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Abstract

This thesis gives some background on the use of Artificial Intelligence techniques in 
game development, notably reinforcement learning techniques implemented to allow 
games to learn to play and improve via selfplay, or playing against a human opponent 
and artificial neural networks used in the decision making process of ingame agents.

Some of these ideas and techniques, originally developed for symbolic games are then 
applied to a real time, continuous game akin to modern, commercial video games. 

A modular artificial neural network architecture is used to create AI agents, capable of 
not only showing visibly intelligent behaviour, but also of adapting to changing game 
parameters in the game via online learning algorithms.

The concept of controlled learning is introduced to make the use of learning AI agents 
more attractive to game developers.

Motivation

Commercial computer games today are vastly complex programs. They are developed 
by teams of up to several hundreds of programmers, designers and artists of all kinds. 
They have near photorealistic graphics. They use advanced physics simulations. They 
cost  millions  of  dollars.  They  produce  revenues  of  billions  of  dollars.  They  create 
complex, virtual worlds.

Yet they generally fail at any kind of higher intelligence.

Most of today's games fail to provide an adequate challenge to human players unless 
they present the player with vastly unfair situations or use cheating measures. This has 
a definite negative effect on the immersion human players feel, despite all the 
impressive work done in many other areas. Smart and adaptive artificial intelligence 
would go along way in taking computer games to another level. Ironically scientists 
have been making huge advances in programming games that are even able to beat 
human expert players. But this work has been done on a different kind of computer 
game. The symbolic or human games, such as Chess, Checkers and Backgammon. 

This thesis will try to understand the reasons behind this development and bridge the 
gap  between  these  two  types  of  games.  We will  use  techniques  used  for  human 
games,  such  as  reinforcement  learning  and  artificial  neural  networks,  in  an 
environment that resembles commercial games to show that these techniques can be 
used to implement smart AI that adapts to the player's actions online.
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Outline of this thesis

Chapter  1 presents  the  motivation  for  using  machine  learning  techniques  in  a 
commercial  type computer game. It  summarizes the state of  artificial  intelligence in 
videogames and gives reasons why both groups of game designers, the developers of 
commercial  games  and  the  scientists  working  on symbolic  games,  can  profit  from 
better cooperation.

Chapter 2 gives a short summary of the machine learning techniques used during the 
course  of  this  thesis.  The  emphasis  lies  on  artificial  neural  networks  capable  of 
controlling game agents and evolving to better play a game.

Chapter 3 defines a small task that will be used to show the viability in using neural 
nets in a real time, continuous environment typical to modern games. The goal of the 
task is to produce agents that exhibit seemingly intelligent and believable behaviour, 
controlled by an artificial neural network.

Chapter  4 summarizes the first  stage of  the implementation  of  the task defined in 
chapter 3. A small game engine will be created to serve as a testing ground for the AI 
techniques explored in the following chapters.

Chapter 5 A first version of the Agent AI is developed using an artificial neural network. 
Several techniques such as supervised and controlled learning are introduced to add 
adaptive qualities to the AI.

Chapter 6 A detailed analysis of the learning algorithms used to create the AI agents is 
given and several improvements are implemented and tested.

Chapter 7  Introduction of reinforcement learning techniques as an alternative to the 
supervised learning techniques used in chapters 5 and 6.

Chapter  8  Variations  on  the  structure  of  the  neural  network  used  are  examined. 
Implementation  and  testing  of  some  of  the  learning  techniques  from  the  former 
chapters on these changed structures.

Chapter 9 A concluding discussion of the thesis.
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1 Background 

1.1 Computer games and Artificial Intelligence.

The scientific field called “Artificial Intelligence”, short AI, has its origins in the 1940s 
and 50s. The original dream was to build an artificial brain capable of human logic and 
deduction. In 1965, American scientist H. A. Simon stated: “Machines will be capable, 
within twenty years, of doing any work a man can do.”

This optimistic outlook proved to be wrong and the goals of AI research have since 
been redefined.

Today the field of AI in scientific studies is divided in many smaller and specialized 
fields  such  as,  knowledge  based  systems,  computational  intelligence  or  cognitive 
systems.  The  results  are  applied  to  varied  fields  of  applications  like,  data  mining, 
industrial robotics, speech recognition and medical diagnosis.

One very unique type of application that was used very early by researchers to test and 
improve their work were games.

Even back in 1950 the first checkers and chess programs were written, which let the 
computer play against a human player.  Eventually AI players were able to beat the 
human world champions in both these games by the mid 1990s. This interest in games 
though was concentrated on so called “human” or “symbolic” games. 

The  science  community  has  been  focused  on  analytical  games,  often  also  called 
symbolic games because they can be described using symbolic representations, such 
as board and card games. Normally the AI takes on the role of a human player in these 
games, thereby adhering to the original goal of creating an artificial brain. The so-called 
“good  old-fashioned  artificial  intelligence”  (GOFAI)  techniques  [Haugeland85] work 
well  with  them,  and  to  a  large  extent,  such  techniques  were  developed  for  these 
games. Computer programs have beaten the world champions in chess ,Deep Blue in 
1997 [Campbell02] and checkers [Schaeffer et al. 96].
This is the result of a long time of learning in games going back to 1959 (Samuel's 
checkers  program).  Some  more  games  explored  in  this  field  are:  Tic-Tac-Toe 
[Michie61], [Sutton88], Backgammon [Pollack98]; [Tesauro94], Go [Richards et al. 
1997]; [StanleyMiikkulainen04] and Othello [MoriartyMiikkulainen95]; [Yoshioka et 
al. 98].
Parallel to these board game adaptations another kind of game emerged in the 1960s 
and 70s, video games sometimes also refered to as pc games or commercial games. 
Pong probably being the most famous one of the pioneers, which was released 1971 
by Atari  and was one of  the first  commercially  released games. The first  computer 
controlled  opponents  were  used in  games such as Space  Invaders  and Pac Man. 
These early games used simple deterministic logic and pattern movement to model 
opponent  behaviour,  therefore  they  were  of  no  real  interest  to  the  scientific  AI 
community.  Only  recently  have  there  been more  attempts  to  use AI  techniques  in 
commercial video games.

Many  of  the  learning  methods  developed  for  analytical  games  can  be  applied  to 
commercial  video  games  as  well,  as  has  been  shown  by  several  scientitific 
publications:  [Fogel et al. 04],  [LairdLent00],  [Spronck05],  [Geisler02],  [Lucas05], 
[BryantMiikkulainen03];  [RevelloMcCartney02]  and  [Yannakakis  et  al.  04].  What 
these works have in common is the fact that scientists applied some of their work to 
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commercial  games by modding them (modifying some of the original  game files) or 
creating  small  games  of  their  own,  essentially  copies,  based  on  older  commercial 
games.

The video game industry itself has not made any of the machine learning techniques 
their own and incorporated them into their games, essentially  using techinques that 
were developed 30 years ago [Bauckhage et al. 03]. The only notable exceptions are 
the  ubiquitous  A*  algorithm,  which  is  the  basis  for  most  pathfinding  solutions  in 
commercial  games,  and  a  handful  of  games  using  AI  that  adapts  to  the  player's 
actions: Creatures (Mindscape 1996) ,  Black & White (Lionhead Studios 2001) and 
Battlecruiser 3000AD (Take Two Interactive 1997) are probably the most famous ones.

This is especially surprising since the game industry has been a driving force in the 
development of high end software and hardware, especially on the field of computer 
graphics.

1.2  Why  now  is  there  such  little  use  of  modern  AI  techniques  in 
commercial games?

To answer this question we have to look at the different expectations and tasks a game 
AI has to fulfil and to take a closer look at games in general.

The foremost  goal  of  game AI  is not to beat the human player  or play as best  as 
possible, its primary goal is to provide a fun experience to the human player.This is the 
one  cardinal  difference  between  Artificial  Intelligence  in  commercial  and  symbolic 
games. In many cases this means the AI player has to have deliberate weaknesses. It 
would be easy to program an AI agent capable of beating a human player with a 100% 
chance  in  many  games.  In  shooter  games  for  example  the  AI  agent  has  to  be 
programmed to not have perfect aim or reaction time, to provide a fun challenge for the 
player. This is probably one of the main reasons why scientists hesitate to work on 
commercial games and why game developers steer away from algorithms that let the 
AI player evolve and improve, potentially breaking the game for the human player. The 
goal of gaming AI is to imitate intelligent and above all humanlike behaviour in order to 
create a fun experience for the player.

The goal of AI researchers on the contrary has always been to develop algorithms that 
solve a task in the most efficient way possible. Therefore not all techniques developed 
in research are directly applicable to games. Many of them have been developed for 
very  well  defined  often  quite  simple  domains,  whereas  modern  games  simulate 
unpredictable virtual worlds.

Another  reason that  AI  has  been neglected  is  the fact  that  computer  games have 
always pushed the current hardware to its limits, leaving few power for the AI. This 
process is getting slower though and especially the advent of multi core processors 
allows for more system power dedicated to AI routines.
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1.3 Why should scientists take interest in commercial games?

Video games have always needed some kind of artificial  intelligence,  to be able to 
provide a challenging and exciting experience  [Chan et al. 04]. Modern commercial 
computer games simulate complex worlds that often have qualities close to the real 
one. Games are played by millions of people worldwide and the market is constantly 
growing. Because there are so many players and because video games carry perhaps 
the  least  risk  to  human  life  of  any  real-world  application,  they  make  an  excellent 
testbed for techniques in artificial intelligence and machine learning [LairdLent00].
The reason for this is the difference between symbolic games and video games. Video 
games often simulate a physical environment where NPCs interact with the player and 
each other. They use data obtained through sensors which return numerical rather than 
symbolic values. Many kinds of noisy input from different sources has to be observed 
and the behaviour has to be changed under real time conditions. This provides a new 
challenge as the old techniques,  developed for  symbolic  games,  are often not  well 
suited to this kind of conditions.

Many  human-level  control  tasks,  such  as  navigation,  combat,  team  and  individual 
tactics and strategy have to be solved in games [Miikkulainen et al. 06].
These tasks  are  well  suited  for  soft  computational  intelligence  techniques  such as 
neural networks, evolutionary computing, and fuzzy logic. They are able to deal with 
the fast, noisy, numerical, statistical, and changing domains provided by modern video 
games. 

Therefore, video games constitute an opportunity similar to that of the symbolic games 
for GOFAI in 1980s and 1990s: an opportunity to develop and test  techniques, and an 
opportunity to transfer the technology to industry [Miikkulainen et al. 06]. 

1.4  Why  game  developers  should  use  modern  machine  learning 
techniques.

The game industry has largely ignored scientific advances in the last 30 years.The AI 
used to control  the behavior  of  the non-playercharacters  (NPCs)  in  modern games 
often  uses  labor-intensive  finite  state  machines,  scripting  and  authoring  methods 
[Miikkulainen et al. 06]. Even though it is possible to create interesting behaviour like 
that, the results are often repetitive and inflexible.  Agents just cycle through a fixed 
repertoire of possible actions and reactions. Beating a game when playing against AI 
controlled agents often only consists of finding out how the AI works and then finding a 
way to beat this. Once such a solution is found the game instantly becomes boring 
[Stanley et al. 05]. If a human player acts in unforeseen ways the AI will not be able to 
find an appropriate response. Once found such a weakness can be exploited as often 
as the player wants to because the AI is not able to correct its response.

Modern machine learning techniques have the potential  to produce agents with the 
capabilities  to  adapt  and  learn,  thus  keeping  video  games  interesting  for  a  longer 
time.This  of  course also  bears  the  risk  of  the  agent  learning  unwanted  behaviour, 
making the gaming experience unsatisfying. To minimize this risk precautions have to 
be taken. For example extensive offline learning or some kind of control algorithm has 
to be used.
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Machine learning techniques could also be used to create entirely new genres, e.g. 
teaching a group of agents to play a game [Miikkulainen et al. 06].
Most  modern machine learning techniques such as neural  networks  are also more 
flexible and could be reused easier than complex finite state machines or scripts that 
have to  built  from scratch  for  a  different  game.  Machine  learning  can make video 
games more interesting and decrease their production costs [Fogel et al. 04].
Another use of machine learning besides implementing the actual AI could also be to 
test games. For example by learning human player action sequences that lead to either 
unwanted  game  behavior  or  to  game  states  that  allow  to  test  certain  ideas  and 
expectations of the designer. In the long term, the game industry increasingly will have 
to rely on tools that help in finding such game states, preferrably on tools that do so 
automatically [Chan et al. 04].
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2 Machine Learning 

The process or technique by which a device modifies its own behavior as the result of 
its past experience and performance.

Machine learning is a branch of  artificial  intelligence research. It  covers a range of 
techniques  used  to  allow  computer  programs  to  learn  and  thereby  enhance  their 
problem solving capabilities  becoming more efficient at what they were programmed to 
do.

The field  of  application  for  machine learning  procedures  is  quite  varied.  Many real 
world problems have been successfully approached with machine learning solutions. 
Examples  are  medical  diagnostics,  meteorologic  prognosis,  natural  language 
processing, handwriting recognition, robot locomotion, game playing and many more.

Machine learning algorithms can be classified into distinct categories, depending on the 
available input and desired output. It should be mentioned that algorithms in the same 
category may reach their goal in quite different ways.

In the following chapter a description of machine learning terms and techniques which 
are of relevance for this thesis is given.

2.1 Offline learning

Offline  learning  refers  to  learning  that  is  done  without  a human player  playing  the 
game. It  can take many different forms. Often sample data is used to train ingame 
agents. The learning method to initialize the neural networks used in chapters 4, 5 and 
6 falls under this category. It can also be implemented by letting two AI players play 
against each other.

2.2 Online learning

Online learning takes place while  a game is being played.  It  can be supervised or 
unsupervised. The main reason to use online learning is to adapt to the way the player 
plays the game and keep it challenging. Game developers have been loath to use any 
kind of online learning as it adds a high level of unpredictability to published games. 
They fear that the AI could get worse and have a negative impact on gameplay.

2.3 Supervised learning
Supervised learning is  a term that  is  used in  the literature to  describe two slightly 
different things:

i) Training that takes place while a human player is playing the game. Some kind 
of feedback is given directly by the player, which is used to make adjustments 
to the game AI during playtime. One popular commercial game which used this 
as an integral  part  of its design was Black & White (Lionhead 1996). In this 
game the player could indirectly control a creature by rewarding or punishing its 
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actions. Although the game got good press and sold well it did not have any far 
reaching influence on the game development scene. Despite offering interesting 
possibilities for unusual gamedesign supervised learning is very uncommon in 
commercial games. 

ii) Training that uses input data which is associated with output data representing 
correct results. The trainining algorithm used in chapter 4 to initialize the neural 
network falls under this category because it uses predefined state/action pairs.

2.4 Unsupervised learning

Unsupervised learning is learning without guidance from an outside source. There are 
no labeled examples. Agents using unsupervised learning have to rely on their own 
information and knowledge.

2.5 Reinforcement learning

Reinforcement  learning  became popular  in  the  1990s  within  machine  learning  and 
artificial  intelligence,  but  also  within  operations  research  and  with  offshoots  in 
psychology and neuroscience.  In reinforcement learning algorithms the program does 
not  receive  training  information  from outside  (e.g.  a  predefined  training  set)  as  in 
supervised learning.  Instead,  it  will  receive feedback from the environment,  the so-
called reinforcement or reward, on its own actions ingame. Agents can be programmed 
without explicitly telling them how to achieve their goals,  instead they are taught  by 
reward and punishment. 

This  kind of  learning  is  well  suited to online  learning as long as  a good  feedback 
function can be designed. In games this is normally quite trivial because of well defined 
victory conditions.

Reinforcement  learning  is  a  class  of  problems  rather  than  a  set  of  techniques 
[Kaelbling et al. 96].
Two main approaches to these problems can be distinguished. 

Searching in  the space of  behaviours until  one has found a successful  strategy or 
finding ways of estimating states and actions in the world and assigning them a value.

The former is often done via genetic algorithms and programming, the latter is based 
on dynamic programming and statistical techniques.

The standard reinforcement learning model

In the standard reinforcement learning model an agent is connected to its environment 
which is directly influenced by the agent's actions. State and action value functions are 
used  to  evaluate  the  agents  progress  and  the  state  of  the  environment.  The 
environment communicates with the agent via the reward signal, telling it if it is doing 
well or not.
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The agent
The Reinforcement learning agent has to be able to sense the state of the environment 
and its actions have to be able to influence the environment. A Policy π is defined 
which  maps  states  of  the  environment  to  actions.  In  most  basic  Reinforcement 
Learning algorithms a policy will be implemented as a simple function or lookup table. 
The agent's goal is to optimize its policy so that it generates actions which lead to the 
greatest possible reward.

The environment
The environment is typically modelled as a Markov Decision Process.
The MDP is  defined  by:  A set  of  states  S,  an  action  set  for  each  state  A(s),  the 
probability of a transition between states s and s' given an action a P(s, s',  a), the 
expected reward R(s, s', a) and the discount rate for delayed rewards γ.
When it is not possible to model the environment as fulfilling the Markov Property it is 
nonetheless possible to use reinforcement learning algorithms and ideas as long as a 
state represantation  can be found that  is  a  close approximation  of  a  Markov  state 
[Sutton98].

The reward and value function
The goal of RL algorithms is the maximisation of the long-term discounted reward. This 
means a policy π has to be found which maps actions to states in such a way that the 
value (expected future reward) of each state and each state, action pair is maximized. 
Value function are used to judge the long term reward, reward functions define the 
immediate reward given to the agent and are therefore highly problem specific.
Value functions are normally defined in the follwing way, they can be used to reward 
states or state/action pairs:
The state-value function Vπ(s) = E{rt+1 + γrt+2 + γ²rt+3...| st = s, π}.
The action-value function Qπ(s,a) = E{rt+1 + γrt+2 + γ²rt+3...| st = s, at = a, π}.
Values have to be consistently reevaluated for a Reinforcement Learning algorithm to 
improve. One of the biggest tasks in designing such an algorithm is to improve the 
value function in fact this is the basis to most Reinforcement Learning algorithms.

Optimal value functions and policies
Reinforcement Learning theory proved that there are optimal value and policy function. 
The solution to finding those and thereby solving the reinforcement learning problem 
relies  on solving  the  Bellman  optimality  equation,  which  entails  exhaustive  search, 
looking ahead at all possibilities, computing their probabilities of occurrence and their 
desirabilities  in  terms  of  expected  rewards.  In  practice  this  is  only  possible  under 
specific circumstances[Sutton98].

• Perfect knowledge of the dynamics of the environment.
• Enough computational resources to complete the computation of the solution
• The task suffices the Markov property

Exploration and exploitation
One of the characteristic challenges in developing Reinforcement Learning algorithms 
is to find a tradeoff between exploration, trying out new actions, and exploitation, taking 
actions that are already known to be good and which therefore will  produce a high 
reward. Always choosing the highest valued action is referred to as the greedy policy.
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Delayed rewards

When taking an action an agent often cannot tell what consequences it will have in the 
future. To be able to correctly value such an action an agent has to be able to learn 
from delayed  rewards.  A  reward  given  by  a  future  action,  made  possible  by  past 
actions. 

 

There exist  many different types of  reinforcement learning algorithms based on the 
above  model  that  are  able  to  solve  these  problems.  Monte  Carlo  methods  and 
Temporal difference learning to name two.

The disadvantage of these techniques in the scope of this thesis is their assumption 
that the state and action space  or some kind of generalized represantation can be 
ennumerated and somehow stored in tables. This is much more complicated for the 
state/action  space  of  a  commercial  computer  game  .  In  a  continuous,  constantly 
changing environment with many independent agents as it is typical for these games 
this  becomes  impracticable.  Another  key  problem is  the  fact  that  the  state  of  the 
environment is not only dependent on the player's actions, one of the assumptions of 
the MDP. The environment is highly dynamical and influenced by other AI agents and 
the human player(s).

This doesn't mean that reinforcement is useless for learning in video games. Many of 
the ideas behind the reinforcement learning algorithms can be used to help in creating 
adaptive game AI.

Value functions can be generalized by neural  networks.  An approach which will  be 
used by one of the learning architectures presented in chapter 5. 

The idea of immediate reward [Kaelbling et al. 96] is used as basis for the first learning 
algorithm used in chapter4, which will later be refined with delayed rewards. 

2.6 Artificial neural networks

The human brain is  composed of  billions  of  neurons.  Connections  betweens these 
neurons, called synapses form a complex network that is used to process and store 
information.

Artificial neural networks, attempt to imitate this model on a smaller scale.

The artificial networks used in science are quite simple by comparison only containing 
comparatively  few  (a  dozen  or  so)  neurons.  A  few  specific  applications  can  use 
networks of up to thousands of neurons, still much smaller than our brain. Therefore 
the artificial networks are not as all powerful as the human brain but they can be used 
for very specific tasks.

Artificial neural networks can also be understood in a less biological sense. They are 
often  understood  as  mathematical  function  approximators.  Input  to  the  network 
represents independent variables, while output represents the results and dependant 
variables. The network itself is a mathematical function giving one unique set of output 
for one set of input.

A big advantage of neural nets is that they can represent highly nonlinear functions 
very well.
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The AI community uses many different kinds of neural networks to solve all sorts of 
vastly  different  problems,  from pattern  recognition  to  data  processing  and many in 
between.  Neural  networks often are combined with  other techniques such as fuzzy 
systems, genetic algorithms, and probabilistic methods.

There are many different kinds of networks to today. Some of the most important are: 
Feedforward neural networks (layered and general), time delay networks,  perceptrons, 
recurrent networks or cascading neural networks.

In this thesis multilayer feed-forward networks will  be used with backpropagation for 
training purposes.

Evolutionary Artificial Neural Networks

Instead  of  reinforcement  learning  to  teach  and  evolve  a  neural  net  evolutionary 
algorithms can be used. These are genetic algorithms that create permutations of the 
network and judge the results by a fitness function. The best networks are then used to 
create a new generation on which the process is repeated. This has been shown to be 
a working method for evolving neural nets offline but is considered to be too slow for 
online learning [Spronck05]. Evolutionary networks are therefore genreally not viable 
for the kind of online learning explored in this thesis. There is however research in the 
area of online evolutionary algorithms [Stanley et al. 05].

Artifical neural networks in games.

In  the  scientific  game  community  neural  nets  are  mainly  used  as  function 
approximators,  often for value functions such as in TD-Gammon  [Tesauro95].  This 
approach is not very useful for commercial games as modern games use continous, 
highly complex environments which are hard to evaluate. But there have also been first 
attempts at adapting neural networks for usage in commercial games [Spronk05] and 
[Smith01] in the last years.

There are many more different ways of using artificial neural networks in games. They 
can be used used to simplify the coding of complex state machines or rules-based 
systems and substitute some of the decision making parts of the game AI. One of their 
most  attractive  features  is  the  ability  to  adapt  and  learn  during  gameplay,  thereby 
potentially improving the gaming experience by tuning themselves to the playing style 
of the player.  A neural  net will  also be able to deal with situations the programmer 
might have forgotten to code into a finite state machine.

However,  game developers are still  very hesitant  to use neural  nets in commercial 
games. This is probably due to several factors.

Firstly, although neural networks are great at handling nonlinear problems that cannot 
easily be solved using traditional methods their inner workings are hard to understand 
because they constantly change of themselves. It is therefore very hard for a human to 
comprehend how they produce their results. Secondly, it's difficult at times to predict 
what a neural network will generate as output, especially if the network is programmed 
to learn or adapt within a game. Compared to traditional AI techniques like finite state 
machines, which are prevalent in game programming, they are hard to test and debug. 
Thirdly, adaptive AI in general is seen with scepticism by game programmers because 
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it produces unpredictable AI. The danger that the AI will deteriorate after the game is 
distributed  and  thereby decrease  the  enjoyment  a  customer  gets  from playing  the 
game [Miikkulainen et al. 06].
Early  attempts  to  use  neural  networks  in  games  involved  complete  AI  systems 
composed entirely out of  neural  nets to completely control  a game agent.  Such an 
approach amplifies the problems game programmers have with neural nets concerning 
predictability, testing, and debugging. 

A different approach will be used in this thesis, namely the use of several small neural 
nets  which  are  highly  specialized  and  work  in  tandem  with  more  traditional  AI 
techniques. Thus we hope to lessen the unpredictability and show a more attractive 
use of artificial neural networks for game progamming.

This kind of a modular network hierarchy, composed of independent expert networks 
has  already  been  investigated  for  other  purposes  such  as  implementing  game 
evaluation functions for Backgammon  [Boyan92] and Tic Tac Toe and been proven 
superior to the monolithic approach with one big network. It is easier to implement and 
faster [Wiering95].

Some possible uses of neural networks in games

Control of vehicles

In Robotics neural networks often are used as controllers for robots. For example to 
control a robot's motor control system. Inputs from the sensory system are used to 
detect obstacles ahead and fed into the neural network. The net's outputs are then 
used to steer the robot.

In games a similar network could control some kind of vehicle, a robot even.

Assessment of game situations

In a strategy game in which the player can build different kinds of units to fight against 
the AI, a neural net could be used to predict the possible threat posed by the player's 
unit composition and choose the AI players reaction accordingly.

Behavioural control

In a RPG game a neural  network could control  how certain creatures in the game 
behave, for example whether a creature will attack the player, run away or flock with 
other creatures. In chapter 4 a scenario very similar to this will be implemented.

Generalization

Another big advantage of neural networks compared to more static control structures 
such as finite state machines is their ability to generalize. This means that a neural 
network will always be able to respond to input that the programmer might not have in 
mind while  programming it.  A finite state machine or  a decision  tree based control 
algorithm can normally not cope with such situations as well as a neural network.



11

3. The Chase/Flock/Evade Task

3.1 The task

The task consists of a group of AI agents that have to chase down and eliminate a 
single human controlled agent. The AI agents' decisions are controlled by an artificial 
neural net. To test the viability of using neural nets in a realistic setting, a simple real 
time engine similar to those in many games will be used. The neural net will be trained 
both offline, before the task is run, and online to allow the agents to adapt to the player 
while the simulation is running. 

The purpose of  implementing  this  task is  to  gain  insights  into  implementing  neural 
networks to control  computer game agents. The first step is to create working agents 
that exhibit visibly intelligent and believable behaviour as well as the ability to adapt to 
changing game conditions. This will be described in detail in chapters 4 and 5. Chapter 
6 will  then expand on the basics  learned in  the previous chapter  and improve the 
network implementation as well  as devise methods to design and test a neural  net 
more  methodically.  A  second  network  will  then  be  added  to  support  the  first  one, 
creating a small hierarchy of interconnected nets.

3.2 The agents

There are two types of agents in the game. The player and the AI agents. Both have an 
equal amount of life (hitpoints), a 360° field of vision and unlimited sightrange, they 
move at a constant speed and their turning rate is capped at a maximum amount of 10° 
per gametick. 

The AI agents can switch between three behaviours: Chasing, evading and flocking. 
These are implemented using deterministic algorithms describe in detail in chapter 4. 
The decision process is controlled by a neural net. All AI agents use the same net, they 
thereby share their experiences.

To test the adaptive qualities of the neural net the attributes of the player controlled 
agent will be changed online, while the game is running.

Flocking

While flocking the agents try to stay close to other agents in their immediate vicinity. 
While  in  this  state  they  exhibit  a  group  movement.  The  algorithm  is  based  on  3 
principles [Reynolds87]:

● Cohesion: Have each unit steer toward the average position of its neighbors.

● Alignment: Have each unit steer so as to align itself to the average heading of 
its neighbors.

● Separation: Have each unit steer to avoid hitting its neighbors.
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Evading

When an agent is low on health it shall avoid the player in order to survive. In order to 
do this it simply steers away from the player and tries to avoid his course. 

Chasing

When the agent is in a good position to attack the player it shall intercept and chase 
him, until the player dies or the agent has to retreat. To do this the agent plots a course 
over the last 2 known positions of the player and tries to get in front of him.

3.3 The environment

The playing  field  is  a  2 dimensional  plane without  obstacles,  it  uses  floating  point 
coordinates to simulate a continuous environment.  The playing field is restricted by 
boundaries.  If  agents leave the restricted area they reenter the playing field on the 
opposite side,  continuing to move in their  current  direction.  There is no information 
hidden from the agents, they can access the exact position and state (health, direction 
etc.) of all other agents at any time.

3.4 Combat

The game uses a highly abstracted form of combat. Every AI agent close to the player 
loses a set amount of hitpoints per gametick, the corresponding distance will be refered 
to as combat distance. The player loses a set amount of hitpoints for each AI agent 
close  to  him.  Once  there  are  no  enemy agents  close  every  agent  slowly  regains 
hitpoints up to its starting amount of health.

3.5 The artificial neural network

The AI agents use a 3-layer-feed-forward neural net to control their behavioural state. 
This net is accessed by all agents collectively. Before the start of the game it is trained 
using a supervised learning method. A training set with given state/action pairs is used 
for this. An artificial neural network was chosen instead of some other techniques such 
as a finite state machine or a decision tree because of its ability to generalize over the 
different states. This allows it to produce sensible outputs even for inputs not originally 
considered while training the network. In addition to this a tried and tested supervised 
learning algorithm could be used to train the network; the backpropagation learning 
algorithm.
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The network is composed of 4 input nodes, 3 hidden nodes and 3 output nodes.

Inputs: The number of friendly agents in close proximity.

The health of the current agent.

If the player is engaged with AI agents.

The distance to the player.

Outputs: The behavioural strategy the agent shall use, namely evading, chasing or 
flocking.

Evaluation criteria

To evaluate the artificial neural net, several criteria have to be taken into account.

The following computational  and functional  requirements towards online learning  as 
defined in [Spronck05] will be used to discuss the results.

Computational requirements:

● Speed: Online learning must be computationally fast as it takes place during 
runtime.

● Effectiveness: Online learning must create effective game AI, at least as good 
as manually created code.

● Robustness: It has to be able to deal with randomness.

● Efficiency:  The wanted behaviour  has to emerge swiftly  enough (after a low 
number of trials) to be useful ingame.

Functional requirements:

● Clarity: The emergent behaviour has to be easy to understand.

● Variety:  The learning process has to yield a variety of behaviour so that the 
game does not get boring.

● Consistency:  The  average  number  of  trials  before  the  wanted  behaviour 
emerges has to be consistent, there should not be a huge variety in the amount 
of time it takes to learn.

● Scalability: The learning process must be able to scale to the difficulty level of 
the game.

In addition to these requirements a simple fitness function will  be used to compare 
different neural nets to each other and to a hand coded deterministic AI using a finite 
state machine.
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4. Implementation of the Chase/Flock/Evade task

4.1 Goals of the implementation

The goal of the implementation of the Chase/Flock/Evade task is to show several ways 
of  using  a  neural  network  in  a  game like  environment.  The  emphasis  in  this  first 
implementation lies on testing different methods to train the neural net and finding rules 
to build a workable game AI using a net for decision making. To implement the task 
defined in chapter 3 a small game engine capable of controlling agents in a real time, 
continous environment was created. It will be refined and augmented in the following 
chapters.

4.2 Tools

The  program  is  written  in  C++  using  DirectX  to  manage  the  graphical  and  input 
components of the game as well as all the vector arithmetics needed. It is therefore 
dependant on Windows as operating system and uses the .net framework.

4.3 Architecture

It is divided into the following components:

Entry function

Creates  and  initializes  the  Windows  classes  and  engine  components.  All  game 
variables including the agents are initialized and the neural net's basic training is run. 
After this the main game loop is run. A simplified pseudo code version of the game loop 
looks like this:

while(game_is_running)
{

read_input(); //user_input is read and processed
run_simulation() //the simulation class runs the game logic, including the AI
run_3d_engine() //the current gamestate is put on screen

}
Figure 4.1 Game entry function
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The game class 

A helper  class  (Game.cpp)  that  contains  pointers  to  all  the  data  that  needs to be 
shared by the different components such as the agents and several global variables 
such as the mapsize. A 256 units long playing field is used, the combat distance is set 
to 16 units, coordinates are double values.

The 3d-engine

The engine class (Engine.cpp) contains all methods needed to draw the map, the user 
interface  and  the  agents  onto  the  screen.  The  class  uses  3  dimensional  vectors 
enabling it to draw 2 and 3 dimensional scenes.

The agents

The agents are implemented using an abstract base class (Entity.cpp) from which they 
are inherited. The base class provides basic methods for moving, turning, checking 
distance to other agents etc. Ai agents include methods for the deterministic, simple 
part of their AI, namely their intercept, flock and evasion routines. The number of AI 
agents is set to 20 for all the tests in this chapter. The maximum hitpoints of player and 
AI agents are set to 20, their speed to 0.5 units per  gameround and the damage done 
to the player by each AI agent in combat distance is set to 0,3 hp per gameround. The 
player damage is variable.

The chase algorithm

The chase algorithm implementation in pseudo code can be written as follows:

if (player in front of agent) // player in 180° front arc, plot intercept course
{

rangeToClose = prey.getCoordinates() - coordinates;
predatorVelocity = speed * direction;
preyDirection = newPosition - oldPosition;
preyVelocity = (prey.getSpeed()) * preyDirection;
closingVelocity = preyVelocity - predatorVelocity;

timeToClose = Length(rangeToClose) / Length(closingVelocity);
futurePositionOfPrey =

prey.getCoordinates() + prey.getSpeed() * preyDirection * timeToClose;

newDirection = futurePositionOfPrey - coordinates;
}
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else  //player in 180° back arc, stop and turn until player in front arc
{

stop();
turnAround();

}
Figure 4.2 Chase algorithm

The flocking algorithm

While flocking an agent checks all friendly agents in flocking distance. If they are close 
enough and in a 270° angle to his front they are considered neighbours that are taken 
into  account  while  flocking.  The  agent  now  calculates  their  average  position  and 
heading. The average of these two is used as the new heading for the agent. If another 
agent is too close separation is factored in too, to avoid collisions. The separation is 
mixed into the new heading as a corrective force.

The flocking algorithm implementation in pseudo code can be written as follows:

for (all agents in neighbourDistance) 
{

distance = testedEntity.getCoordinates() - activeEntity.getCoordinates();
directionToTestedEntity = testedEntity.getCoordinates() -  activeEntity.getCoordinates();
angle = activeEntity.getAngleTo(testedEntity)
if (angle < 270°)
{

    neighbourCount++;
    averagePosition += testedEntity.getCoordinates();
    averageDirection += testedEntity.getDirection();

if (distance < closestDistance) //separation
{

closestDistance = distance;
closestNeighbourPosition =testedEntity.getCoordinates();

}
}

}

if (neighbourCount > 0)
{

averagePosition = averagePosition / neighbourCount;
directionToAveragePosition = averagePosition - activeEntity.getCoordinates();
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newGoal = averagePosition + averageDirection;
if (closestDistance < closestWantedFlockingDistance)
newGoal = newGoal + activeEntity.getCoordinates() - closestNeighbourPosition;
activeEntity.setNewDirection(newGoal);

}
Figure 4.3 Flocking algorithm

The evade algorithm

The evade algorithm implementation in pseudo code can be written as follows:

if (player is left of agent)
{

turnRight10();
}
else //player is right of agent
{

turnLeft10();
}
Figure 4.4 Evade algorithm

The simulation

The simulation class (Simulation.cpp) controls the game logic and the higher level AI 
including the online learning algorithms and the neural network.

First the combat is resolved, after this the decision making process for the agents is 
run,  consisting  of  the AI  routines for  the computer  controlled  agents and the input 
processing for the player controlled agent. After all agents have decided on their goals 
the desired movement of all agents is checked by the game logic and is carried out if 
possible, killed agents are respawned close to the center of the map.

The artificial neural network

The  neural  net  is  implemented  in  two  classes:  NeuralNetwork.cpp  and 
NeuralNetworkLayer.cpp. The number of layers is fixed to 3, all other network variables 
are flexible (number of nodes, inputs, outputs, learning rate etc.). A backpropagation 
training method and a feedforward algorithm are implemented and can be used for 
online and offline learning.  The sigmoid function was chosen as activation function. 
Learning rate (0,9) and momentum (0,2) are set to one value for both off- and online 
learning.
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Inputs

The inputs are as follows, they are scaled to lie between 0 and 1.

● Input  0:  Number  of  friendly  agents in  combat  distance /  total  number  of  AI 
agents

● Input 1: Health of current agent / maximum amount of hitpoints

● Input 2: 1 if player in combat with at least on AI agent , 0 if player not engaged

● Input 3: Distance to player / length of map

The scaling  of  all  inputs  to  a  common  range  prevents  big  numbers,  such  as  the 
distance (up to  around 362),  to  drown out  the  lower  numbers,  such as  the  player 
engaged variable (0 or 1).

Outputs

The following actions are associated with the nodes in the output layer.

● Output 0: Chase 

● Output 1: Flock

● Output 2  Evade

The action identified by the node with the highest value is chosen as the final output of 
the network.
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Figure 4.5 Screenshot of the game

Figure 4.5 shows a game in progress: The agents are depicted as circles with an arrow 
that is pointing in their current direction. Their state is colour coded: Black = Player, 
Red = Chase, Green = Evade, Blue = Flock
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5. Creating the agent AI

The first subgoal in developing a working agent AI was to create a visibly intelligent 
behaviour of the computer controlled agents in the context of the Chase/Flock/Evade 
task. To achieve this several methods were tested, namely off- and online supervised 
learning and online reinforcement learning. The first version of the supervised learning 
was taken as the basis for all these methods and improved several times as there was 
no  suitable  algorithm  found  in  the  literature.  Chapter  5  describes  the  process  of 
improving  the  basic  supervised  learning  through  the  addition  of  several  rules  that 
counter  some  of  the  unwanted  side  effects  of  an  online  learning  algorithm.  This 
technique was then named controlled learning. 

The following steps are described in this chapter:

● Offline training of the neural network to achieve basic behaviour.

● Implementing  a  first   online  supervised  training  algorithm driven  by  training 
events.

● Implementing additional rules to steer the behaviour.

● Introducing the concept of controlled learning.

● Melding the techniques together to form a better learning algorithm.

The original  tests  were  done with  a  human player  which  of  course added a  lot  of 
randomness.  As  a  result  of  this  and  the  experimental  nature  of  the  development 
process in  this  early stages the focus during this  stage was simply the creation of 
believable  behaviour.  To allow for  a  more thorough analysis  of  the AI,  the  human 
player was later exchanged for a computer controlled one, which was used to run more 
detailed tests. This will be described in detail in chapter 6. Chapter 7 will then introduce 
a reinforcement learning algorithm that will supplant the supervised learning.

Wanted behaviour

To be better able to judge the agents' AI a definition of the wanted behaviour has to be 
given. Three characteristics are important:

● Aggressiveness: An agent that is close to the player shall try to chase and kill 
the player unless it has no chance to achieve its goal because it is too damaged 
or alone.

● Agents which are alone and far away from the player are supposed to flock in 
order to form bigger groups until they are in a strong enough position to attack 
again.

● Agents which are hurt  shall  flee and evade the player  until  they are healed 
again.
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5.1 Basic training
A supervised training method was used to create the initial agent behaviour.

The first step in initializing the neural net is to find a good set of state/action pairs for 
the offline training. This training set could then be used to set the weigths to values that 
help the agents to start the game already exhibiting a smart behaviour. The training 
itself is run via the backpropagation algorithm.

Once a good training set is found it can be used as a basis for further on- and offline 
learning.

Finding a good training set is highly dependable on the task of the neural net, therefore 
no  good  algorithms  for  defining  useful  state/action  pairs  can  be  utilized.  Simple 
experimentation was used to find a set that led to a satisfying starting behaviour. 

The training set consists of 16 state/action pairs. A state is define by 4 values which 
are used as inputs for the neural net, they are scaled exactly like the inputs in chapter 
4.3. The corresponding action is defined by the desired values of the output nodes. For 
the outputs values of either 0.9 or 0.1 were chosen, to reflect activated or deactivated 
nodes.

The following values were used:

State / Inputs Action / Outputs

Number of 
friends

Hitpoints Player 
engaged

Distance 
to player

Chase Flock Evade

0 1.0 0 0.2 0.1 0.9 0.1

0.0 1.0 1 0.2 0.1 0.9 0.1

0.2 1.0 0 0.2 0.9 0.1 0.1

0.1 0.8 1 0.2 0.9 0.1 0.1

0.0 1.0 0 0.8 0.1 0.9 0.1

0.1 0.5 0 0.2 0.9 0.1 0.1

0.0 0.25 1 0.5 0.1 0.9 0.1

0.0 0.2 1 0.2 0.1 0.1 0.9

0.1 0.2 1 0.2 0.9 0.1 0.1

0.0 0.2 0 0.3 0.1 0.9 0.1

0.0 1.0 0 0.2 0.1 0.9 0.1

0.0 1.0 1 0.6 0.1 0.1 0.9

0.0 1.0 0 0.8 0.1 0.9 0.1

0.1 0.2 0 0.2 0.1 0.1 0.9

0.0 0.25 1 0.5 0.1 0.1 0.9

0.0 0.6 0 0.2 0.1 0.1 0.9
Figure 5.1 The initial training set for the neural network
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Creation of state/action pairs for the training set

To create these values the following procedure was used

1. Choose a possible state of the controlled agent.

2. Translate the state into inputs for the neural network.

3. Choose a desired action for the state.

4. Translate the desired actions into output values for the neural network. 

5. Map the translated state to the translated outputs.

6. Repeat as often as deemed necessary

The interesting part is step 1. Examples of states and actions which are conclusive 
enough to lead to intelligent behaviour have to be chosen. In the described case 16 
examples  were  sufficient  to  create the wanted  basic  AI.  Alternatively  a list  with  all 
possible states could have been constructed and then outputs for all  of them would 
have to be defined.  The sheer number of  similar  or  unimportant  states makes this 
behaviour prohibitively slow. The learning also takes longer the more examples are 
used  for  the  training.  One  of  the  advantages  of  the  neural  network  is  that  it  can 
generalize output values for many more different inputs than the 16 it  was explicitly 
trained  for.  The  refinement  of  the  behaviour  was  planned  to  be  achieved  mainly 
through online learning in later stages of the program. Therefore the decision for a 
relatively low number of state/action pairs was made. This should simulate a situation 
similar to the one found in commercial games which all have a working AI at release, 
the online training's task is to change and improve this basic behaviour, not to create 
new behaviour from scratch every time the game is run.

5.2 Experiments

Setup for the experiments

For testing the neural network a number of experiments based on the following setup 
were run.

The AI agents start in close formation around the center of the map. The player starts 
in the top right corner. The player tries to eliminate as many AI agents as possible 
while not getting eliminated in turn. Once an AI agent is eliminated it  is respawned 
close to the center of the map. The player respawns in a random spot when he is killed.

To test the adaptiveness of the net the damage rate of the player is changed online, 
making him more or less lethal to the AI agents. The agents were expected to become 
more aggressive and attack in smaller numbers when the player is weaker and prefer 
to evade him and only attack in greater numbers when he is stronger.

The first test is a simple observational test. The game is played for 6000 rounds with its 
initial training and learning settings to test the normal behaviour. Then the game is run 
2 more times for 6000 rounds each with a considerably higher and a lower damage 
rate.  This is repeated several  times to account  for  the inherent  randomness in  the 
player's movement. The damagerate describes the amount of health the player takes 
off each AI agent in combat distance during one gameround. The damage dealt to the 
player is set to 0.3 hitpoints per AI agent in range.
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The only statistical data collected from test 1 is the average ratio of AI agents deaths to 
player deaths, further refered to as death ratio.

5.3 Basic artificial neural network

Observations about the emergent behaviour from the basic neural network trained with 
the training set from chapter 5.1. No online learning implemented yet.

Testrun Player damagerate Death ratio
1 0.5 hitpoints damage per gameround 0.67

2 1.0 hitpoints damage per gameround 5
3 0.4 hitpoints damage per gameround 0,5
Figure 5.2 Basic network tests

Testrun 1: original damage rate (0.5 hp / gameround)

The AI agents start to chase the player from the beginning and exhibit quite aggressive 
behaviour. When they are in a distance of roughly a quarter of the length of the map 
they chase the player unless they are alone. If they are in a group of 4 or more agents 
they tend to switch to the chase state at  a slightly  higher  distance than in smaller 
groups. When they are alone they only chase the player if he is very close (about 16 
units). Agents that are farther away choose to flock. The evasion state is nearly not 
used at all, only when an agent is attacking the player alone and close to death. In this 
case the evasion state is entered too late for the agent to get away and it dies. At the 
end of the test the AI agents are scattered into small groups of 2 to 5 units due to flocks 
getting separated and agents getting killed.

State of agent Frequency of action
Chase If close and friends > 1 Medium
Evade Only  when  alone  and  close  to 

death
Very low

Flock When not close High
Figure 5.3 State / action summary basic network

Testrun 2: higher damage rate (1.0 hp / gameround)

Because of the missing ability to adapt the player has a much easier time to chase the 
AI agents. The big difference in ratios compared to run 1 confirms this.

Testrun 3: lower damage rate(0.4 hp / gameround)

As could be expected the opposite effect to run 2 can be observed.
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Summary of the tests:

The agents exhibit intelligent behaviour. The chase and flock actions dominate. 

5.4 Online supervised learning
Online supervised learning triggered by player and agent kills

The next step was to implement some kind of online learning. It was decided to begin 
with a set of simple supervised learning rules based on certain events happening to the 
agents. This approach was inspired by the reward in reinforcement learning theory. 
Instead  of  directly  rewarding  the  current  action  taken  by  the  agent  as  in  true 
reinforcement leearning a preferred action is proposed which gives better control over 
the resulting behaviour.

● Event 1: If agent was close to player while player died, reinforce chase behavior 
under the current circumstances.

● Event 2: If  agent  died,  encourage  evasion  behaviour  in  the  current 
circumstances.

The retraining of the neural net works as follows:

Every time an agent is in one of the two aforementioned situations the training method 
of the neural net is  run. The same kind of feed forward + backpropagation training 
method  is  used  as  for  the  offline  learning.  The  only  difference  is  that  only  one 
state/action pair is used instead of a whole training set.

This simple algorithm works directly on the neural network which can be seen as the 
action selection policy in reinforcement learning terms. No value function is defined to 
help in steering the learning process into the right direction. The reward in shape of the 
player or agent death is directly translated into a policy change.

The tests for the neural network using this simple supervised learning method were 
then repeated using different damage rates for the player making him deal more or less 
damage to nearby AI agents.

Observations  about  the  emergent  behaviour  from the  neural  network  incorporating 
supervised learning.

Testrun Player damagerate Death ratio)
1 0.5 hitpoints damage per gameround 0.86

2 1.0 hitpoints damage per gameround 4.84

3 0.4 hitpoints damage per gameround 0.73

Figure 5.4 Supervised learning tests

Testrun 1: original damage rate (0.5 hp / gameround)

The AI agents exhibit very aggressive behaviour at the start, as long as a big group of 
about  6  or  more  stay  close  together,  they  will  chase  the  player  even  over  long 
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distances (the whole length of the map). Once the game has run for a longer time and 
the agents split into smaller groups the behaviour starts to change. The smaller groups, 
about 3 or less agents tend to evade the player at long enough ranges to leave him no 
chance to get to them. Small groups at longer distances tend to flock. After about 3000 
to 4000 gamerounds only greater packs chase the player anymore. In a few  test runs 
the behaviour of the AI agents tended to sway strongly to either chasing or evading. In 
the case of heavy chasing it led to a big group of agents following the player making it 
hard for him to kill any agents without dieing himself. In the case of heavy evading it 
lead to a big number of agents running around on their own avoiding the player and 
only if bigger groups of about 6 to 10 found together via flocking they changed their 
behaviour  back  to  chasing  the  player.  There  was  definitely  a  bigger  variety  in  the 
behaviour between the iterations of the testrun compared to the previous iteration of 
the neural network.

State of agent Frequency of action
Chase If close and friends > 6 High
Evade When alone or in small group and 

player comes closer, / when low 
on hitpoints

Low

Flock When alone or in small groups Medium
Figure 5.5 State / action summary supervised learning

Testrun 2: higher damage rate (1.0 hp / gameround)

The behaviour changes more drastically in run 2. About round 4000 the number of 
flocking  AI  agents  has  sunk  very  low  and  most  agents  use  the  chase  or  evade 
behaviour. Interestingly the chase behaviour is used more than the evade behaviour in 
most cases although the AI agents have a very hard time against the player because of 
the high damage rate as can seen by the ratio. In one extreme case where the player 
was able to eliminate more than 10 AI  agents without  dieing himself  the AI  nearly 
exclusively  switched  to  the  evade  behaviour.  Overall  the  extent  of  the behavioural 
changes is much higher in run 2 compared to run 1, this most likely stems from the 
higher number of deaths, be it player or AI agents deaths, which in turn leads to more 
occurances of training the neural network.

Testrun 3: lower damage rate(0.4 hp / gameround)

The changes to the behaviour are slightly stronger than run 1, as the evade behaviour 
becomes very rare after about 2000 to 3000 rounds. Apart from this the behaviour is 
very similar to run 1.

Summary of the tests

The behaviour seems more intelligent as before as there is a visible adaptation process 
going on. One rare case of undesired behaviour could emerge though: Suddenly all 
agents switch from one state to another, sometimes several times shortly in a row. 
After a short analysis this behaviour could be traced to the quite simple output function 
used  in  these  experiments.  This  behaviour  can  occur  when,  due  to  some  weight 
changes, the probability for two output nodes to produce near identical values is very 
high. In such a case the output function simply chooses the higher one, even if the 
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difference is very small. Very small state changes can then lead to a fluctuation in the 
output function. Another unwanted behaviour was the near elimination of the flocking 
action in run 2. This stems from the simple fact that none of the reinforcment rules 
boost the flocking action.

The behaviour  exhibited  by the neural  network  so far  meets several  of  the criteria 
formulated in chapter 2. 

Computational requirements:

● Speed:  The  tests  so  far  have  concentrated  on  the  quality  of  the  resulting 
behaviour, less on the computational burden of the learning algorithm. At this 
point the online learning algorithm is fast enough to not slow down the program. 
To reliably  test  the  computational  component  of  online  learning  with  neural 
networks another set of tests will have to be devised.

● Effectiveness: There is no hand written conventional AI yet to test the neural 
network against.

● Robustness: The agents adapt to the changes in the damage rate. Most notably 
resulting in a stronger use of the evasion behaviour when the damage rate is 
raised. 

● Efficiency: The wanted behavioural changes occur reasonably quickly, in most 
tests slight variations of the agents' behaviour could be observed after about 4 
to 5 training events. 

Functional requirements:

● Clarity: The changes in behaviour are easy to understand in most cases. The 
only notable exception being the sudden switch of all agents to chasing from 
flocking as described in the summary of test 2.

● Variety: The agents adapt their behaviour and become slightly more cowardly 
or aggressive during our testruns dependant on the kill ratio.

● Consistency:  In all  test runs the speed in which the behaviour changed was 
quite close to each other. It normally took about 2000 to 4000 gamerounds for 
the agents' behaviour to change notably.

● Scalability: The big change in ratios between the test runs 1 and 3 compared to 
2 hints at the inability of our supervised learning to cope with the big change 
(doubling)  of  the  damage  ratio.  The  evasion  behaviour  was  not  preferred 
strongly enough to keep a similar kill ratio to the other test runs. 
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5.5 Rules
Adding rules to address the weaknesses of the basic supervised learning

To improve on the above mentioned weaknesses it was decided to add several rules 
that are not triggered by an event happening to the agent, but that are called when an 
agent is in a specific state.

● Rule 1: If not in combat distance to player and less than 3 friends are close -> 
Flock.

This  rule's  intention  is  to  avoid  the  flocking  behaviour  getting  suppressed  by  the 
learning of the other 2 event driven learning rules.

A few quick tests with this added rule showed a big problem. The behaviour for small 
groups was changed to flocking exclusively. After a very small amount of gamerounds 
no evasion or chase behaviour was exhibited by any agents. The reason for this lies in 
the much higher number of training events for this rule. Learning rules for events 1 and 
2 are only called when an agent dies, be it the player or an AI agent, the new rule is 
called by every AI agent in every gameround in which the conditions are met (small 
group, not in combat). To counter this effect we added a time based condition to the 
rule,  so that  it  only  gets  called every 100 gamerounds.  After  this was added ,  the 
flocking behaviour  did  not  drown out  the other  behaviours  anymore but  it  was still 
exhibited stronger than before. This could become a problem in the later stages of a 
game when the agents are more fragmented and rarely find together to bigger flocks.

To counter this effect one more rule was added.

● Rule 2: If not in combat distance to player and more than 3 friends are close -> 
Chase.

The tests  were then repeated with the new ruleset.

Observations  about  the  emergent  behaviour  from the  neural  network  incorporating 
supervised learning with additional rules.

Testrun Player damagerate Death ratio
1 0.5 hitpoints damage per gameround 0.98

2 1.0 hitpoints damage per gameround 6.1

3 0.4 hitpoints damage per gameround 0.8

Figure 5.6 Supervised learning with additional rules tests

Testrun 1:

The changes in agent behaviour are less noticable than before (test 2). Flocking and 
Chasing dominate, evading is only used when an agent is close to dying. If the evading 
agent is close to friends he is normally able to escape, if he is alone the player is able 
to catch him.
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Testrun 2:

The AI agents use the evade routine much more and try to flee. Because of the high 
damage  rate  they  have  a  hard  time  escaping  as  can  be  seen  in  the  high  ratio. 
Compared to run 1 a definite change in their behaviour can be observed, albeit smaller 
than in test 2.

Testrun 3: 

The AI agents stay quite aggressive only very small groups flock. Evasive behaviour 
can only be seen from isolated agents.

Summary of supervised learning

Tests  2  and  3  showed  several  problems when  implementing  game AI  with  neural 
networks  using  supervised  online  learning  for  adaptivity.  The  following  rules  were 
concluded from these.

● Number of training events important: If some rules are triggered more frequently 
this can lead to a suppression of the lesser frequently used rules. Make sure 
that the most important rules do not get eliminated by some unimportant ones.

● Rules needed to promote every possible action: If an action is never reinforced 
it will be eliminated after a while. Make sure that every action has at least one 
rule that strengthens it, unless you expressly want it to disappear after some 
time.

● Type of game important for evaluation of behaviour: To be able to evaluate the 
emergant behaviour it is important to define a clear goal for it. 

5.6 Controlled learning
Controlled learning without supervised learning

In the previous tests, one of the weaknesses found in the behaviour of the AI agents 
was the unpredictability. In a few cases the outcome of the test differed significantly 
from the others (chapter 5.4). This is a common problem for traditional, reward based 
online learning architectures using neural nets and one of the main reasons why they 
are  scarcely  used  in  commercial  games.  To alleviate  this  unwanted  effect  a  rules 
based supervised learning component was added (5.5).

This  segment  will  build  up on the  rules  based learning  approach and test  a  more 
complex set of rules to train the neural network. This learning process can run parallel 
to the normal event driven learning and help to control the behaviour. The rules are 
imprinted onto the same neural network that is used for the supervised learning. In 
chapter 5.6  only the rules based learning will be used, in chapter 5.7 both approaches 
will be combined.
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The following rules were used.

● Rule 1: If agent is dying faster than player -> Evade

● Rule 2: If agent is healthy, alone and not in combat distance -> Flock

● Rule 3: If agent is far away from player (more than half the map) -> Flock

● Rule 4: If entity is not alone and close to player -> Chase

Observations  about  the  emergent  behaviour  from the  neural  network  incorporating 
pure controlled learning.

Testrun Player damagerate Death ratio)
1 0.5 hitpoints damage per gameround 0.85

2 1.0 hitpoints damage per gameround 4.0

3 0.4 hitpoints damage per gameround 0.84

Figure 5.7 Controlled learning tests

Testrun 1:

As could be expected from the rules the agents attack when they are close to the 
player and in small groups. When they are far away from the player they will always 
flock together. When they are in combat with the player they will start to evade if they 
are alone or in small groups, if they are in a bigger group they will not evade.

Testrun 2:

Although  the  ratio  is  comparable  to  the  earlier  tests  a  rise  in  lethality  could  be 
observed. More agents died but the player was also killed more often. This stems from 
the improved flocking behaviour, especially during the later rounds of the game. The 
bigger groups mean that the agents are more aggressive which leads to the higher 
number of deaths.

Testrun 3:

As could be expected no difference to run 1 was observed because there is no learning 
in place at this time.

Summary of controlled learning

The purely rules based approach to learning used to train the neural net in this test is 
able to generate clearly defined and intelligent behaviour, similar to the earlier tests. It 
has no adaptive qualities though.
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5.7 Controlled supervised learning
Controlled learning rules together with supervised learning

In this test the supervised learning rules were combined with the controlled learning 
rules adding an adaptive component to the agents' behaviour again.

Observations  about  the  emergent  behaviour  from the  neural  network  incorporating 
controlled supervised learning.

Testrun Player damagerate Death ratio)
1 0.5 hitpoints damage per gameround 1

2 1.0 hitpoints damage per gameround 4.1

3 0.4 hitpoints damage per gameround 0.7

Figure 5.8 Controlled supervised learning tests

Testrun 1:

The variation in behaviour was obvious. The agents start to chase the player at longer 
ranges and they put a big emphasis on the player's state (already engaged or not). 
Both these behaviours could not be seen in the purely controlled network (chapter 5.6).

Testrun 2:

There were big changes to test 4. In the early phase of the game (about 1000 rounds), 
it  could  happen that  all  agents switched  to evasive  behaviour  simultaneously.  This 
effect got countered by the rules based part of the learning algorithm after a few rounds 
though. 

Testrun 3:

Similar behaviour as in run 1 could be observed.

Summary of controlled supervised learning

The added adaptation through the reward based training is clearly visible in the isolated 
tests and also when the damage rate of the player is dynamically changed during the 
game. The rules based learning helps to control the behaviour, especially when the 
game  runs  for  a  longer  time.  In  the  early  phase  of  the  game  there  were  a  few 
disturbances between the two learning methods leading to unwanted,  but shortlived 
behaviour. These could be avoided by using a better pre-trained neural network.
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5.8 Comparison

Both types of AI, the learning adaptive AI and the hand coded controlled AI improved 
the behaviour of the basic neural network but they also proved to be less efficient as 
can  be  seen  by  the  ratios.  Their  behaviour  was  less  monotonous,  as  the  agents 
switched more frequently between the different states and all  the states were used 
while the basic network nearly completely ignored the evade state.

Figure  5.9  shows  that  supervised  learning  with  rules  creates  the  most  inefficient 
behaviour so far while the basic network surprisingly is the most efficient at the low and 
standard  damage  segments  while  supervised  and  controlled  learning  improve  the 
performance during the high damage segment.

Chapter 6 will show if this will last or if the supervised learning simply needs a longer 
time to take effect and influence the agents' behaviour more positively.

Overall  the  controlled  and  controlled  supervised  learning  showed  more  stable  and 
clearly defined behaviour than the purely supervised learning AI which in rare cases 
created very monotonous behaviour, e.g all agents evading and not switching back to 
any other state.

Normal High Low
Basic network 0.67 5 0.5
Supervised learning 0.86 4.84 0.73
Supervised  learning  with 
rules

0.98 6.1 0.8

Controlled learning 0.85 4 0.84
Controlled  supervised 
learning

1 4.1 0.7

Figure 5.9 Comparison of death ratios

5.9 Summary of chapter 5

In this chapter the agent AI for the task defined in chapter 3 was implemented, showing 
that  a  neural  network  can  be  used  to  control  agents  in  a  real  time  continous 
environment. Several ways were then devised  to generate intelligent  behaviour and 
adaptive qualities of the agents.

The methods used were:

● Immediate  event  triggered  supervised  learning:  Producing  adaptive  but 
unpredictable behaviour.

● Rules based learning: Producing clearly defined but non-adaptive behaviour.

● Controlled  supervised  learning:  Producing  an  adpative  but  easier  to  control 
behaviour.
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Some of the weaknesses the neural network showed:

● Ineffective evasion behaviour:  Single  agents were  never able to escape the 
player if they were in combat because they started to evade too late. This is a 
result of the basic supervised learning used which only takes the state of an 
agent into account at the moment of the event triggering the training, not his 
past actions leading to this state.

● Unwanted behaviour in early stages of the game: This problem can be simply 
avoided by using a longer time to train the neural net offline, before running the 
game.

● The neural network can only be used to control single agents at a relatively low 
level. So far there is only rudimentary cooperation between the agents. This is 
more of  a  design  weakness  than a  functional  one.  The inputs  and outputs 
chosen simply define only low level behaviour.

Based  on  these  observations  the  following  areas  will  be  researched  in  the  next 
chapters:

● Modifications to the learning algorithm.

● Adding another neural  net to allow for improved cooperation between the AI 
agents.

● Improving methods of regulating the adaptiveness and the learning speed of the 
neural network.

● Implementing  a  reinforcement  learning  algorithm  to  replace  the  supervised 
learning.

● Developing better formal measures of fitness for the neural network, to allow for 
more in depth comparison of the algorithms.
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6. Supervised learning

The goal of this chapter is to refine the methodology used in chapter 5 to create the AI 
for  the  AI  agents.  This  will  be  done  by  further  improving  the  supervised  learning 
algorithm and running more detailed tests. In addition to the controlled and supervised 
learning introduced in chapter 5 a short term memory will  be implemented and two 
different action selection strategies will be used: Greedy and softmax selection.

The following learning strategies will be examined in this chapter:

● Supervised offline learning

● Supervised online learning

● Supervised online learning with rules

● Controlled online learning

● Supervised online learning with memory

6.1 New parameters

To  be  able  to  better  compare  the  behaviour  of  different  neural  networks  in  the 
Chase/Flock/Evade task the following parameters are defined. Measurements of them 
are collected while  online  learning  takes  place to  better  judge  the  progress  of  the 
training process.

● Death ratio: Player deaths / AI agent deaths

● Number of player deaths: Sum of the times the player agent died during on 
game.

● Number of agent deaths: Sum of all AI agent deaths during one game.

● Sum of turns per state: The total sum of gamerounds agents spend in each one 
of the three possible states.

● Training events: Number of training events which occurred during a game.

● Sum of training events per state: Total reinforcements applied to each state

6.2 Implementing a computer controlled player

As  a  requirement  for  a  good  comparison  of  the  different  neural  networks  the 
randomness in the tests has to be lowered. Therefore a computer controlled player will 
be used instead of a human player. It will use a fixed, rulesbased AI to provide reliant 
behaviour. The player behaviour is roughly defined as follows:

if (player.health < closestAiAgent.health) player.evade(closestAiAgent)
else player.chase(closestAiAgent)
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6.3 Selection strategies

The neural network used for the agents' decision making is tested with two different 
selection strategies. The selection strategy takes the outputs of the neural network into 
account and then chooses the agent's action based on the following rules:

● Greedy selection: The output node with the highest output is directly translated 
into the corresponding action. 

● Softmax selection: If the differences between the output nodes are bigger than 
0.2 use the greedy strategy, otherwise take the highest and the next closest 
output and randomize between the actions corresponding to the outputs with a 
1 to 1 ratio.

The reason for using a softmax selection lies in the possibilty of a training algorithm 
leading to a suboptimal policy because the initial behaviour does not allow the agent to 
choose actions that steer the process into the right direction. Instead such an algorithm 
might only converge on a local maximum as opposed to the global one. 

6.4 Test setup

To thoroughly test the changes a longer test than in chapter 5 is run for all the different 
variants of the Chase/Flock/Evade task. It consists of several repetitions of a game of 
300000 gamerounds length.  During  the first  100000 rounds the  damagerate of  the 
player is set to 0.6 hitpoints per gameround, during the second 100000 rounds it is set 
to 0.4 and finally to 0.8 until the game ends. 10000 gamerounds are equivalent to one 
timestep in the following diagrams. Thus the standard damage rate lasts from step 0-
10, the low damage rate segment from 11 to 20 and the high damage segment from 21 
to 30.

6.5 Basic network

Basic neural net

To  be  able  to  judge  the  adaptivity  and  the  performance  of  the  different  learning 
algorithms and network structures a test with the basic net is run first as a benchmark.

Figure 6.1 shows the average state distribution of the agents controlled by the basic 
net.

It can be clearly seen that the evade state is by far the least used one. This is not 
surprising as it is only used when an agent is close to death.

The flock and chase behaviour instead are both used while the player is further away 
and therefore they dominate the agent behaviour. On average the chase behaviour is 
about twice as common as the flocking.

The variance between the highest and lowest flocking (after the initial steps) lies about 
60000 turns, as does the variance in the flocking. The difference between the highest 
chase and the lowest evade behaviour is 120000 turns per state.
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Figure 6.1 Turns per state distribution, basic network

Figure 6.2 Death ratio over time, basic network

Death ratio

The average death ratio of the basic net is 0.68. A distribution over time clearly shows 
the higher ratio (more player deaths) in the middle segment of the game when the 
player damage is set lower and contrastingly the lower ratio during the last 10 steps 
(100000 rounds) of the game.
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The average death ratios for the standard settings, lower damage and higher damage 
are as follows:

● Standard: 0.68

● Low: 1.12

● High: 0.42

6.6 Supervised learning

Supervised learning, greedy selection

Figure 6.3 shows the influence of the supervised learning algorithm. After about 6 steps 
the flocking behaviour becomes suppressed by the chase and evade behaviour. This 
confirms  the  observations  made  in  chapter  5.  Chasing  dominates  heavily,  while 
evading  is  more  noticeable  than during  the  test  of  the  basic  network.  The overall 
behaviour stabilizes during the late phase of the standard damage segment. After this 
the variance of the chase and evade behaviour amounts to only about 10000 to 20000 
turns per state, while the absolute numbers are around 190000 turns spent chasing 
and 10000 evading per timestep.

Figure 6.3 Turns per state distribution, supervised learning with greedy selection
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Death ratio

The average death ratio of the network trained with the supervised learning is 0.73. 
The average death ratios for the standard settings, lower damage and higher damage 
are as follows:

● Standard: 0.67

● Low: 1.39

● High: 0.45

These clearly show that the learning algorithm is able to improve the efficiency of the AI 
agents during the low damage segment while it doesn't show significant changes in the 
standard or high damage segments.

Figure 6.4 Death ratio over time,  supervised learning with greedy policy

When comparing Figure 6.4 with 6.5 an interesting aspect of the supervised learning 
algorithm can be seen, when looking at step 13 a very high peak in training events can 
be observed, its height doesn't seem to be warranted by the amount of player deaths 
relative to the number of AI agent deaths. This stems from player deaths while many 
agents are close at the same time, all getting the reward, leading to a very high number 
of chase training events per player death. Such peaks influence the policy negatively 
as the chase behaviour is amplified stronger than wanted. This points to a possible 
weakness in  the supervised learning function which  doesn't  take the number of  AI 
agents close to the player into account.

The effect explained above leads to a noticeable difference to the expected behaviour 
which can be seen during the late stage of the test. Although the player damage is set 
very high  and there  is  a  high  number  of  AI  agent  deaths,  the chase behaviour  is 
exhibited stronger than the evade behaviour. The reason for this can be clearly seen in 
Figure 6.5. at step 22 during the early phase of the low player damage segment, a 
higher  number  of  chase  reinforcing  events  occurred  despite  the  relatively  higher 
number of AI agent deaths.
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Figure 6.5 Training events, supervised learning with greedy policy

Supervised learning, softmax selection

The softmax selection strategy shows one major difference to the greedy strategy: The 
evasion and flocking behaviour is suppressed faster. Which leads to a slightly better 
efficiency overall which can be seen in the slightly better death ratio during the early 
phase of the testruns. After about 6 timesteps the variance in the chase and evade 
behaviour goes down to nearly zero.
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Figure 6.6 Turns per state distribution, supervised learning with softmax selection

Death ratio

The  average  death  ratio  of  the  network  trained  with  the  supervised  learning  and 
softmax selection is 0.76. The average death ratios for the standard settings, lower 
damage and higher damage are as follows:

● Standard: 0.74

● Low: 1.4

● High: 0.45

Figure 6.7 Death ratio, supervised learning with softmax policy
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Figure 6.8 Training events, supervised learning with softmax policy

6.7 Supervised learning with rules

The rules from chapter 5.4 are added to the supervised learning algorithm and tested 
with a greedy and softmax selection strategy.

Supervised learning and rules, greedy selection

Figure 6.9 shows the huge change in behaviour introduced with the rules. The flocking 
behaviour  is  not  suppressed  anymore,  instead  it  is  as  dominating  as  the  chase 
behaviour while evading is hardly used at all. Both behaviours swing between 70000 
and 120000 turns spent per state taking turns being the most popular strategy for the 
agents.
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Figure  6.9  Turns  per  state  distribution,  supervised  learning  with  rules  and  greedy 
selection

Death ratio

The average death ratio of the network trained with the supervised learning and rules is 
0.69. The average death ratios for the standard damage, lower damage and higher 
damage are as follows:

● Standard: 0.71

● Low: 1.19

● High: 0.41

Figure  6.10  Shows  a  similar  death  ratio  distribution  over  time  as  the  supervised 
learning without  rules despite the differences in behaviour.  This can be seen in the 
absolute numbers for agent and player deaths. The agents with the added rules are 
less aggressive and therefore kill the player less compared to the pure learning agents 
but the strengthened flocking also makes it harder for the player to kill AI agents. As a 
result the average death ratio is nearly identical to the one of the basic network, lower 
than the one of the pure supervised learning network.

Figure 6.11 very nicely shows the near constant reinforce rate of the flocking behaviour 
caused  by  the  rules.  Interestingly  enough  the  evade  behaviour  gets  reinforced 
throughout the whole game but not strongly enough compared to flocking and chasing. 
This leads to the near absence of evading although it does not get weakened, it is just 
not trained to a similar extent as the others.
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Figure 6.10 Death ratio, supervised learning with rules and greedy policy

Figure 6.11 Training events, supervised learning with rules and greedy policy
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Supervised learning and rules , softmax selection

Figure 6.12 Turns per state distribution,  supervised learning with rules and softmax 
selection

In distinction from the greedy selection strategy flocking is nearly constantly prefered to 
chasing. A similar effect could also be seen in Figure 6.6 where the softmax selection 
strategy led to a smoother turns per state distribution curve with less position switches 
between the dominating behaviours.

Death ratio

The average death ratio of the network trained with the supervised learning and rules 
with  softmax selection is  0.68.  The average death ratios for  the standard damage, 
lower damage and higher damage are as follows:

● Standard: 0.65

● Low: 1.18

● High: 0.39
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Figure 6.13 Death ratio, supervised learning with rules and softmax policy

Figure 6.14 Training events, supervised learning with rules and softmax policy
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6.8 Controlled supervised learning

The controlled learning rules from chapter 5.6 are tested with a greedy and softmax 
selection strategy. They are set to run parallel to the supervised learning algorithm.

Controlled supervised learning, greedy selection

Figure  6.15 Turns per  state  distribution,  controlled  supervised learning  with  greedy 
selection

When looking  at  Figures  6.15  and  6.16  the  behaviour  seems to  constantly  switch 
between chasing and flocking with a low but noticeable and durable evade behaviour. 
The variance between the peaks and minima during the different damage segments is 
more varied than compared to the former algorithms. A higher number of deaths events 
and especially a high absolute difference between agent and player deaths leads to a 
higher variance in behaviour best seen during timesteps 17 to 27. During these periods 
the supervised learning part of the AI agents influences the neural net stronger (see 
Figure 6.17) while  during periods of relative calm, timesteps 5 to 16, the controlled 
learning part steers them back to a more balanced behaviour.
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Death ratio

The average death ratio of the network trained with controlled supervised learning with 
greedy selection is 0.73. The average death ratios for the standard damage, lower 
damage and higher damage are as follows:

● Standard: 0.73

● Low: 1.31

● High: 0.42

Figure 6.16 Death ratio, controlled supervised learning with greedy selection
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Figure 6.17 Training events, controlled supervised learning with greedy selection

Controlled learning, softmax selection

Figure  6.18  Turns  per  state  distribution,  controlled  supervised  learning  softmax 
selection
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Figure 6.18 again shows a smoother curve with less variance than its greedy selection 
counterpart. There are less switches between the dominating behaviours.

Figure 6.19 Death ratio, controlled supervised learning with softmax selection

Death ratio

The average death ratio of the network trained with controlled supervised learning with 
softmax selection is 0.72. The average death ratios for the standard damage, lower 
damage and higher damage are as follows:
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● High: 0.43
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Figure 6.20 Training events, controlled supervised learning with softmax selection

6.9 Supervised learning with memory

So  far  the  supervised  learning  only  takes  the  last  state  of  the  AI  agent  into 
consideration when training the neural network. This leads to the following problem: 
The action taken at the current state might not be as decisive for the success of the 
agent as the actions taken some time before it. To avoid this a short term memory is 
implemented which allows the learning algorithm to train not only the current state but 
also  its  predecessors.  In  reinforcement  learning  this  is  also  known as  the delayed 
reward. A state in the past is rewarded based on the present time experience.

Implementing the memory

To implement this every agent  stores a number of  past  states in the form of  input 
variables to the neural network. When a training event is triggered by the death of the 
player or the agent, the neural network is not only retrained with the current inputs but 
also with the past inputs. This means that all of the stored states, defined by the inputs, 
are trained to result in the action prefered by the supervised learning.

Discounted memory

A modification to the first implementation of the memory based supervised learning is 
inspired by the concept of discounted reward in reinforcement learning. A past action is 
considered  to  be  less  important  in  achieving  the  result  of  the  current  action  and 
therefore rewarded less. In the context of the  supervised learning algorithm a similar 
effect can be achieved by lessening the training effect of the retraining of the neural 
network  for  the  past  inputs.  This  is  simply  achieved  via  weights  which  allow for  a 
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greater error during the backpropagation training algorithm when it is run for the inputs 
associated  with  a  state  in  the  past.  In  practice  this  means  less  repetitions  of  the 
backpropagation training algorithm and therefore less weight changes.

Supervised learning with memory

Figure 6.21 Turns per state distribution, supervised learning with memory

The supervised learning algorithm using a short  term memory shows a very strong 
emphasis of the evade behaviour during all phases of the game. In the high damage 
segment it even becomes the single dominating behaviour, something it never came 
close to when any of the other learning algorithms were used. This is a result of the 
supervised learning imprinting evasion behaviour on agent states in the past when the 
normal  behaviour  would  have been chasing.  Agents are trained to evade too early 
when they are in a good position to attack and help nearby friendlies even if this could 
mean their own death. This overemphasis of their self preservation also leads to a very 
low  death  ratio.  Similar  to  the  basic  supervised  learning  the  flocking  behaviour  is 
completely suppressed.

Death ratio

The average death ratio of the network trained with supervised learning with memory is 
0.45. The average death ratios for the standard damage, lower damage and higher 
damage are as follows:

● Standard: 0.53

● Low: 0.51

● High: 0.33
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Figure 6.22 Death ratio, supervised learning with memory

Figure 6.23 Training events, supervised learning with memory
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Supervised learning with discounted memory

Figure 6.24 Turns per state distribution, supervised learning with discounted memory

The agent behaviour when using discounted behaviour is very similar to the normal 
supervised learning. Chasing dominates, flocking gets eliminated and evading is used 
very little. The discounted memory obviously has a much lower effect on the agents 
than the simple memory and the training events triggered by the player deaths are able 
to dominate the events triggered by the agent deaths.

Death ratio

The  average  death  ratio  of  the  network  trained  with  supervised  learning  with 
discounted memory is 0.76. The average death ratios for the standard damage, lower 
damage and higher damage are as follows:

● Standard: 0.76

● Low: 1.32

● High: 0.46
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Figure 6.25 Death ratio, supervised learning with discounted memory

Figure 6.26 Training events, supervised learning with discounted memory
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6.10 Comparison of the algorithms

Figure 6.27 Death ratio comparison

Figure  6.27  shows  the  overall  changes  in  death  ratio  and  hence  efficiency  when 
compared  to  the  basic  neural  network.  It  is  remarkable  that  the  highest  absolute 
improvement is relatively low at 0.08 which corresponds to a 12% rise in efficiency for 
the average ratio. The biggest positive impact can be seen during the low damage 
segment. Here the top efficiency boost amounts to 25%. Both values are taken from 
the pure supervised learning algorithm which shows the best overall performance. The 
discounted  memory  algorithm  comes  very  close  while  the  undiscounted  memory 
algorithm is obviously the worst one. It is the only one to worsen the performance of the 
basic network and very significantly so. This clearly shows the weakness of applying 
supervised learning to a state indirectly, only taking into account a followup state in its 
future. The controlled learning and it  predecessor the supervised learning with rules 
show only a very minor improvement in efficiency, but also no deterioration.
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Figure 6.28 Sum of turns spent in a behaviour by all agents combined

Figure  6.28  Shows  the  overall  behaviour  of  the  algorithms.  The  pure  supervised 
algorithms  including  the  discounted  memory  algorithm  show  dominating  chase 
behaviour with low evasion and flocking behaviour. As seen by the ratios this seems to 
be the most  effective behaviour.  The controlled  and rules algorithms show a much 
higher  flocking  percentage  on  par  with  the  chasing.  It  is  interesting  to  note  that 
although  the behaviour  seems to  be near  identical  judging  by  the  pure  sums,  the 
efficiency of the controlled learning is significantly higher than the one of the supervised 
learning with rules. The only notable difference between the two classes is the fact that 
the  controlled  learning  has  a  higher  evasion  percentage.  Although  very  small  this 
seems to be important as the more efficient pure supervised learning algorithms also 
show a similar amount of evasion.
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Figure 6.29 Total sum of player and agent deaths.

An interesting difference between the controlled learning and the supervised learning 
with added rules is the big gap in total death events during a game. Despite the near 
identical sum of turns spent exhibiting chasing and flocking the two different classes of 
algorithms obviously differ more than Figure 6.28 shows. When taking a look at the 
individual  turns  per  state  distribution  in  chapter  6.6  and  6.7  one can see that  the 
controlled  learning  algorithm allows  for  a  stronger  variation  in  behaviour,  the  peak 
differences between chasing and flocking are higher and only sum up to the same 
average.  The  reason  for  this  is  the  different  frequency  with  which  the  rules  were 
imprinted on the neural  network.  The supervised learning with  rules used a higher 
frequency of 250 gamerounds while the controlled learning was only executed every 
500 gamerounds. The supervised learning algorithms all show a very similar number of 
deaths with the obvious exception of the one with undiscounted memory.

6.11 Summary of chapter 6

The algorithms developed in chapter 5 have been tested more thoroughly and most of 
the  observations  about  the  AI  agents  behaviour  have  been  confirmed.  In  addition 
several new aspects have been explored.

Supervised offline learning was successfully used to implement an AI for agents in a 
real time continuous environment using a neural network as basis.

Supervised online learning as proposed in chapters 5 and 6 was used to adapt the 
behaviour of AI agents to changes in their environment and also simply to change their 
behaviour from their predefined default AI routines.
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Control  rules  which  train  the  network  parallel  to  the  event  driven  learning  were 
successfully  used  to  steer  the  agent's  behaviour  into  a  wanted  direction  while  still 
allowing for adaptation. The frequency of these control events can be used to adjust 
their influence on the overall learning process. The controlled learning algorithms both 
showed a balanced behaviour throughout the whole test.

It  was  statistically  proven  that  the  supervised  learning  changes  and  improves  the 
behaviour although the gain in efficiency was smaller than hoped for. 

Judging the AI by the criteria formulated in chapter 2 the following observations can be 
made:

Computational requirements:

● Speed: The tested algorithms are not tested for performance. They still show no 
signs  of  slowing  down  the  game  though.  A  short  discussion  of  possible 
performance improvements will be given in chapter 9.

● Effectiveness: The controlled learning rules can be seen as a handwritten AI. 
Most of the implemented learning algorithms show better efficiency than it.  It 
even  has  a  negative  impact  on  the  overall  performance  when  used  in 
conjunction with one of the supervised learning algorithms.

● Robustness: The agents change the AI based on the ingame experience but 
some algorithms, like the basic supervised learning, tend to produce onesided 
behaviour after some time.

● Efficiency: The changes occur quite quickly, normally during the course of 4 to 5 
timesteps,  which  corresponds  to  3  to  4  minutes  in  real  time  if  the  rate  of 
gamerounds is capped at about 30 rounds per seconds.

Functional requirements:

● Clarity: The short time changes in behaviour are easy to understand in most 
cases.  Some  of  the  more  permanent  long  term  changes  are  harder  to 
understand at first glance. 

● Variety: The agents visibly react to streaks of agent or player deaths and adapt 
their behaviour accordingly.

● Consistency: In all tests the time it took for the long term changes to take effect 
was quite similar. 5 to 6 timesteps for the supervised learning to fully convert 
the behaviour for example.

● Scalability: The change in damage rates made it easier for the agents to adapt. 
There  is  still  a  much  bigger  impact  on  efficency  during  the  low  damage 
segement than during the high damage segment though.
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7. Reinforcement learning

Similar to chapter 6 several learning algorithms will be implemented and tested. All of 
them belong into the class of reinforcement learning as they directly reward or punish 
successful or failed actions. They do not propose a fixed alternative instead like the 
supervised algorithms but work on the basis of the current state of the AI agent at the 
moment the reward is handed out. The same neural network initialized with the same 
offline  training  as for  the supervised algorithms is  used to store the agent's  action 
selection policy.

The following reinforcement learning algorithms are examined in this chapter:

● Complimentary reinforcement  backpropagation algorithm (CRBP)

● Complimentary  reinforcement  backpropagation  algorithm  with  discounted 
memory

● 0.5 rule reinforcement learning algorithm

● 0.5 rule reinforcement learning algorithm with memory

All of these are executed online. 

7.1 Complimentary reinforcement backpropagation  algorithm (CRBP)

The CRBP was first introduced by Ackley & Littman in 1990 [AckleyLittman90]. The 
main idea behind it is that whenever an action fails to generate reward, CRBP will try to 
generate a new action different to the old one [Kaelbling et al. 96]. This is achieved by 
training the neural network with a state action pair <s,a> if the generated reward by a 
was 1 and by training it with the state action pair <s,a> if the reward was 0, where a = 
(1-a1,  1-a2,  …, 1-an).  In the case of  the Chase/Flock/Evade task the an correspond 
directly to the output values of the neural network.

The implementation used for the tests is shown in Figure 7.1.

The basic version was also extended with a short term memory in the same way as the 
supervised learning algorithms in chapter 6.
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void CRBP(double distanceToPlayer)
{

//if entity is alive
if (agent.getHitpoints() >= 0.0)
{

//if entity was close while player died, reinforce current behaviour
if (kill && (distanceToPlayer < CombatDistance))
{

neuralNet.setInputs(agent.getInputs());
neuralNet.FeedForward();
neuralNet.Retrain(  neuralNet.GetOutput(0), 

         neuralNet.GetOutput(1), 
         neuralNet.GetOutput(2) );

}
}

//if entity died, discourage current behaviour
if (agent.getHitpoints() < 0.0)
{

neuralNet.setInputs(agent.getInputs());
neuralNet.FeedForward();
neuralNet.Retrain(  1.0 - neuralNet.GetOutput(0), 

         1.0 - neuralNet.GetOutput(1), 
         1.0 – neuralNet.GetOutput(2) );

}
}
Figure 7.1 CRBP implementation

Basic CRBP

The basic CRBP shows a disproportional amount of flocking, a very low chasing and 
no evading. After an initial time of about 3 timesteps the algorithm has converged on 
the behaviour it will exhibit for the remainder of the test. There is no visible adaptation 
to the different player damage rates. As a result there are comparatively few player and 
agent deaths and the overall ratio is very low at 0.43.
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Figure 7.2 Turns per state distribution CRBP

Death ratio

The average death ratio of the network trained with CRBP is 0.43. The average death 
ratios for the standard damage, lower damage and higher damage are as follows:

● Standard: 0.48

● Low: 0.89

● High: 0.21

Figure 7.3 Death ratio CRBP
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Figure 7.4 Training events CRBP

CRBP discounted memory

The version  of  the  CRBP with  discounted  memory  shows  even  less  chasing.  The 
memory amplifies the learning process already observed in its basic form.

Figure 7.5 Turns per state distribution CRBP discounted memory
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Death ratio

The average death ratio of the network trained with CRBP using discounted memory is 
0.35. The average death ratios for the standard damage, lower damage and higher 
damage are as follows:

● Standard: 0.41

● Low: 0.76

● High: 0.16

Figure 7.6 Death ratio CRBP discounted memory
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Figure 7.7 Training events CRBP discounted memory

7.2 0.5 rule reinforcement learning algorithm

Two main weaknesses were obvious in the behaviour produced by the CRBP.  The 
domination  of  flocking  and  the  near  absence  of  chasing  and  evading.  By  closer 
examining the training rules and watching the agent behaviour this could be attributed 
to the following problems. Evading agents often were instrumental  in damaging the 
player  before  they  started  to  evade.  Those  agents  then  often  died  while  evading 
because they could not escape out of the combat distance quickly enough. In such a 
case  The  earlier  chase  and  the  evade  will  be  weakened.  Similarly  chasing  gets 
punished  when  an  agent  dies  while  fighting  the  player  not  having  the  chance  to 
escape.  The  CRBP  will  incorrectly  punish  the  chase  behaviour  in  this  case  and 
strengthen flocking and evading in this kind of situation. As a result of this flocking gets 
indirectly promoted on many occasions while the other two behaviours are rewarded in 
very few situations.

To lessen this problem the reinforcement learning algorithm was modified. Firstly the 
reward for flocking behaviour was deactivated as flocking agents can be considered to 
only accidentally attack the player. After a few tests it became obvious that this alone 
was not enough,  so secondly the punishment of behaviours was weakened and an 
additional  punishment for the flocking behaviour  was introduced.  This was done by 
using a weight of 0.5 on the outputs which are used as the inputs for the training of the 
neural network. The current behaviour which shall get punished is weighted with 0.5 
while the other behaviours are fed into the retraining unweighted. Flocking is always 
weighted  with  0.5  and  therefore  weakened,  even  if  it  wasn't  the  actual  behaviour 
exhibited by the agent.
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This  new reinforcement  learning  algorithm was  dubbed  the  0.5  rule  reinforcement 
algorithm and then tested with several selection strategies, with control rules and with 
short term memory.

The 0.5 Rule implementation:

void ReinforcementLearning(distanceToPlayer)
{

//if entity is alive
if ( (activeEntity.getHitpoints() >= 0.0))
{

//if entity was close while player died, reinforce current behaviour
if (kill && (distance < CombatDistance))
{

neuralNet.setInputs(agent.getInputs);
neuralNet.FeedForward();
behaviour = neuralNet.getBehaviour();
switch (behaviour)
{

case chasing:
neuralNet.Retrain(neuralNet.GetOutput(0),

     neuralNet.GetOutput(1), 
     neuralNet.GetOutput(2));

break;
case flocking:
//skip training
break;
case evading:
neuralNet.Retrain(neuralNet.GetOutput(0),

      neuralNet.GetOutput(1),
     neuralNet.GetOutput(2));

break;
}

}
}



65

//if entity died, discourage behaviour
if (activeEntity.getHitpoints() < 0.0)
{

neuralNet.setInputs(agent.getInputs); 
neuralNet.FeedForward();
behaviour = neuralNet.getBehaviour();
switch (behaviour)
{

case chasing:
neuralNet.Retrain(0.5*neuralNet.GetOutput(0), 

       0.5*neuralNet.GetOutput(1),
       neuralNet.GetOutput(2));

break;
case flocking:
neuralNet.Retrain(neuralNet.GetOutput(0), 

      0.5*neuralNet.GetOutput(1),
      neuralNet.GetOutput(2));

break;
case evading:
neuralNet.Retrain(neuralNet.GetOutput(0), 

       0.5*neuralNet.GetOutput(1),
       0.5*neuralNet.GetOutput(2));

break;
}

}
}
Figure 7.8 0.5 rule reinforcement learning algorithm

0.5 rule reinforcement learning algorithm, greedy selection

The new algorithm showed significantly improved behaviour. Flocking is still the overall 
strongest state exhibitied by the agents but chasing is back in an influental quantity, 
more than half as much as flocking. Evading plays a minor role as in most previous 
cases but is very perceivable and constant.
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Figure 7.9 Turns per state distribution 0.5 rule with greedy selection

Figure 7.10 Death ratio 0.5 rule with greedy selection
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Figure 7.11 Training events 0.5 rule with greedy selection

Death ratio

The newly improved behaviour clearly shows in a very good death ratio. Not only is it 
higher than the one by the CRBP but it also surpasses the best ratio of the supervised 
learning algorithms examined in chapter 6.

The average death ratio of the network trained with the 0.5 rule algorithm and greedy 
selection is 0.81. The average death ratios for the standard damage, lower damage 
and higher damage are as follows:

● Standard: 0.79

● Low: 1.9

● High: 0.45
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0.5 rule reinforcement learning algorithm, softmax selection

Figure 7.12 Turns per state distribution 0.5 rule with softmax selection

The softmax selection strategy again lowers the gap bewteen the different behaviours. 
Especially  evading  is  used  much  more  compared  to  the  greedy  action  selection 
strategy.

Figure 7.13 Death ratio 0.5 rule with softmax selection
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The softmax selection is also noticeably more efficient as can be seen by the higher 
death ratio.

Death ratio

The average death ratio of the network trained with the 0.5 rule algorithm and softmax 
selection is 0.91. The average death ratios for the standard damage, lower damage 
and higher damage are as follows:

● Standard: 0.79

● Low: 1.81

● High: 0.56

Figure 7.14 Training events 0.5 rule with softmax selection

Controlled 0.5 rule reinforcement learning algorithm

The controlled learning rules strongly dampens the reinforcement learnings efficiency 
boost  and overall  influence  on the agents.  Figure  7.15 shows  the typical  swinging 
between the two dominating behaviours. The absolute player and agent death numbers 
are also higher than the respective numbers for the uncontrolled algorithms. An effect 
the controlled learning rules also had on the supervised learing.
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Figure 7.15 Turns per state distribution controlled 0.5 rule with softmax selection

Death ratio

The average death ratio of the network trained with the controlled 0.5 rule algorithm 
and softmax selection  is  0.77.  The average death ratios  for  the standard  damage, 
lower damage and higher damage are as follows:

● Standard: 0.73

● Low: 1.59

● High: 0.45

Figure 7.16 Death ratio controlled 0.5 rule with softmax selection
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Figure 7.17 Training events controlled 0.5 rule with softmax selection

7.3 0.5 rule reinforcement learning algorithm with memory

The memory was implemented similarly to the one for the supervised learning. The 
only  major  difference was  the  fact  that  the retraining  of  the neural  network  has to 
recreate  the  old  outputs  belonging  to  the  saved  past  inputs  while  the  supervised 
algorithm could simply take the target value from the learning algorithm to calculate the 
errors.

0.5 rule reinforcement learning algorithm with memory

The simple short term memory strongly enhances the effect of the learning algorithm. 
The evasion behaviour is boosted much stronger and is able to even overtake the 
flocking behaviour, during the high player damage segment it even comes close to top 
the chase behaviour. The overall effect on the efficiency and variation of the agent's AI 
is quite negative. The death ratio is significantly lower than the version of the algorithm 
without the memory and the behaviour more monotonous.
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Figure 7.18 Turns per state distribution 0.5 rule with softmax selection and memory

Death ratio

The average death ratio of the network trained with the 0.5 rule algorithm and memory 
is 0.51. The average death ratios for the standard damage, lower damage and higher 
damage are as follows:

● Standard: 0.68

● Low: 0.87

● High: 0.28

Figure 7.19 Death ratio 0.5 rule with softmax selection and memory
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Figure 7.20 Training events 0.5 rule with softmax selection and memory

Controlled 0.5 rule reinforcement learning algorithm with discounted memory

Figure 7.21 Turns per state distribution, Softmax selection and discounted memory
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The discounted  memory  has  a  much  more  moderate  impact  on  the  learning.  The 
overall  curve in Figure 7.21 looks more akin to Figure 7.12 the behaviour from the 
memoryless  reinforcement  learning,  just  with  boosted  ascents  and  descents. 
Interesting to note is also the leap of the evasion behaviour to dominate in the high 
damage segement.

As a result of this much improved overall behaviour, the efficency is the highest of all 
the algorithms tested so far.

Death ratio

The  average  death  ratio  of  the  network  trained  with  the  0.5  rule  algorithm  and 
discounted memory is 1.09 The average death ratios for the standard damage, lower 
damage and higher damage are as follows:

● Standard: 1.06

● Low: 2.87

● High: 0.65

Figure 7.22 Death ratio 0.5 rule with softmax selection and discounted memory
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Figure 7.23 Training events 0.5 rule with softmax selection and discounted memory

7.4 Summary of chapter 7

Figure 7.24 Death ratio comparison

The CRBP algorithm was a big dissapointment. It led to the worst efficiency and also to 
very monotonous, inflexible behaviour. The opposite of what was intended. Obviously it 
is not simply possible to transfer a reinforcement learning algorithm to a similar, yet 
different task. 
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The specially tailored algorithm based on the CRBP on the other hand is the most 
efficient of the algorithms examined in chapters 6 and 7 and also exhibits interesting 
and varied behaviour, a very important aspect of gaming AI. Figure 7.25 shows a near 
identical amount of turns spent flocking and chasing and also a noticeable amount of 
evasion  behaviour.  A  slight  surprise  is  the  big  gap  between  the  algorithms  with 
discounted  and  undiscounted  memory.  The  same  disparity  could  be  observed  in 
chapter 6 and hints at either a big superiority of the concept of the discounted memory 
or a weakness in the implementation of the simple memory.

Figure 7.25 Sum of turns spent in a behaviour by all agents combined
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Figure 7.26 Sum of player and agent deaths

Comparison to the supervised learning algorithms.

The  reinforcement  learning  led  to  superior  efficency  and  also  to  a  more  varied 
behaviour. It made bigger changes to the basic neural network which can also be seen 
in the much lower number of overall player and agent deaths in Figure 7.26. compared 
to Figure 6.29. It has the potential to be clearly better. On the other hand there also 
was a bigger variance in the results from the tests which do not show in the statistics 
which are averaged from a big number of samples. It takes more work and testing to 
ensure proper operation of a reinforcement learning algorithm. The 0.5 rule algorithm 
also had to be very specifically modified to suit the Chase/Flock/Evade task while the 
supervised learning algorithms used a much simpler pattern.

Summary of chapter 7

Chapter 7 introduced reinforcement learning to create adaptive agent AI on basis of a 
neural network. The same goals as in chapter 6 were achieved. The new algorithms 
are more efficient but also potentially more unpredictable and harder to implement and 
test.
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8. Variations of the network

Besides supervised and reinforcement learning operating on the single small neural 
network,  two other network structures were examined.  Firstly a bigger network was 
implemented using more inputs and hidden nodes.  Secondly  a combination  of  two 
small networks was tested. The goal was to see if these modification would have a 
positive  impact  on  the  overall  behaviour  and  effectiveness  and  thereby  judge  the 
suitability of the original, small network for the solution of the Chase/Flock/Evade task. 
The tests with the single, bigger network were executed early during the process of 
designing the learning algorithms and used to decide if the small network was sufficient 
to solve the Chase/Flock/Evade task satisfyingly. Therefore no reinforcement learning 
algorithm was implemented for it. The two network structure was examined to show 
alternatives to the small network and to test the viability of the developed techniques 
when dealing with multiple neural networks.

8.1 Big network
The new network has the same three layer structure like the old one. It uses six inputs, 
four outputs and five hidden layer nodes.

The inputs

To  properly  exploit  the  possible  gain  of  using  a  bigger  network  the  inputs  are 
complemented by two more values, raising the total number of inputs to six. These are 
the death ratio and the degree of encirclement. The other inputs are the same as for 
the small neural net.

Death ratio

The death ratio is the player death to agent death ratio averaged over the course of the 
last 5000 gamerounds. This allows the network to judge its past performance. The 
hyperbolic tangent (tanh(death ratio)) is used to scale the death ratio to fit as input.

Degree of encirclement

The degree of encirclement is a measurement allowing the agents to know if they are 
in a good position to attack. This is done by a method which takes into account the 
number of AI agents in each of the four quadrants around the player and weighs each 
agent by its distance to the player. If the AI agents are distributed evenly around the 
player and many are close the degree of encirclement will return a high value, if the 
agents are all situated on the same side of the player and far away it will return a low 
number. The degree is scaled to lie between 0.0 and 1.0 like all other inputs.

Basic big network

The first conditioning is done offline with a slightly modified training set from the small 
network, extended with values for the new inputs. The tests run for the new network 
are identical to the ones from chapters 6 and 7.
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Figure 8.1 Turns per state distribution, basic big network

Unsurprisingly the absolute numbers of turns spent in the different states are similar to 
the basic small  network albeit  a stronger evasion can be observed, nearly twice as 
much as for the small neural net. Chasing dominates the standard and low damage 
segments while  flocking gets  nearly  as strong as chasing  during the high damage 
segment. Interestingly the variation between the behaviours is quite different though. 
The small network showed a constant swing between chasing and flocking while the 
bigger  network  shows  a  smoother  behaviour  and  more  pronounced  differences 
betweens the test stages. This can also be seen in the better death ratio at 0.75 which 
rivals that of the small network with supervised learning.

Figure 8.2 Death ratio, basic big network
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Death ratio

The average death ratio of the basic big network is 0.75 The average death ratios for 
the standard damage, lower damage and higher damage are as follows:

● Standard: 0.73

● Low: 1.2

● High: 0.42

Big network supervised learning

The supervised learning algorithm used for the small network is identical to the one 
developed for the original one.

Figure 8.3 Turns per state distribution, big network supervised learning

The behaviour  exhibited  by the supervised big network  is  similar  to  the one by its 
smaller  counterpart.  Chasing  becomes  the  dominant  behaviour  during  the  first  6 
timesteps and flocking and evading get suppressed. This suppression effect is also 
slightly  faster  than  for  the  small  network,  which  shows  when  comparing  the  total 
number of turns spent in the different states. 
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Figure 8.4 Death ratio, big network supervised learning

Death ratio

The average death ratio of the big network trained with supervised learning is 0.78 The 
average death ratios for the standard damage, lower damage and higher damage are 
as follows:

● Standard: 0.75

● Low: 1.47

● High: 0.46

The death ratio again shows a slight advantage in efficiency compared to the smaller 
network. 

Figure  8.5  shows  that  evading  is  constantly  promoted  but  simply  too  weak  in 
comparison to the chase behaviour to be of any impact on the behaviour.
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Figure 8.5 Training events, big network supervised learning

Big network, controlled supervised learning

The same controlled supervised learning algorithm introduced in chapter 5.7 was used 
to train the bigger network. 

Figure 8.6 Turns per state distribution, big network controlled supervised learning
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Figure 8.6 clearly  shows the typical  swinging back and forth between chasing and 
flocking resulting from the controlled learning rules which promote flocking. During the 
later stages of the tests, when the differences between the controlled and supervised 
learning decrease, the variance between the behaviours also gets smaller. Although 
still weak evading is stronger than in the basic and pure supervised learning networks.

Figure 8.7 Death ratio, big network controlled supervised learning

Death ratio

The average death ratio of the big network trained with controlled supervised learning 
is 0.72 The average death ratios for the standard damage, lower damage and higher 
damage are as follows:

● Standard: 0.7

● Low: 1.28

● High: 0.44

The lowest death ratio for the big network can be observed while using the controlled 
supervised learning although the ratio during the later test segments is slightly higher. 
This is consistent with the effect seen when using it in concert with the other learning 
types.  The  control  rules  force  a  more  varied  behaviour  at  the  expense  of  some 
efficency and learning speed.

1 2 3 4 5 6 7 8 9 10 1112 1314 1516 17 1819 2021 2223 2425 26 2728 2930
0

50

100

150

200

250

300

350

400

Player deaths:
AiAgent deaths:



84

Figure 8.8 Training events, big network controlled supervised learning

Summary big network

The patterns observed while using the learning algorithms with a smaller network are 
repeated.  Supervised  learning  raises  the  efficiency  but  also  leads  to  monotonous 
behaviour while controlled learning provides variation but a drop in ratio. This can be 
seen in Figures 8.9 and 8.10.

Compared  to  the  small  neural  network  the  bigger  one  shows  an  overall  rise  in 
efficiency. Although notable the rise is quite small and therefore the decision was made 
to  use  the  smaller  network  for  the  more  complex  algorithms  of  the  reinforcement 
learning as it  is  also capable  of  solving the Chase/Flock/Evade task in  a sufficient 
manner. A more complex task obviously would profit more from the complexity inherent 
in bigger networks, especially the higher number of computable inputs. 
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Figure 8.9 Death ratio comparison, big network

Figure 8.10 State distribution comparison, big network

Figure 8.11 shows that all tested versions of the big network lead to a similar number of 
agent  and  player  deaths  as  their  smaller  network  counterparts.  No  noticeable 
difference in overall behaviour can be seen.
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Figure 8.11 Total player and agent deaths comparison, big network

8.2 Two net architecture

Adding the second neural network

The idea behind using a second neural network was to to create a better coordination 
between the AI agents. The goal was to develop higher level tactics like surrounding 
the player and better group dynamics. To allow for a better assessment of the game 
situation the second network counts the number of AI agents in close proximity to the 
player  and  rates  the  situation  in  order  to  advise  the  AI  agents  to  become  more 
aggressive or defensive, it also takes their relative position to the player into account. 
This new network is called the “situational awareness” network. The original network 
was slightly redefined and named the “tactical” network.

In reinforcement learning terms the situational  awareness net  can also be seen as 
partly  fulfilling the role of a state value function, whereas the tactical net represents the 
action selection policy.

The  flocking  behaviour  was  switched  for  a  “move  to  target”  behaviour  called 
maneuvering, this behaviour replaces the flocking. An independent method which takes 
into account the relative position of the AI agent to the player and the result  of the 
encirclement function is called to choose an appropriate goal for maneuvering agents.

To aid the situational  awareness network in judging the overall  situation two helper 
methods were defined to produce correctly scaled input.  These are identical  to the 
ones describe in chapter 8.1 under degree of encirclement and death ratio.

One judges the degree of encirclement of the player by taking into account the number 
of AI agents in front, behind, left and right of the player, weighted by their distance. The 
other simply calculates the death ratio during the last  1000 gamerounds giving the 
neural net a way to judge the past progress.

These two measurements in addition to the pure number of AI agents in close proximity 
to the player  allow the net  to evaluate the game situation independent  of  a  single 
agent's own condition. The situational awareness network then creates a judgement of 
the overall situation and communicates this to the single agents which then take their 
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own, personal situation into account to make a decision.

Maneuvering

An agent in the maneuvering state will move to a set goal. This goal is decided upon by 
the degree of encirclement function in addition to examining the overall positioning of 
the agents  relative  to  the  player.  The space around the player  is  divided into four 
quadrants relative to its position and direction: Front right, front left, back right and back 
left.  The goal  for  the agent  in  the maneuvering  state is  always  the  least  occupied 
quadrant  on  the  side  of  the  player  closer  to  the  agent.  This  ensures  that  the 
maneuvering agents will always try and surround the player before they attack.

The new in- and outputs

Inputs to the situational awareness network.

● Input 0: Degree of encirclement

● Input 1: Number of AI agents close to player

● Input 2: Player engaged or not

● Input 3: Death ratio during the last 1000 gamerounds

Outputs of the situational awareness network.

● Output 0: Attack advice

● Output 1: Maneuver advice

● Output 3: Evade

The outputs of the situational awareness network are treated as general advice to the 
single agents by using them as inputs for the tactical network.

Inputs to the tactical network.

● Input 0: Output 0 of the situational awareness net (attack)

● Input 1: Output 1 of the situational awareness net (maneuver).

● Input 2: Distance to player / MaxDistance

● Input 3: Hitpoints

Outputs of the tactical network.

● Output 0: Chase

● Output 1: Maneuver

● Output 2: Evade

The evade  output  of  the  situational  awareness  network  is  not  directly  fed  into  the 
tactical  net.  It  is  only  used to indirectly  influence the probabilities  of  the other  two 
outputs during the controlled learning.

Basic two network architecture
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Two net architecture basic training

The two net architecture is trained using one independent training set for each network.

The training of two networks proved to be more difficult. As a result the maneuvering 
dominated  the  initial  behaviour.  When  examining  the  networks  the  situational 
awareness network could be held responsible for this.  Its basic version favours the 
maneuver behaviour so strongly that the other inputs to the tactical net are overruled.

Figure 8.12 Turns per state distribution, basic two net architecture

This leads to a very weak behaviour during the high damage segment as can be seen 
in  figure  8.13.  The average death ratio  is  still  quite  high  though as the maneuver 
behaviour leads to a homogenous movement of the AI agents. Therefore it is hard for 
the player to achieve a good performance throughout the game.

Death ratio

The average death ratio of the basic two net architecture is 0.8 The average death 
ratios for the standard damage, lower damage and higher damage are as follows:
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● Low: 2.0

● High: 0.47
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Figure 8.13 Death ratio, basic two net architecture

Two net architecture supervised learning

A supervised learning algorithm for the two net architecture was implemented which is 
an adaptation of the algorithm for the single net architecture.

Supervised learning algorithm for the two net architecture

The supervised learning algorithm for the two net architecture can be separated into 
two separate algorithms for each of the two networks.

The algorithm for  the  tactical  net  is  identical  to  the  one used  for  the  single  small 
network: 

//supervised learning for tactical net
//if agent is alive
if ( (activeEntity.getHitpoints() >= 0.0))
{

//if entity was close while player died, reinforce chase behaviour
if (kill && (distance < CombatDistance))
{

tacticalNet.Retrain(0.9, 0.1, 0.1);
}

}
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//if agent died, encourage evasive behaviour
if (activeEntity.getHitpoints() < 0.0)
{

tacticalNet.Retrain(0.1, 0.1, 0.9);
}
Figure 8.14 Supervised learning, tactical network

The algorithm for the situational awareness network takes into account the number of 
agents that died while trying to kill the player. If the player was killed and less than two 
agents died in the process this is seen as a success and the network is trained to 
advise the chase behaviour in a similar situation. If the player was not killed but at least 
one agent died the network is trained to advise the use of maneuvering.

//supervised learning situational awareness net
if (kill && agentDeathsThisRound < 2)
{

situationalAwarenessNet.Retrain2(0.9, 0.1, 0.1);
}
else
{

if (!kill && agentDeathsThisRound > 0)
{

situationalAwarenessNet.Retrain2(0.1, 0.9, 0.1);
}

}
Figure 8.15 Supervised learning, situational awareness network

Comparable to its single net architecture counterpart, the supervised learning algorithm 
converges to relatively monotonous behaviour during the first third of the test. It does 
so even stronger as the second network speeds up the training effect. 
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Figure 8.16 Turns per state distribution, two net architecture supervised learning

Figure 8.17 Death ratio, two net architecture supervised learning

Interestingly the death ratio is very high at 1.63. 
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Death ratio

The average death ratio of the supervised two net architecture is 1.63 The average 
death  ratios  for  the  standard  damage,  lower  damage  and  higher  damage  are  as 
follows:

● Standard: 1.61

● Low: 2.51

● High: 1.05

Two network architecture controlled supervised

As for  the single net  supervised algorithm a set  of  control  rules is  implemented to 
guarantee a more varied behaviour.  It  consists of three parts: One which trains the 
tactical net to adhere to several specific input values, one which trains it to specifically 
follow the advice from the situational  awareness network  and one which  trains the 
situational  awareness network to steer towards a default  assessment of the overall 
situation.

Their implementation is shown in Figure 8.18

//if agent is dying -> evade
if ((activeEntity.getHitpoints())  < 10.0 && (distance < CombatDistance))
{

tacticalNet.Retrain(0.1, 0.1, 0.9, activeEntity);
}
else
{

//if player not too close -> maneuver
if ((situationalAwarenessNet.GetOutput(1) < 0.4)
&&(distance> CombatDistance) )
{

tacticalNet.Retrain(0.1, 0.9, 0.1);
}
else
{

//if agent is too far away -> maneuver
if(distance > CombatDistance)
{

tacticalNet.Retrain(0.1, 0.9, 0.1);
}
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//if agent is close to player and not alone -> attack
else
{

if ( distance < 2 * CombatDistance && 
situationalAwarenessNet.GetOutput(0) > 0.4)

{
tacticalNet.Retrain(0.9, 0.1, 0.1);

}
}

}
}

//train tactical net  to follow situational awareness net
if (situationalAwarenessNet.GetOutput(0) > 0.4)
{

tacticalNet.Retrain(0.9, 0.1, 0.1);
}
else
{

if (situationalAwarenessNet.GetOutput(1) > 0.4)
{

tacticalNet.Retrain(0.1, 0.9, 0.1);
}
else
{

tacticalNet.Retrain(0.1, 0.1, 0.9);
}

}

//retrain situational awareness net
if ( (degree > 0.4) && (playerDeathToAgentDeathRatio > 0.5) )
{

situationalAwarenessNet.Retrain(0.9, 0.1, 0.1);
}
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else
{

if ( (degree < 0.3) && (playerDeathToAgentDeathRatio > 0.4) )
{

situationalAwarenessNet.Retrain(0.1, 0.9, 0.1);
}
if ( (degree < 0.2) && (playerDeathToAgentDeathRatio < 0.2) )
{

situationalAwarenessNet.Retrain(0.1, 0.1, 0.9);
}

}
Figure 8.18 Controlled learning, two net architecture

As can be seen in Figure 8.19 the control rules successfully prevent the agents from 
learning a onesided behaviour. Only the evade behaviour is comparatively low but still 
noticeable.

Figure 8.19 Turns per state distribution, two net architecture controlled supervised

The  controlled  behaviour  is  less  efficient  though,  similar  to  the  single  network 
architectures. It is still superior to the basic network.
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Death ratio

The average death ratio of the controlled supervised two net architecture is 0.87 The 
average death ratios for the standard damage, lower damage and higher damage are 
as follows:

● Standard: 0.96

● Low: 1.86

● High: 0.53

Figure 8.20 Death ratio, two net architecture controlled supervised learning

Two network architecture reinforcement learning

The reinforcement learning algorithm for the tactical network is an adaptation of the 0.5 
rule algorithm. The situational awareness network needed a completely new algorithm. 
It is based on the overall number of agent deaths suffered when the player got killed to 
judge the assessment of the situation. If more than two agents died it is seen as a 
failure and the state and state evaluation is punished, if less than two agents died the 
current assessment is rewarded.
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The implementation of the reinforcement learning is shown in Figure 8.21

//reinforcement learning for tactical net
//if agent is alive
if ( (activeEntity.getHitpoints() >= 0.0))
{

//if entity was close while player died, reinforce current behaviour
if (kill && (distance < CombatDistance))
{

tacticalNet.FeedForward();
behaviour = tacticalNet.GetMaxOutputID();
switch (behaviour)
{

case chasing:
tacticalNet.RetrainMemory(tacticalNet.GetOutput(0), 

tacticalNet.GetOutput(1), 
tacticalNet.GetOutput(2));

break;
case maneuvering: //skip reinforcing of maneuvering behaviour
break;
case evading:
tacticalNet.RetrainMemory(tacticalNet.GetOutput(0), 

tacticalNet.GetOutput(1), 
tacticalNet.GetOutput(2));

break;
}

}
}
//if agent died, discourage current behaviour
if (activeEntity.getHitpoints() < 0.0)
{

tacticalNet.FeedForward();
behaviour = tacticalNet.GetMaxOutputID();
switch (behaviour)
{

case chasing:
tacticalNet.Retrain(0.5*tacticalNet.GetOutput(0), 

       0.5*tacticalNet.GetOutput(1), 
       tacticalNet.GetOutput(2));

break;
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case maneuvering:
tacticalNet.Retrain(tacticalNet.GetOutput(0),

       0.5*tacticalNet.GetOutput(1), 
       tacticalNet.GetOutput(2));

break;
case evading:
tacticalNet.Retrain(tacticalNet.GetOutput(0), 

       0.5*tacticalNet.GetOutput(1), 
       tacticalNet.GetOutput(2));

break;
}

}

//reinforce situational awareness network
if (kill && agentDeathsThisRound < 2)
{

situationalAwarenessNet.Retrain2(situationalAwarenessNet.GetOutput(0), 
          situationalAwarenessNet.GetOutput(1), 
          situationalAwarenessNet.GetOutput(2));

}
else
{

if (!kill && agentDeathsThisRound > 1)
situationalAwarenessNet.Retrain(0.5*situationalAwarenessNet.GetOutput(0), 

        0.5*situationalAwarenessNet.GetOutput(1), 
        situationalAwarenessNet.GetOutput(2));

if (!kill && agentDeathsThisRound > 0)
situationalAwarenessNet.Retrain(0.5*situationalAwarenessNet.GetOutput(0), 

        0.5*situationalAwarenessNet.GetOutput(1), 
        situationalAwarenessNet.GetOutput(2));

}
Figure 8.21 Reinforcement learning, two net architecture
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Figure 8.22 Turns per state distribution, two net architecture reinforcement learning

The reinforcement learning leads to a monotonous behaviour similar to the supervised 
learning.  In this case maneuvering is the one dominant  state where the supervised 
algorithm prefered chasing combined with a solid amount of evading.

Figure 8.23 Death ratio, two net architecture reinforcement learning

This leads to a relatively bad death ratio as the AI agents are unable to adapt to the 
high damage segment of the test.
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Death ratio

The average death ratio of the two net architecture with reinforcement learning is 0.79 
The average death ratios for the standard damage, lower damage and higher damage 
are as follows:

● Standard: 0.82

● Low: 2.03

● High: 0.49

Two network architecture controlled reinforcement learning

Figure 8.24 Turns per state distribution, two net architecture controlled reinforcement 

The control rules are able to promote chasing and evading strongly enough to lead to a 
more varied behaviour. Maneuvering is still the prefered state of the AI agents though.
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Figure 8.25 Death ratio, two net architecture controlled reinforcement learning

The combination of the control rules and the reinforcement algorithm for the two net 
architecture weakens the efficiency of the reinforcement learning. The death ratio is the 
lowest of all the two net algorithms.

Death ratio

The average death ratio of the two network architecture using controlled reinforcement 
learning is 0.53 The average death ratios for the standard damage, lower damage and 
higher damage are as follows:

● Standard: 0.67

● Low: 1.11

● High: 0.19

Summary two net architecture

The two net architecture proved to be more difficult to work on, especially considering it 
was examined late in the project and therefore less time was spent on adjusting the 
learning  algorithms  specifically  for  its  special  needs.  As  a  result  the  behaviours 
exhibited during the tests were quite varied.

The supervised algorithms showed the best results as they were easier to implement 
and adapt. This shows most obviously in Figure 8.26. The pure supervised algorithm 
has  the  highest  death  ratio  with  the  controlled  variant  coming  in  second.  The 
reinforcement  learning  on  the  other  hand  even  dropped  the  ratio  below  the  basic 
network. As with all the other algorithms the controlled learning lowers the efficiency 
but raises the variety in behaviour as can be seen in Figure 8.27.
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Figure 8.26 Death ratio comparison, two net architecture

Figure 8.27 State distribution comparison, two net architecture

Figure  8.28 shows  the overall  impact  of  the  exchange  of  the  maneuvering  for  the 
flocking. The total numbers of player and agent deaths is much lower than the ones for 
the  single  network  architecture.  This  stems from the  maneuver  behaviour  and  the 
situational awareness network which influence the agents to wait  relatively long and 
only attack in greater numbers. This means the agents will spend more time preparing 
the attack and thereby cause less player deaths but also suffer less losses themselves.
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Figure 8.28 Total player and agent deaths, two net architecture

8.3 Summary of chapter 8

Two alternative network structures for the neural network were tested in chapter 8. The 
bigger single network proved to be slightly better than its smaller counterpart but the 
overall improvements in efficiency and behaviour were not big enough to warrant using 
it  instead  of  the  small  network,  which  is  fully  capable  of  solving  the  requirements 
needed for the AI in the scope of the Chase/Flock/Evade task. 

To test the two network structure the task had to be slightly modified by replacing the 
flocking  behaviour  with  the  maneuvering.  This  was  done  to  give  the  situational 
awareness network a bigger influence and a more challenging problem to solve. As a 
result  the  overall  efficiency  could  be  raised  for  the  supervised  learning.  A  direct 
comparison to the single network architectures is not feasible though, as the maneuver 
behaviour automatically leads to a better positioning of the AI agents relative to the 
player, compared to the quasi random flocking movement. The reinforcement learning 
also proved to be very hard to implement at a satisfying level. This partly stems from 
the  problem  in  having  both  networks  contributing  to  the  behaviour  while  it  would 
probably be easier to let only the situational awareness network decide when to attack 
or  flee.  This  shows  a  structural  weakness  of  the  task  definition.  The 
Chase/Flock/Evade task is better suited to be solved by a single network. The two net 
architecture would be better suited to a more complicated task. In the context of the 
Chase/Flock/Evade task the two networks often contradict each other which leads to 
the difficulties in using them to create an intelligent and stable behaviour.
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9 Discussion and outlook

9.1 Discussion 

Main goals

The goal  of  this  thesis  was  the  development  of  adaptive  AI  agents  working  in  a 
continuous real time environment with the help of artificial neural networks. To a good 
extent this goal was reached.

AI  agents  were  developed  being  able  to  react  to  changing  circumstances  in  the 
environment, in the shape of playing against a human player and a simple AI, and also 
to changes in the amount of damage dealt by the player. This was achieved by the 
generalization capabilities inherent in neural networks and the application of supervised 
and  reinforcement  learning  techniques.  The algorithms  examined  in  this  thesis  did 
improve the effectiveness and also the behaviour of the agents. The downside of the 
pure learning algorithms was their tendency to create onesided behaviour which might 
be more effective but is also often unwanted in the context of modern videogames as it 
can create a boring playing experience for a human player. To counter this effect the 
concept of controlled learning was introduced which allows to mix the learning effect 
with handcoded, clearly defined behaviour. This weakened the effect of the learning but 
created better defined AI. The motivation for this is, showing that it is possible to control 
the unwanted side effects of automatically learning algorithms and making them viable 
to be used in commercial games.

Additional questions

The task definition made for this thesis also creates more questions. Are the explored 
techniques only viable for small, simple tasks like the Chase/Evade/Flock problem? Or 
do they have the potential to be useful for more complex AI? To solve these questions 
more work has to be done as proposed in chapter 9.3.

9.2 Evaluating the AI
In  chapter  3.5  several  criteria  were  defined  to  evaluate  online  learning. They  are 
repeated here for convenience.

Computational requirements:

● Speed: Online learning must be computationally fast as it takes place during 
runtime.

● Effectiveness: Online learning must create effective game AI, at least as good 
as manually created code.

● Robustness: It has to be able to deal with randomness.

● Efficiency:  The wanted behaviour  has to emerge swiftly  enough (after a low 
number of trials) to be useful ingame.
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Functional requirements:

● Clarity: The emergent behaviour has to be easy to understand.

● Variety:  The learning process has to yield a variety of behaviour so that the 
game does not get boring.

● Consistency:  The  average  number  of  trials  before  the  wanted  behaviour 
emerges has to be consistent, there should not be a huge variety in the amount 
of time it takes to learn.

● Scalability: The learning process must be able to scale to the difficulty level of 
the game.

Speed

The performance of the developed algorithms was not a focus of this thesis. They were 
sufficiently fast to not slow down the simulation and most of the computational time is 
spent for the graphics engine.  Nonetheless it  can be marked that there are several 
easy ways of improving the performance of the learning structures devised during this 
thesis. Firstly the learning is based on training events happening ingame, the number 
of training events processed during a set number of timesteps can be easily capped at 
a set amount to stabilize the number and time of needed calculations. Secondly the 
algorithms can easily be shifted to a thread independent of the normal game AI. A copy 
of the neural network could be easily used to learn, while another copy is used to do 
the actual ingame AI. The learning network running parrallel for a fixed amount of time 
and then getting exchanged with the ingame network. The network training process 
itself could also be spread over a set number of gameticks. 

Effectiveness

The online learning methods were able to improve the effectiveness of the AI agents 
compared to the basic, offline trained network and also compared to the handcoded 
controlled learning rules, which are infact a form of manually created code comparable 
to an AI using a state machine.

Robustness

The AI was able to deal with a human player as good as it  was with the computer 
controlled one. The AI also adapted to changes in the damage rates.

Efficiency

Depending on the test and algorithm used the AI clearly showed adaptation in very 
short time. Sometimes during the course of only 5 to 6 agent or player deaths. The 
longer term effect of  the supervised and reinforcement learning algorithms normally 
took effect after a 5 to 6 timesteps, which equal about 3 to 4 minutes in real time.

Clarity

This is a weakness of some of the examined algorithms. Sometimes early versions 
showed hard to understand behaviour and needed a lot of tuning to work as intended. 
The 0.5 rule algorithm could be seen as a good example. To be able to better deal with 
this, it would help to create tools helping to better monitor the relation between the in- 
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and  outputs  of  the  neural  network(s)  and  also  to  implement  more  built  in  data 
collection.

Variety

The pure  learning  algorithms  often  created  slightly  monotonous  behaviour,  heavily 
favouring one or two of the 3 states. This is also due to the simple task and should be 
examined  on  more  complex  problems.  The  controlled  learning  algorithms  always 
showed variety, albeit this was mainly the effect of the handcoded control part of them.

Consistency

The time it  took the learning  algorithms to converge on their  usual  behaviour  was 
sufficiently consistent.

Scalability

The learning speed can be easily lowered and the controlled learning frequency can be 
adjusted to allow for dificulty scaling.

9.3 Outlook

Further uses

The methods represented throughout this thesis are also compatible to other, already 
better researched learning algorithms. 

Evolutionary offline algorithms could be used to train neural networks in games, while 
methods similar to those represented here could then provide online adaptivity to make 
game AI more varied and interesting.

Furthermore the neural networks used during this thesis were easily compatible with 
conventional methods that produced input for them. Just one way of incorporating the 
highly flexible neural networks into an existing gaming AI. This divide and conquer idea 
is also represented by the usage of small interconnected networks rather than one big 
monolithic one. All these ideas should make it more attractive for game developers to 
finally start using more advanced AI techniques.

Neural network toolbox

Future work in this field could be the development of tools designed to easily create 
neural  networks  and  adjust  their  parameters,  and  also  to  provide  a  better 
understanding of the design and tuning of neural networks. A better monitoring of the 
network variables could also greatly help in understanding the results produced by a 
network,  allowing  for  easier  adjustments.  A  toolset  could  also  contain  methods  to 
automatically  create  a  number  of  different  neural  networks,  not  only  the  standard 
multilayer feed forward one, to compare the effect of the different types of networks 
when used ingame.
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Implementing the learning techniques into a real game

The only  way to conclusively  decide if  the techniques introduced in  this  thesis  are 
capable of creating good AI for commercial games is of course the implementation of 
some  of  the  learning  algorithms  into  a  full  game.  This  could  either  be  done  by 
programming a small game from the gound up and base its complete AI on the usage 
of a hierarchy of neural networks implementing online learning algorithms. Alternatively 
a  published  commercial  game  could  be  used  as  the  basis  for  a  modification, 
exchanging some part of its AI with learning neural networks. Some older games are 
available as open source and would be ideal for this. Instead a modification of a newer 
game could be tried. The difficulty here is that normally only a small part of the AI is 
accessible in such a case, often as scripts.
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