a repository of all artifacts
and provides method for searching and listening to changes in the data. When the
user selects a different project, the artifact repository is flushed and all artifacts are
rebuild from the data in the new project. Then all listeners are informed about the
change. In the case of a change of project, there will be only new artifacts, but it is
also possible to detect updated and deleted artifacts, as well as pre- and post-
warning for a change of the viewed project. A typical use for that listener is the
visualization of the artifacts in the EII Navigator view. However, that listener model
can be used by any number of other plugins that extend the EII Navigator
functionality or provide extra information. Such a case would be a persistence plugin
that saves the current state of the artifacts to CentraSite and then restores it back to
the workspace.

4.2. Graph Representation
As it is notable from the sketches in Section 2, a representation of the artifacts and
their relationships as a graph is most intuitive, convenient and user-friendly. This
visual aid will best suit the needs of the developers judging from other graph
representations like the Ontology Graph plugin that is included in the Neon Toolkit
and the graphical rule editor. Furthermore, a graph representation will offer a better
visual distinction between the artifacts and the ability to rearrange the nodes to suit
the specific needs of the user during the different stages of the integration process.
Since the graph would be displayed inside a view, this would allow the user to take
advantages of the standard Eclipse workspace features, like view persistence,
workspace schemes and recovery.

21

4.2.1. ZEST

For the purposes of the Graph representation, I have used the Zest framework
[ZEST09]. It is based on GEF and Draw2D and allows quick development of graph
presentations. It also implements different layout method as well as caching and
optimization for various operating systems. This ease of use poses some limitations
on the customization and flexibility, which I have overcome by overriding different
methods and extending the listener model of the base Graph and GraphNode
classes.

The benefits it offers is quick implementation of graph and easy-to-use graphical
model. The main benefit however is that it is under Eclipse license, which allows for
commercial applications to be built. Due to the fact that it is based on GEF it is
possible to change the graphical framework to basic GEF or any other extension in
further developments of these plugins.

4.2.2. Data Model Listeners

Before the artifacts are generated based on the ontologies in a selected ontology
project, the OntoNavigator view attaches a series of listeners to the ArtifactFactory
that alert it of any activity like creating of new artifact, updates, deleted artifacts as
well as preparation for and finished changed of the selected project. All these events
should be visualized appropriately on the Graph with as few visible movement as
possible, so that the work flow is not interrupted. Usually such changes occur when
the user inserts, updates or deletes a predicate of the selected ontology. The
listeners are also invoked when the view is opened or a new project is selected.
There are cases however, in which due to the complexity of the Neon Toolkit plugins
and the variety of data models used, some predicates are marked as updated in the
reasoner, when they are simply viewed. Such inconsistencies are compensated for,
so that the nodes stay in their place and are not marked as new.

4.2.3. Layout Algorithms

The first extension of the Zest framework I made was to implement my own
LayoutAlgorithm class. These algorithms are responsible for setting the position of
the nodes, when the graph is opened for the first time or a new node is inserted. Due
to the layered view of the graph, it orders its nodes into four layers – Queries,
Integration Ontologies, Data Source Ontologies and Data Sources. This algorithm
would be invoked on every node which enters the Graph for the first time. It will line it
up in a single line for a better visibility.

The second step is to implement the Graph mouse event listeners and to enforce
rules for moving the artifact nodes in the Graph view. Since those nodes should be
contained only inside their respective layers, when a user moves them, their new
position is calculated to be as close as possible to the dropped position, but still
inside the borders. The layers are enclosed from three sides, so it is possible to

22

move the nodes only to the right. Another limitation that is imposed is placing one
node over another. In order to achieve better visibility and less overlapping of nodes,
when a node is dropped over others, it will force them to move away. The movement
will propagate wherever there are overlapping as a result of the original enforcement.
If a node hits the borders of the layer, its movement will be stopped and the dropped
node will move back. My version of such an algorithm is far from being perfect, but
still offers better visibility of the nodes and thus – better usability.

The graph layout also contains buttons that allow a change in the width of the layer
margins. This enables the user to rearrange the layout, so that he/she gives more
room to the node groups of interest. Whenever a layer is resized, the nodes inside of
it are rearranged following the algorithm described above. The same process is
invoked when resizing the view or the entire Eclipse workspace.

Another useful feature is the ability to hide groups of queries. In Information
Integration projects, users tend to create a lot of ontologies with many queries for
each one. Thus the graph view could be full of nodes that may not relevant to the
task at hand. Many of those queries would be just for testing purposes and my never
be published as web service access points. That is why a function exists, that allows
the user to hide all queries, but the ones related to a specific Ontology. As an
addition one can hide just the queries of a specific ontology or to reveal all hidden
queries. This will allow the end-user to work just on one branch of the integration
process with better visibility. Of course, this functionality work also on a selection of
several artifact nodes.

4.2.4. Node Persistence

Since it is possible for the user to rearrange the layers and the nodes in order to
improve the visibility and usability of the tool, it only makes sense to offer persistence
for those changes. By using the standard view persistence model – Memento,
Eclipse saves the location of each node before the view or the workspace is closed.
When it is opened again, as part of the layout algorithm, it tries to recover the
locations of the plugins based on the persistence records. If it is not possible – for
example in case of a smaller workspace due to resized window, it tries to fit all nodes
in the available space. The same goes for the layers, the hight of which is adjusted to
the new workspace size. Any new nodes that are not in the persistence records are
arranges as usual – in a line. Any removed nodes are removed from the records.

4.2.5. Node Decoration

As each artifact is different, the nodes would have an icon matching the type of
artifact they represent. For a better usability, I have taken the same icons as those
used in the standard Neon Toolkit. Each node will also contain the namespace and id
of the ontology, data source or query it represents. The Java class architecture is
designed is such a way, that it allows further extendability of the decoration and
usage of more different icons for different types of data sources as an example.

23

The connections between the nodes represent different relations between the
artifacts. In the case of connected query and ontology, the connecting line defines
that the query is executed on that ontology. In the case of a connection between two
ontologies, the line defines a mapping. Finally a connection between an ontology and
a data source defines that the instances of that data source ontology are computed
from the records of an external database. The connections themselves have no
decoration, save for the mapping, which are marked as such for better visibility.
Much like the artifact nodes, it is possible to extend the decoration of the connections
and allow for the visualization of new artifact types and variations.

4.2.6. Menus and Extendability

Each artifact node has a drop-down menu attached to
it. For each node there are three standard actions
(Illustration 9):

● Show in Entity Properties

● Show only related queries

● Hide related queries

While the first one is enabled only when one node is
selected, the second and the third can be used for
more than one node, as described in section 4.2.2.1.
The first action is in itself the second part of the integration of the OntoNavigator with
the standard set of plugins in the Neon Toolkit and its functionality as an ontology
development environment. The main tool that is used for editing single or sets of
predicates of an ontology is the Entity Properties View that is tightly coupled with the
Ontology Navigator View. The Ontology Navigator shows a tree representation of all
ontologies and their concepts, attributes, queries, mappings and rules. What that first
action does is to fully open the subtree of the explored ontology, to select the
element that represent the artifact we want to show and to display it in the Entity
Properties View. When that element is altered and saved, the changes are
propagated in the Graph representation.

The Eclipse platform allows for very good extendability features, that allow third-party
developers to add actions to menus of this plugin. After the above mentioned actions,
there is a space that is reserved for such third party plugins that could add
functionality to the OntoNavigator. As an example, I have implemented a small
plugin, that allows the user to open a selected Integration Ontology or Data Source
Ontology in the Ontology Visualizer. This plugin is again part of the Neon Toolkit and
shows and ontology in another perspective – as a graph with all its concepts,
attributes and queries. That extra plugin demonstrates the possibility to add any
action to the drop down menu of a artifact node and so to provide a quick access to
an editor or a different kind of visualization. Such additional tool may be ontology
verification and validation provided by the Radon plugin or an export action, that
would save the ontology to an external file or a WebDav server.

24

Illustration 9: Example drop-
down menu of the artifact
nodes

Another menu, that is part of the OntoNavigator View is the toolbar that can be found
in the top-right corner (Illustration 10). It too can be extended by further actions that
can be run on one or more artifacts. A standard action in this toolbar is the “Show all
queries” button. It displays all queries that have been hidden beforehand by the
actions described in the beginning of this section.

4.3. Deployment to a Registry
In an information integration project, the end goal is to produce a working system that
provides an integrated view over a variety of data sources like databases and XML
document and easy access to that view. In the proposed solution in this document,
the integrated view consists of one or more Integration Ontologies and access to
them is ensured through a series of queries. These queries can be executed though
web services and the resulting set of instances returned to the external user. Other
execution methods are also possible as extensions, but using Web Services ensures
good discovery, integrability and extendability. Having a ready semantic description
of the query results, that the integrated view will provide, one will also be able to add
it to the web service and thus creating a semantically described WS. Such
capabilities and standards already exist in WSDL2.

However, before deploying the queries as web services in a runtime environment, we
need to publish the ontologies, mappings, queries and data sources to a registry and
their respective source codes to a registry. CentraSite is a wonderful tool to be used
for that purpose. During the runtime all aspects of the integration project will be
available and will provide links to the sources of the ontologies, connection data for
the data sources and additional rules and schemes.

Provided that we have those artifacts registered, we can publish and deploy the web
service in a WS container and finalize the development process. The web UI of
CentraSite will be used for lifecycle management and further integration of the
produced web services. Changes the data sources, mappings and those ontologies
that are not directly queried will not influence the final web services, as the integrated
view will not be affected. This will allow further adjustments and/or data source
integration, that can benefit the overall relay ability of the integrated data.

25

Illustration 10: Toolbar menu of the EII
Navigator

4.4. XML Mapping

Software AG also provides a plug-in extension that enables Neon Toolkit users to
import XML data sources (Illustration 11). This plugin provides the ability to generate
an ontology directly from the XML schema of documents, as well as to import all
records of those documents as ontology instances. Thus those generated ontologies
can be used as data source ontologies.

26

Illustration 11: XML import wizards from the
XML mapping plugin

Enabling dynamic access over the records in the original document is still in
development. An issue with importing such XML documents as ontologies and
generating instances from the data is that one can't distinguish after the fact, if the
ontology has been imported or developed manually. This is where the publishing
feature of this product may prove to be useful, as one can define extra information in
the registry about each ontology. Thus the user can fine tune the types of artifacts to
the needs of each project.

4.5. Branding and Packaging
The additional functionality developed as part of this thesis is distributed as several
plugins. The main plugin contains the EII Ontology Navigator and all extension
points. The second plugin contains several extensions that serve as a link between
the functionality of the Neon Toolkit tools and the EII ontology Navigator. This plugin
can be extended or other such plugins can be created when more tools an features
are added. Another two plugins contain the branding and help that comes with the EII
product and allow packaging either as an update site or as a complete environment.
In the case of the update site, the end-user should install a feature containing all
plugins in a working Neon Toolkit. In this case the branding of the toolkit is not
altered. The other option is to deliver an environment with pre-installed plugins, that
is set up to use the branding of an Enterprise Information Integrator.

27

5. Conclusion
The NeOn Toolkit, as well as other similar ontology development environments, offer
comprehensive tools for creating, editing and matching of ontologies. By combining
those tools in the proper way and adding additional navigation UI views and various
other features, one can create a fully functioning semantic information integrator
without using the advanced development capabilities of the environment. This will
allow non-specialists in the semantic field to integrate data sources and create an
integrated view with as little effort as possible. As part of this bachelor thesis, I have
developed such a navigation and the most essential features for achieving that goal
as addition to those already available in the NeOn Toolkit platform. The concept and
architecture, that I have presented, allows for extending this environment and adding
to the functionality of the EII navigator, as well as for interoperability with other tools
of the NeOn Toolkit.

28

6. References
[DMMW03] Stefan Deßloch, Albert Maier, Nelson Mattos, Dan Wolfson:

Information Integration – Goals and Challenges; Datenbank
Spektrum, 3. Jahrgang, Heft 6, June 2003

[AC03] Evguenia Altareva, Stefan Conrad: Unsichere - Informationen bei
der Datenbankintegration und ihre Behandlung im
Integrationsprozess; Datenbank Spektrum, 3. Jahrgang, Heft 6,
Juni 2003

[MM03] Alexander Maedche, Boris Motik: Repräsentations- und
Anfragesprachen für Ontologien - eine Übersicht; Datenbank
Spektrum, 3. Jahrgang, Heft 6, Juni 2003

[FAO09] see http://www.fao.org/aims/neon.jsp

[SCBJ08] Marta Iglesias Sucasas, Caterina Caracciolo, Claudio Baldassarre,
Yves Jaques: D7.1.2 Revised specifications of user requirements
for the Fisheries, case study 2008

[ZEST09] see http://www.eclipse.org/gef/zest/

[NEON09] see http://www.neon-toolkit.org/content/view/52/126/

29

http://www.datenbank-spektrum.de/v2/archiv/beitrag.html?key=dbspektrum/DesslochM03&nummer=6
http://www.datenbank-spektrum.de/v2/archiv/beitrag.html?key=dbspektrum/DesslochM03&nummer=6
http://www.neon-toolkit.org/content/view/52/126/
http://www.eclipse.org/gef/zest/
http://www.fao.org/aims/neon.jsp
http://www.datenbank-spektrum.de/v2/archiv/beitrag.html?key=dbspektrum/MaedcheM03&nummer=6
http://www.datenbank-spektrum.de/v2/archiv/beitrag.html?key=dbspektrum/MaedcheM03&nummer=6
http://www.datenbank-spektrum.de/v2/archiv/beitrag.html?key=dbspektrum/AltarevaC03&nummer=6

30

	1.1.1. Information Integration
	1.1.2. Semantic Information Integration
	1.1.3. The NeOn Toolkit
	1.3.1. FAO Fisheries
	1.3.2. Internet Shop Merger
	1.5.1. Direct Data Source Mapping
	1.5.2. Adapters in NTK
	2.2.1. Required Development Tools for the Specific Artifacts
	2.2.2. Specialized Information Integration Navigator
	4.2.1. ZEST
	4.2.2. Data Model Listeners
	4.2.3. Layout Algorithms
	4.2.4. Node Persistence
	4.2.5. Node Decoration
	4.2.6. Menus and Extendability

