
Master Thesis

Adaptive Support of

Knowledge Work by

Analysis of User Objectives

by Matthäus Martynus

Academic Supervisor: Prof. Johannes Fürnkranz

Knowledge Engineering Group

Darmstadt University of Technology (TUD)

– Computer Science Department –

Industrial Partner: SAP Research Darmstadt

Supervisor: Robert Lokaiczyk

Darmstadt, September 2008

Contents

1 Introduction 2

1.1 Motivation . 2

1.2 Practical Example . 3

1.3 Structure of the Thesis . 4

2 User Goals 6

2.1 Navigational Goal . 6

2.2 Informational Goal . 7

2.3 Transactional Goal . 9

2.4 Analysis . 9

2.5 Adaptive Support . 9

3 Implementation 12

3.1 Context Monitor . 13

3.2 Database . 16

3.3 User Interface . 18

3.4 User Interaction Emulator 22

4 Implemented Algorithms 24

4.1 Navigational Goal . 24

4.2 Informational Goal . 31

4.3 Transactional Goal . 36

Contents III

5 Evaluation 39

5.1 Tasks . 39

5.2 Data Collection . 41

5.3 Manual Analysis . 41

5.4 Automatic Analysis . 42

5.5 Field Study . 53

5.6 Questionnaire . 58

6 Conclusion 62

Bibliography VII

A More experimental results VIII

A.1 Further Analysis of Recommended Navigational Objects . . VIII

A.2 Analysis of Extracted Terms IX

A.3 Analysis of Classified Tasks XIII

B

List of Figures

2.1 Navigation Graph . 7

3.1 Communication Diagram . 12

3.2 Event Categories (Level 1) and Types (Level 2) 13

3.3 Database Structure . 17

3.4 UML Class Diagram of the User Interface (noch nicht fertig) 19

3.5 SAPSidebar GUI - Sidebar 21

3.6 SAPSidebar GUI - Topbar 22

3.7 User Interaction Emulator 23

4.1 A graph partitioned by pmetis and kmetis 28

4.2 Three iterations of spreading activation 32

4.3 Steps of Term Extraction Algorithm 33

4.4 Example of Three Decision Level Voting 38

5.1 Sequence Probability Recommender - Influence of Event Count 43

5.2 Sequence Probability Recommender - Influence of Minimum

Supporting Users . 44

5.3 Graph Probability Recommender Last N Events - Influence

of Event Count . 45

5.4 Graph Probability Recommender Last N Events - Influence

of Minimum Supporting Users 46

5.5 Graph Probability Recommender Last T Seconds - Influence

of Interval Seconds . 46

List of Figures V

5.6 Graph Probability Recommender Last T Seconds - Influence

of MinimumSupportingUsers 47

5.7 Graph Partition Recommender - Influence of Interval Seconds 48

5.8 Graph Partition Recommender - Influence of Minimum Sup-

porting Users . 48

5.9 Graph Partition Recommender - Influence of Partition Count 49

5.10 Spreading Activation Recommender - Influence of Activation

Type . 51

5.11 Spreading Activation Recommender - Influence of Decaying

Type, Firing Threshold, and Graph Type 52

5.12 Spreading Activation Recommender - Influence of Minimum

Supporting Users . 52

5.13 Spreading Activation Recommender - Influence of Spreading

Type and Recommending of Initially Activated Navigation

Objects . 53

5.14 Field Study Results - Session Logs(1) 54

5.15 Field Study Results - Session Logs(2) 55

5.16 Field Study Results - Session Logs(3) 56

5.17 Field Study Results - Relation Clicks to Duration Change -

By Tasks . 57

5.18 Field Study Results - Relation Clicks to Duration Change -

By Participants . 57

5.19 Field Study Results - Relation Clicks to Duration Change -

Table . 58

5.20 Field Study Results - Goal Support - Clicked Resource Counts 59

5.21 Field Study Results - Goal Support - Resource Positions . . 59

5.22 Questionaire Results - DIN Questions 60

5.23 Questionaire Results - Goals And Tasks 61

A.1 Comparison of Navigational Recommenders - Influence of Fil-

ter Seconds - Best Average Positions VIII

A.2 Comparison of Navigational Recommenders - Influence of Fil-

ter Seconds - Best Found Percentages IX

List of Figures VI

A.3 Comparison of Navigational Recommenders - Influence of

Minimum Supporting Users IX

A.4 Comparison of Navigational Recommenders - Found Percent-

ages on Positions . X

A.5 Comparison of Navigational Recommenders - Accumulated

Found Percentages on Positions X

A.6 Tasks Performances of Navigational Recommenders - Sequence

Probability Recommender XI

A.7 Tasks Performances of Navigational Recommenders - Graph

Probability Recommender XI

A.8 Tasks Performances of Navigational Recommenders - Graph

Partition Recommender . XII

A.9 Tasks Performances of Navigational Recommenders - Spread-

ing Activation Recommender XII

A.10 Tasks Performances of Navigational Recommenders - Com-

parison . XIII

A.11 Informational Recommender - Influence of Used Event Types

- Found Percentages .

A.12 Informational Recommender - Influence of Used Event Types

- Average Positions .

A.13 Informational Recommender - Influence of Interval Seconds

- Found Percentages .

A.14 Informational Recommender - Influence of Interval Seconds

- Average Positions .

A.15 Informational Recommender - Influence of Used Stopwords -

Found Percentages .

A.16 Informational Recommender - Influence of Used Stopwords -

Average Positions .

A.17 Transactional Recommender - Classifier Comparison - Influ-

ence of Interval Seconds .

A.18 Transactional Recommender - Classifier Comparison - Clas-

sified Task Distribution .

A.19 Transactional Recommender - Classifier Comparison - Clas-

sification Accuracy .

List of Figures 1

A.20 Transactional Recommender - SMO Classifier - Influence of

Interval Seconds .

A.21 Transactional Recommender - SMO Classifier - Classified

Task Distribution .

A.22 Transactional Recommender - SMO Classifier - Classification

Accuracy .

A.23 Transactional Recommender - Voter Classifier - Influence of

Interval Seconds .

A.24 Transactional Recommender - Voter Classifier - Classified

Task Distribution .

A.25 Transactional Recommender - Voter Classifier - Classification

Accuracy .

Chapter 1

Introduction

This master thesis investigates how the analysis of user objectives can can

be used to give an adaptive support to a knowledge worker during his daily

work. The thesis is hosted by the Research Department of SAP at its

Campus Based Engineering Center in Darmstadt.

1.1 Motivation

During the daily knowledge work it is often the case that we are recurring

things. We again and again click us through the folders to find a file because

we do not want another shortcut on the desktop although we use this file

very often, especially when we also working on the one file we already have

opened. And there are several other resources that we often use together

with this two files. It would be very helpful to have an assisting system that

would facilitate the finding and using of this resources.

Another aspect is that during our work we often come to a point when

we need some information about a particular thing. In this moment we are

switching from a worker to a learner. During todays work we can not use

anymore the old approach learn first, apply later. Today the learning and

applying is mixed up. But before we can start to learn we first must find

the resources from which we can learn. It is not possible to release us from

the learning, but it would be be really nice when something could support

us by finding for us the resources from which we can learn.

Everything we are doing could be classified in tasks. Every task is as-

sociated with resources that we need to use to fulfill the task. For some of

this resources we know where we can find them, for some we do not. And

some others we do not even know that we have to use them. Particularly

1.2 Practical Example 3

when we are doing this task for the first time. It would save us a lot of time

and even preserve us from forgetting something important when a system

could realize on which task we are working at the moment and give us a list

of resources that are needed to finish this task correctly.

Surely, there are many systems that can help us. We can create shortcuts

or favorites to save the time during browsing. We can use static support

system to get help about how to use an application. We can search the

internet to find the information we need. But all these steps require an

initiative from us. The main idea of this thesis is to investigate how a

system that is analysing our working environment can find out what our

current objectives are and give us automatically a dynamic support that is

adapting to our needs.

1.2 Practical Example

With this short practical example we would like to introduce how how the

support of a knowledge worker could look like. We will show how we can

support three user goal types during his work.

Let us assume that the knowledge worker John is currently working on

a project: He is implementing an application and writing also a documen-

tation for it. For this reason he has to open several files and browse through

several folders. From the past our system learned which files and folders of-

ten have been opened in temporal coherence. The correlation of the opened

resources in the past and the resources that are opened at the moment are

the basis for the recommendation of resources to John. For example as soon

as he opens the documentation file our system should provide him with a

list the among others containing the project file which can be opened by

one click. Additionally the system learned that the knowledge worker often

visits the website of this project during working on it. So it also recom-

mending a link to this website in the list of resources. This is support of

the Navigational Goal.

During his work John gets an email from another person also working

on this project. This person requests to implement a special algorithm in

this application. The email contains a short description of this algorithm,

but John does not completely understand the description. Normally he

would use the web search or some company document repository searches

to find some more detailed descriptions of this algorithm. Our system is

able to extract from the email the name of the algorithm: It appeared in

the subject and several times in the body of the email. With this name

1.3 Structure of the Thesis 4

and maybe some other correlated terms our system searches the web and

the company document repository for useful resources that contain some

detailed information about the algorithm. The search is done completely in

the background and John gets a list of the found useful resources which he

can open by a single click. This is support of the short term Informational

Goal.

All the knowledge work can be separated smaller parts. Each of them

has to to do with concrete task. For example the actual task of John is

working on the project. Beside the things that we described above this task

also requires maintaining of working time document and sending a daily

update by email to the project lead. Maybe John is new on this project

and he does not know that he has to do this. Our system has monitored his

work and has classified it to the task working on the project. By classifying

it with this task it recommends a list of resources that has been previously

assigned to this task. This gives John a hint what he still has to do and he

again can use the recommended resources by simply clicking on them. This

is support of the Transactional Goal.

As we described our system analyses the work of John by monitoring it

and extracting information on what he is currently doing. This information

is being used to give him an adaptive support that tries to provide him

with resources that can useful for him.

1.3 Structure of the Thesis

In Chapter 2 we will explain why we choose the Informational, the Naviga-

tional and the Transactional Goal as the user objectives we want to analyse

and support. First we characterize the three goals in Section 2.2, 2.1, and

2.3. After that Section 2.4 provides information about the analysis we are

performing before Section 2.5 describes how our adaptive support distin-

guishes himself from other support systems.

Chapter 3 introduces the implemented system in all his parts. Sec-

tion 3.1 describes the context monitor which collects the information about

the users working environment. An overview over the the parts of our sys-

tem that are located in the database is given in Section 3.2. Section 3.3

presents the user interface that makes the recommended resources available

user. It also has a part that was implemented specially for the evaluation.

Section 3.4 describes a tool tool that was also implemented to emulate what

resources the users would have seen during their work when our system

would have run.

1.3 Structure of the Thesis 5

Chapter 4 consists of a description of the implemented algorithms. Sec-

tion 4.1) describes how extract the navigation resources and algorithms that

use them to provide the user with other navigation resources and support

the Navigational Goal. The algorithms supporting the Informational Goal

(Section 4.2) are based on methods from the natural language processing

area. The algorithms that support the Transactional Goal are introduced

in Section 4.3 and are all classifiers which try to classify the actual work of

the user.

Chapter 2

User Goals

The main theme of this Master Thesis are the user goals that the knowl-

edge worker wants to accomplish. The are several categorizations for the

user goals in this field of study. Following [JBS07] we will distinguish three

of them: The Informational Goal, the Navigational Goal, and the Trans-

actional Goal. This three categories or variations of them have been used

in several studies. [JBS07] affirms approximately 75 percent of web search

queries can be classified in one of this three categories. This estimation

can be transfered on the knowledge work on the desktop since this is the

location from which the web search queries are started.

In this chapter we will describe the three categories in detail and the

Adaptive Support based on the Analysis of the working environment of the

knowledge worker.

2.1 Navigational Goal

In many cases the knowledge worker has to work on several files or folders,

visit some websites and communicate with some people to fulfill a task. All

this are navigational objects and the Navigational Goal of the knowledge

worker is find them on the local hard drive or the internet. When he or an

another person is working on the same task, then in is probable that he will

use similar navigational objects or sequences of them like like he or other

persons have used in the past. Sometimes the location (the local path, the

URL or the name of a person) is unknown so that the knowledge worker has

to search for it. The search of the web or the browsing through local folders

could be eliminated when based on the last used navigational objects and

the previous history the program provides the needed objects and the user

2.2 Informational Goal 7

needs only one click to use them.

Figure 2.1: Navigation Graph

We can create a navigation graph like in Figure 2.1 from the navigation

objects. Each navigation object is represented by a node with edges to all

navigation objects that occurred as a successor of it in the history. On this

graph we can use partitioning algorithms and propose all navigation objects

in the actual partition that have not been accessed in the actual session.

An alternative could be a searching for sequences matching the last few

navigation objects and proposing the navigation object that have followed

the found sequences.

2.2 Informational Goal

When a knowledge worker is searching for some information then his main

purpose is an Informational Goal. The kind of information can be provided

by several types of resources. Following [LGFM08] we selected the following

five information resources:

• Definition - a general description of something. It provides the infor-

mation in a short descriptive way. One example for this is the abstract

section of the Wikipedia1 articles. This kind of information is mostly

recommended for advanced users since the understanding a definition

often requires earlier knowledge.

1http://www.wikipedia.com

2.2 Informational Goal 8

• Example - a concrete usage of something. This could be websites,

documents or pictures containing the needed information. One source

for this information can be the DBpedia2 project, which is a collec-

tion of semantic relations between objects which are extracted from

the Wikipedia metadata. This information kind can also be used by

unexperienced users, since the understanding of a concrete usage re-

quires less intellectual ability of abstraction.

• Essay - an extensive document that provides the information with

the needed background. This could be papers, articles or presen-

tations that cover the information. It could be difficult to find an

essay containing the needed information and to extract this informa-

tion from there. One source for this kind of information could be

document repositories of a company that contain the domain-specific

knowledge.

• Question and Answer - the request for a concrete information with the

associated help from others. The easiest way to get an information is

to ask for it. Many questions has already been asked and most of them

also have been answered. One collection of this kind of information

is the WikiAnswers3 website. This information can be highly useful,

but it could be hard to find the question whose answer provides the

user with the needed information.

• Instruction / User Manual - a step by step description of something.

When starting to work on something the first time some users prefer

a step by step description of it. This information often is provided by

user manuals contributed with programs. One website that collects

information in this form is WikiHow4. This kind of information is

most useful when the user is at the beginning of a process that requires

several steps for completion and he does not know which steps have

to be done in which order.

To find out which information the knowledge worker is searching for we

can analyse the current context and extract terms from the typed terms,

clipboard contents, window titles, emails, files and websites. Since there

are many useless terms under them it is an option to use natural language

processing techniques to filter them and to select the most important ones.

This selected terms can then be used to choose documents from a database

or to use a search and propose the results to the knowledge worker.

2http://www.dbpedia.org
3http://www.wikianswers.com
4http://www.wikihow.com

2.3 Transactional Goal 9

2.3 Transactional Goal

The support of the Transactional Goal of a knowledge worker is a little

bit different to the two described before. It is based on fact the knowledge

worker is recurrently working on the same tasks. The support works in

another dimension then the support for the other two goals. It is not a direct

support that provides resources depending directly on the collected context

information. The program uses the context information to identify the

actual task and then proposes resources to user that have been previously

assigned to the task. This resources could be applications, contact data of

experts for this task, local files needed to fulfill this task or websites which

must be visited.

One approach to identify the actual task is to train a machine learning

algorithm with a prelabeled training data. The training data would be the

collected context information. When the identification of the actual task is

correct, then provided resources are surely useful for the knowledge worker.

In contrast to this a false classification results in resources that have nothing

to do with the actual task.

2.4 Analysis

To support a knowledge worker during his work we have to analyse his goals.

In this thesis we concentrate our Analysis on the computer desktop as our

context. We try to collect as much information as possible by monitoring the

user actions and the operating system. The collected information must be

filtered and analysed. For each of the three user goals the useful information

can be different.

It is very hard to distinguish which of the three previously described

goals is the most important one for a user at a particular time. So we

decided to support all three goals at anytime. Several analysing algorithms

can run simultaneously and all of them will be provided with all collected

information.

2.5 Adaptive Support

A knowledge worker can get many static support from the help of an ap-

plication or from some web sites or from a co-worker. The main point in

this support is that it must be actively requested and is not automatically

2.5 Adaptive Support 10

adapting to the knowledge worker’s goals. Concrete terms must be typed in

a search or be described to the other person to get the needed information.

In contrast to that the Adaptive Support analyses the knowledge worker’s

context in the background a proposes automatically resources which could

be useful. This resources are presented in a discreet way so that they are

not disturbing the user but always accessible. If he needs some support he

can utilise them directly without requesting them afore.

To describe how our adaptive support differs from other support systems

we classify in in four of the dimensions described in chapter 11 of [Her94]:

• Initiative for activating the support system

A support system can be either passive or active: Most of the existing

support systems are passive. The user must explicitly start them to

get some support. Some others are active ones. They open a dialog

or pop up without an explicit request for it from the user.

Our support is passive: Although it is updating his contents actively

it does not disturb the user during his work. When the user needs

support he is free to click on one of the provided resources.

• Context aspect of supporting information

The provided supporting information can be either static or dynamic:

A static supporting information provides the same resources every

time it is requested. The resources are statically linked to the terms

the user typed or clicked. Our support system provides the informa-

tion dynamically. It collects the context information of all users and

learns from the collected date from the past which resources users

have used depending on their context. The provided resources are

depending on the actual context of the user.

• Individuality of supporting information

Most support systems provided uniformed information for all users.

That means that each user will get the same resources when he makes

the same request or has the same context status. Our support is

individual : Depending on the information how the user used it in the

past the provided resources can adapt to the preferences of the user.

• Integration of the support system

Normally a support system is integrated in an application. It can

provide only information for this application. Our support system is

application independent. It provides support at any time for each task.

2.5 Adaptive Support 11

The user do not have to become comfortable with several support

systems, but can use only one to get the needed information.

Summarising it can be argued that our application independent system

provides a passive support that is dynamically adapting to the users context

and gives him individual ressources which he maybe could need.

Chapter 3

Implementation

The application that was implemented for this thesis can be separated in

four parts: The Context Monitor, which is running in the background and

monitoring the user actions during the knowledge work, the Database, which

is storing the collected information and also the configurations for the user

interface and the algorithms, the SAPSidebar, which is the user interface

and contains the implemented algorithms for the recommendations, and

the User Interaction Emulator, which emulates the Context Monitor and

by this the interaction of a user.

Figure 3.1: Communication Diagram

The communication between these parts is described in Figure 3.1. All

3.1 Context Monitor 13

three software parts are communicating with the database. The Context

Monitor is sending the data of the collected user interaction events to the

database. The User Interaction Emulator is reading out the event data

from the database to emulate the user interaction for the SAPSidebar. The

SAPSidebar gets their configuration from the database and the algorithms

request the information they need. The three software parts do not know

from each other. They all reference the Events.dll which provides the needed

interfaces and objects for the communication through Named Pipes [Coo08].

This way either the Context Monitor or the User Interaction Emulator can

feed the SAPSidebar with events and there is no difference for it where the

events are coming from.

3.1 Context Monitor

The Context Monitor has an amount of monitoring processes which catch

events occurring on the computer during the user’s work. Figure 3.2 is

showing the collected event categories and types that are used in the im-

plemented algorithms. They are described below. A more detailed and

structured description can be found in the appendix. Each event stores

the category, the type, and the time when an event occurred. The specific

information are stored as event attributes of the events.

Figure 3.2: Event Categories (Level 1) and Types (Level 2)

The Context Monitor can store the events in a local file or send them

to the database. It has also a word segmenter that extracts words (tokens)

from a given text.

3.1 Context Monitor 14

3.1.1 Keyboard Events

There is one keyboard event that stores terms typed in by the user. The

input stream of pressed keys is analysed to get the terms. The typed char-

acters are collected until a special character, like for example a whitespace,

occurs which ends the actual term. A press on the backspace key reduces

the length of the memorized term by one.

3.1.2 Clipboard Events

The only one clipboard event catches changes of the clipboard content. If

the content is a text then it is stored as one event attribute. Beside this the

word segmenter is used to extract all occurring words that are also stored

as event attributes.

3.1.3 Filesystem Events

There are four file system events: They occur when a file system object (file

or folder) is created, changed, renamed, or deleted. The events store the

full path of the object (two paths when it is a rename event) the extracted

words by the word segmenter as event attributes. Additionally an attribute

stores the type of changing: At the creation, renaming, and deleting events

it only indicates the object type, at the change event it also describes the

attribute that has changed.

3.1.4 Filecontent Events

For each change of the LastAccess attribute of a file the filecontent event

saves the file name and the words that occurred in the file content as event

attributes.

3.1.5 Process Events

One type of the process events are changing foreground windows. These

events occur each time when the name of the top most window changes.

As event attributes the window title and the associated process name are

stored. Beside this the word segmenter is used to extract all occurring words

from the window title and to store them as additional event attributes.

3.1 Context Monitor 15

The other type of process events occur when a process is started or

removed. The list of running processes is monitored and every change results

in a new event. The process id and the process name are added as event

attributes.

3.1.6 Application Events

The application events are created by monitoring some specific applications.

At the time when this thesis was written the following four applications have

had their special monitors:

Microsoft Outlook

Currently the Microsoft Outlook monitor catches two events: When the

user receives or sends an email. In both cases the email subject and the

email address of the sender respectively the receiver are stored as event

attributes. Additionally the word segmenter is used to extract words from

the email subject and body, which are also stored as event attributes.

Microsoft PowerPoint and Microsoft Word

For these two applications an event is created when something changes

within them. In such cases the title and the words extracted from the

document name and content by the word extractor event attributes of this

event. In addition in Microsoft Word the words of the actual selection are

extracted and added to the event as event attributes.

Microsoft Internet Explorer

The monitor of the Microsoft Internet Explorer also creates an event when

something changes within the application. The name and URL of the actual

website and the words extracted from the name, the actual selection, and

the site content are the event attributes. Before the content is submitted

to the word segmenter the HTML tags are filtered.

3.1.7 Printer Events

Every time when a document is printed a printer event is created. As event

attributes the document name, the owner of the document, the printer on

3.2 Database 16

which the document is printed, and the words extracted from the document

name are stored. The printer events are created for all documents printed

by all users, but they can be filtered through the owner event attribute.

3.1.8 Word Segmenter

The word segmenter replaces in the given text all characters which are

not alphabetic or a hyphen with whitespaces. After that all consecutive

whitespaces are replaced by one whitespace. The resulting text is splitted

at the whitespaces. All single character tokens are ignored, the others are

processed and a set with found words and all their positions is returned.

3.1.9 Storing of Event Data in Database

The writing of the event data to the database is done at one central place.

Three stored procedures are called to send the data of the event (I), the

data of the event attributes (II), and the positions of each event attribute

(III). The using of stored procedures makes the communication between

Context Monitor and database more secure and more efficient, but the most

important advantage is that the database-side processing of the send data

can be changed without changing the Context Monitor software. The only

requirement is that procedure signature must stay the same.

3.1.10 Named Pipes Communication

Named pipes are part of the .Net Framework and allow processes that are

running on the same machine to communicate with each other. This pro-

cesses does not have to know each other, they only have to share some in-

terface declarations for the local communication channel. This technology

makes it possible to replace the Context Monitor with the User Interac-

tion Emulator without changing something at the user interface. Even the

configuration does not have to be adjusted.

3.2 Database

The used database is a MySQL 5.1 database [AB08]. It has three main parts:

It is the storage for the collected event data, it contains the configuration

3.2 Database 17

for the user interface and the implemented algorithms and a few algorithms

have their main part in tables and stored procedures in the database.

3.2.1 Storage

The main tables of the event storage part in the database are:

• The table monUser stores the user specific information.

• The table monEvents stores the events with ids of user, event category

and event type.

• The table monEventAttributes stores the events attributes with ids of

event, attribute name and attribute type. It has one value field which

either an integer value (at numeric attributes) or the id of a string

value (at text attributes) which is stored in the following table.

• The table monEventAttributeStringValues stores all strings the oc-

curred in one of the attributes.

• The table monEventAttributePositions stores the positions on which

an attribute occurs in a context. Currently it used to store the posi-

tions of words extracted by the word segmenter in the initial text.

Figure 3.3: Database Structure

3.3 User Interface 18

Their associations through foreign keys can be seen in Figure 3.3. The

other tables are needed to define the ids of the event categories, event types,

attribute names, attribute types, and tasks.

3.2.2 Configuration

There are two tables that contain all configuration for the user interface

and the algorithms that are used to fill the recommendation lists. The

table sbUserSettings is connected per id to the user table described above.

It has one field that determines what type of user interface (either the

sidebar or the topbar) should be started. Another field contains the id of the

configuration that should be used for the user interface. When the sidebar

is used then there can be multiple entries in the table sbConfigurations

with the same configuration id. Each entry contains the settings for one

recommendation algorithm that fills one list in the sidebar.

3.2.3 Algorithms

A few of the algorithms has some logic and precomputed data in the da-

tabase. The logic is located in stored procedures. As long as a sequential

computation of values is not necessary it is much more efficient to do the

computation in the database and return the computed results instead of

loading the complete data from the database and doing the computation in

the software.

During the writing of the event data a precomputation for some algo-

rithms is done. The big benefit is that the data is computed only one time

and stored in tables in contrast to a recurrently computation every time

when an algorithm makes his recommendations.

3.3 User Interface

The User Interface has two forms: The sidebar, which can display multiple

recommendation lists, and the topbar, which was designed for the field study

and has a task description region and an optional recommendation list.

The UML class diagram [Fow97] in Figure 3.4 the classes of the SAPSide-

bar and their relations. The most important classes are described below. A

complete and formal description of the classes can be found in the appendix.

3.3 User Interface 19

Figure 3.4: UML Class Diagram of the User Interface (noch nicht fertig)

3.3 User Interface 20

• The class Program contains the static method that is executed at

program start. In this method the EventObserver is initialized, the

configuration loaded from the database and either the Sidebar or the

Topbar started.

• The class EventObserver is a wrapper class for the communication

through Named Pipes. The events send from the Context Monitor

or the User Interaction Emulator arrive at the EventObserver which

forwards them to the Sidebar or the Topbar, who forward them to

their recommender algorithms.

• The classes Sidebar and Topbar are the two forms of the user interface.

They are described in detail below.

• The interface IRecommender defines the methods which each recom-

mender algorithm must implement. The recommender algorithms

have an assigned SidebarList, which is filled by them, and receive

all events. The filter them by type and use only the needed ones.

• The class SidebarList is derived from the class ListView. It contains

SidebarListItems which are displayed with their assigned icon in front

of the item text.

• The class SidebarListItem is derived from the class ListViewItem. It

is extended by the functionality that a click on the item in the list

fires an action which is different for each of the five recommendation

object types, which are all represented as a class derived from the

SidebarListItem:

– The Application item represents a software that is started when

the user clicks on the item. When it is possible the icon before

the item is typical for the software.

– The Conversation item represents a communication with another

person. Currently an email to the person is opened when the item

is clicked. The text of the item is the name of the person.

– The File represents a file on the local hard drives. After a click

on this item it is first checked if the file exists and when it is so

the file opened by the assigned default application. The displayed

icons are set by the default application assigned to the file ending.

– The Folder item represents a folder on the local hard drives. A

click results in an existence check and an opening of the folder

in the explorer when it exists.

3.3 User Interface 21

– The Web item represents a web location specified by their URL.

The name of the item is the document name displayed the last

time when this URL was loaded. A click on this item opens the

URL in the default web browser.

3.3.1 Sidebar

The Sidebar is docking to the borders and reserving the place so it is always

visible. The initial position is on the right side of the desktop. Depending

on the count of recommender settings for the selected configuration the

same amount of SidebarLists is created. Each of the lists is assigned to one

of the recommenders that are configured by the loaded settings entry. All

lists have the same size and are automatically arranged in one row or one

column depending on the form of the Sidebar.

Figure 3.5: SAPSidebar GUI - Sidebar

This implementation is perfect for the manual analysis phase. The

amount and the configurations of the SidebarLists can be changed in the

database. The used configurations can remain in the database and can be

3.4 User Interaction Emulator 22

reassigned at a later time by simply setting the ConfigurationID for the

user.

3.3.2 Topbar

The Topbar is docking in the same manner like the Sidebar, but the initial

position is on the top. It has a rich-text-format textfield in which the

tasks are displayed. They are loaded in a random order at startup. At the

beginning the guidelines are displayed. There is one button which has to

be clicked to get the first task, to switch to the next task after finishing

the actually displayed one, and to finish the evaluation after the last task.

The one SidebarList is optional. It is only displayed and filled when a

configuration is assigned. From this configuration only the first entry is

used because the Topbar can not have more than one list.

Figure 3.6: SAPSidebar GUI - Topbar

In the first phase of the evaluation the Topbar is used to guide the work

the test persons are doing. They have no recommendation list and have to

accomplish the tasks without any support. The Topbar notifies the Context

Monitor when a task switch occurs so that the collected event data is labeled

with the corresponding task ids.

3.4 User Interaction Emulator

The User Interaction Emulator emulates a user working on the machine by

replacing the Context Monitor and sending the events through the Named

Pipes. First the user whose interaction should be emulated must be selected.

Then the event categories and types have to be chosen to restrict the amount

of events. After selecting the session the events can be loaded from the

database. Alternatively the events can restricted by a SQL statement which

returns the EventIDs which should be loaded from the database.

3.4 User Interaction Emulator 23

Figure 3.7: User Interaction Emulator

The events are displayed in the browser control. The actual event has a

white background, all others a gray one. The events can be send manually

by going one event forward or backward. Beside this it is possible to jump

to the beginning of the previous or the next task. Alternatively the task

can be selected from the combobox above the display. It is also possible to

let the User Interaction Emulator send the Events in real time based on the

time when they have been collected.

Chapter 4

Implemented Algorithms

The implemented algorithms are all based on the events which have been

collected in the past and which are actually collected and send to them. The

events provide the algorithms with information about the user interaction

and his current context. This information is used to compute resources

which are probable useful for the user in his current situation.

The algorithms are separated by the user goal which they are supporting.

Each of the three information goals has his own type of algorithms which

uses a subset of the events.

4.1 Navigational Goal

All algorithms supporting the navigational goal are based on the same data:

The use foreground window change events to extract the navigation objects

which represent resources the user is working with. This navigation ob-

jects are the input data for the algorithms and represent also the resources

recommended to the user.

4.1.1 Navigation Objects

A foreground window change event only gives us the title of the actual fore-

ground window. This title mostly contains the name of the application to

which it belongs and some information about the content of this window.

The navigation objects can be classified by the extraction strategy that is

used to extract them from the window title. Most of them use some infor-

mation of other events that occurred right before the foreground window

change event. This extraction is done in the database at the moment when

4.1 Navigational Goal 25

the events are written to it. There are six different extraction strategies:

• Complete file path in title - in such cases the name of the file (the part

after the last slash) is used as the name of the navigation object and

complete path as its target.

• File name in title - The file name is used as the name of the navi-

gation object. But it can not be used directly as its target since it

is not known in which folder this file is. It would be very inefficient

and probably ambiguous to search for this filename on the local hard

drives. Instead we are searching the most recent filesystem event that

was associated with a file with this name. This event provides us

with the complete path which is used as the target of this navigation

object.

• Message - this term with a hyphen before it indicates an opened email

in Microsoft Outlook. The text before the hyphen is the subject of the

email. We are using the events for received and sent emails and get the

sender respectively the recipient of this email. With this information

we create an navigation object that has the name of this person as

name and the opening of an email to this person as target.

• Microsoft Internet Explorer - the title of a window of the Microsoft

Internet Explorer contains the title of the actual website. This title is

used as name of the navigation object and to search the last IE change

event that affects the opening of a website with this title. This event

then provides us with the address o this website which is used as target

of the navigation object.

• Folder - The explorer has always the complete path of the actually

opened folder as title. It can be directly used as target for the nav-

igation object which opens the folder when it is selected. The name

of the navigation object is the name of the folder (the part after the

last slash).

• Application - When an application is started without opening a file it

has only their name in the title. In such cases we create a navigation

object that starts this application when it is selected. As target it has

the path of the executable and as name the term Start concatenated

with the application name.

The navigation objects are stored in the database. With each of them

supporting users count is stored that represents the amount of users that

4.1 Navigational Goal 26

has already used this navigation object. The algorithms select the data on

which their recommendations are based by this number to filter navigation

objects that have been used by only one or a few users.

The extracted navigation objects are assigned to the events. To make

the further computation more efficient the ids of the events with an assigned

navigation object are stored together with the id of the preceding foreground

window event with an extracted navigation object. Based on this data a

sequence of the used navigation objects can be concatenated.

4.1.2 Recent Objects Recommender

The Recent Objects Recommender simply fills the recommendation list with

the last extracted navigation objects. The most recent one is always the first

in the list. This dummy recommender is based on the circumstance that

the users sometimes use resources that they have used some time before.

We have implemented this recommender to have a reference value for the

accuracies of the other algorithms.

4.1.3 Sequence Probability Recommender

The Sequence Probability Recommender stores the last N navigation object.

Then the sequences in the database searches for subsequence that exactly

match this N navigation objects. The recommendation are the navigation

objects that have followed this sequence ordered descending by the number

how often this sequence with the length N + 1 have been found. The value

by which the recommended navigation objects are ordered is the probability

that the recommended navigation object will follow the sequence:

P (O) = P (O | 〈X−N , . . . , X−1〉) =
n (〈X−N , . . . , X−1, O〉)
n (〈X−N , . . . , X−1〉)

(4.1)

This recommender has his entire logic in stored procedures in the database.

4.1.4 Graph Probability Recommender

The Graph Probability Recommender computes a directed weighted graph

based on subsequences with the length 2. The nodes represent the naviga-

tion objects. The edges represent that one navigation object occurred after

4.1 Navigational Goal 27

an other while the weight of an edge represents the number how often that

happens. The algorithm either selects the last N navigation objects or the

navigation objects that occurred in the last T seconds. All outgoing edges

of the associated nodes are grouped by their destination nodes. The asso-

ciated navigation objects are recommended and ordered descending by the

sums of the weights of the selected edges. The sorting value is proportional

to the probability that that a navigation object will occur given that one of

the select navigation objects occurred:

P (O) =
n (〈Y, O〉 | Y ∈ {X−N , . . . , X−1})
n (〈Y 〉 | Y ∈ {X−N , . . . , X−1})

(4.2)

This recommender has his entire logic in stored procedures in the database.

4.1.5 Graph Partition Recommender

The Graph Partition Recommender computes an undirected graph based on

the subsequences with the length two. The nodes can be either unweighted

or weighted with the number of found subsequences in which the assigned

navigation object occurred. The edges can also be unweighted or have the

amount of found corresponding subsequences as their weight.

The graph is partitioned by the algorithm pmetis or kmetis from the

METIS[KK] library in N partitions. Based on the navigation objects that

occurred in the last T seconds the partition is selected that contains most

of them. The navigation objects in the selected partition that not occurred

in the last T seconds are recommended. They are descending ordered ei-

ther by the supporting users count or by the number of the weights of the

adjacent edges from all partitions or only the same partition. Figure 4.1 is

showing how the same graph with and without node weights respectively

edge weights is partitioned by the two algorithms algorithm.

The content of the graph file is created by stored procedures and the

result is written directly into a file. After running the partitioning algo-

rithm the computed partition labels are written back to the database. The

recommendation logic is again placed in stored procedures in the database.

4.1.6 Spreading Activation Recommender

The Spreading Activation Recommender is based on the Spreading Activa-

tion Algorithm [And88]:

4.1 Navigational Goal 28

Figure 4.1: A graph partitioned by pmetis and kmetis

4.1 Navigational Goal 29

INPUT: graph G = (V, E)
a c t i v a t i o n va lue s A[i] in the range [0 . 0 . . . INF [
edge weights W[i , j] in the range [0 . 0 . . . 1 . 0]
f i r i n g th r e sho ld F in the range [0 . 0 . . . 1 . 0 [
decay f a c t o r D in the range] 0 . 0 . . . 1 . 0]

OUTPUT: a c t i v a t i o n va lue s A[i] a f t e r spread ing a c t i v a t i o n

while (e x i s t s un f i r ed node V[i] having A[i] > F)
foreach (un f i r ed node V[i] having A[i] > F)

mark V[i] as f i r e d
foreach (outgoing edge E[i , j] from V[i])

set A[j] = A[j] + (A [i] ∗ W [i , j] ∗ D)

We use again the subsequences with the length two to create a directed

graph. In contrast to the other algorithms this algorithm has his complete

logic in the software an not in the database. The graph is stored in node

and edge objects. Each node has a list the outgoing edges and a list of

the incoming edges. The weights of the edges are the count of the found

corresponding subsequences divided by the count of all found subsequences

with the same first navigation object:

W [i, j] =
n (〈V [i] .Obj, V [j] .Obj〉)

n (〈V [i] .Obj, O〉))
(4.3)

There are several alternatives implemented which can be enabled by

parameters:

• directed or undirected graph - when the undirected graph is selected

then the undirected edges are created by union of the outgoing and

incoming edges. The weights are calculated analogous to before:

W [i, j] =
n (〈V [i] .Obj, V [j] .Obj〉) + n (〈V [j] .Obj, V [i] .Obj〉)

n (〈V [i] .Obj, O〉)) + n (〈O, V [i] .Obj〉))
(4.4)

• activation by count or by time - either the nodes assigned to the last

N navigation objects or the navigation objects that occurred in the

last T seconds are initially activated. The activation of a node is the

assigning of the value 1.0, while the unactivated nodes remain at 0.0.

4.1 Navigational Goal 30

• spreading for C iterations or until stabilised - the algorithm can go

on until there are no more activated nodes that can fire or only for C

iterations.

• use edge weights or decay factor or both or none - the decaying of

the activation value while spreading from one node to the next can

be done by multiplying it with the edge weights, the decay factor or

both. It is also to do spreading activation without decaying, but it

has to be analysed whether this alternative produces useful results.

• use firing threshold or not - it is possible to do spreading activation

without a firing threshold (or by setting it to 0.0). In this case a node

can fire as soon as its activation value has been raised the first time.

• simultaneous firing or ”most activated” node first - when a node fires

it increases the activation value of its neighbors. Although a neighbor

fires in the same iteration it would have a higher activation value than

at the beginning of this iteration. To counteract this phenomenon we

store the additions to the activation values in temporary fields and

add them to the activation value after all nodes fired in one iteration.

As an alternative we implemented the variation that in one iteration

only the node with the highest activation value fires.

• allow node retiring or not - normally it is not possible that a node

can be fired more than once. It could easily come to an endless fir-

ing sequence because each time when the activation value increases

it sends more activation value to its neighbors. We implemented two

alternatives where this is yet possible. Both are based on recursive

propagation of the activation value. Not the actual activation value

of the node is propagated to its neighbors, but only the decayed acti-

vation value of the firing predecessor.

– limit by iteration count - we start the recursive activation value

for all initially activated nodes with the iteration count as param-

eter. This parameter is decreasing for each call until it reaches

zero. In this way we can limit the recursion depth and avoid

endless firing sequences.

– fire once for each initially activated node - in this alternative we

forward the id of the initially activated node as a parameter and

let each node fire only once for each initially activated node. In

this manner each node can fire maximally K times, while K is

the number of initially activated nodes.

4.2 Informational Goal 31

• return initially activated nodes or not - after their firing the activation

value of the initially activated nodes is set back to 0.0. But during

the spreading it is probable that it can rise again due to firing of its

neighbors. After the spreading algorithm terminates the recommender

recommends the navigation objects in the descending order of the ac-

tivation value of their associated nodes. The setting of this parameter

determines whether the navigation objects that initially activated the

nodes should be filtered or not.

How all this parameters affect the quality of the recommended resources

must be evaluated. Figure 4.2 shows three iterations of the spreading activa-

tion algorithm on a directed graph with edge weights. We initially activated

two nodes and used simultaneous firing with a decay factor 0.75 and a firing

threshold 0.2.

4.2 Informational Goal

The algorithms supporting the informational goal can be separated in two

parts: First the relevant terms must be extracted from the user context

events and second resources must be selected based on the this terms. Since

it is very hard to get a qualified analysis of the extracted terms which results

in a quality number for the algorithms we decided to implement one term

extraction algorithm and one resource recommendation algorithm.

4.2.1 Term Extraction

All events, except the keyboard events, which contain textual information

represent this information with several token attributes per event. This

attributes contain additionally to the term itself the count of the occurrences

of this term in the textual data and the positions on which the terms were

in the text. Our Term Extraction Algorithm creates a text object for each

such event which contains the time when the event occurred and a list of the

terms which occurred in this event with their counts. During this creation

all words which can be found in an initially set stopword list are filtered.

Figure 4.3 describes the steps of the algorithm. The text objects are

stored in a list which always contains the data of the last T seconds. When

a term extraction is done then the terms data is accumulated in a list

of terms with two numbers for each term: The sum of occurrences in all

underlying text objects and the count of text objects in which this term

4.2 Informational Goal 32

Figure 4.2: Three iterations of spreading activation

4.2 Informational Goal 33

Figure 4.3: Steps of Term Extraction Algorithm

4.2 Informational Goal 34

occurred. The list is sorted by one of this numbers and forwarded to resource

recommendation part with only one weight value.

The algorithm can be configured by several parameters:

• stopword selection type, count N , minimum percentage P , and lan-

guage - Our stopwords are selected from a table which contains the

most occurred 1000000 words in the English and the German wikipedia

articles. Each entry has beside a language field also a percentage value

which is equal the count how often this word occurred in in all arti-

cles of the corresponding language divided by the sum of all words in

all articles of the corresponding language. The entries are sorted by

this percentage value. The stopword selection type sets whether the

stopwords should be selected by their count (first N), by a minimum

percentage (all with percentage value greater than P) or by both. The

language sets whether the stopwords from both languages or from only

one language should be used.

• event window size - it set how long the underlying event of a text

object can date back so that this text object can be used for the

term extraction. When the term extraction is started all text objects,

whose time value is smaller that the time value of the actual event

minus T seconds, are removed from the text object list.

• extraction interval - this parameter sets how often a term extraction

should be make. To avoid problems with a timer and an additional

thread we decided to use the incoming events as triggers and compared

their time value to th time value of the event when the last extraction

was made to decide whether it is time for the next extraction or not.

• used event categories - there are six boolean parameters which set

whether the event from the categories Foreground Window Changes,

Application, Clipboard, Keyboard, Filesystem, and Filecontent

should be used or not.

• file restriction regular expression and file filter regular expression -

this two regular expressions reduce the amount of filesystem and file-

content events that are used. Only the events are used whose path

does match the file restriction regular expression and does not match

the file filter regular expression.

• term selection value - this parameter sets whether the sum of occur-

rences or the count of text objects in which they occurred should be

used as the weight by which extracted terms are sorted before for-

warding to the resource recommendation.

4.2 Informational Goal 35

4.2.2 Ressource Recommendation

Our Ressource Recommendation Algoritm is based on the pages tables of

our English and German wikipedia databases. This tables have a title

field from which we created an extracted lower case terms field which

we used for a fulltext index. With this index we could fast search for pages

which have a specific term as part of their title. The search run in three

phases: The first phases takes three terms and searches all titles which

contain each of the three terms in arbitrary order. Each found page is

weighted with the sum of the three term weights. The second phase takes

two terms and searches for titles which contain this two terms without a

term between them. The weights of the found pages are set to the sum of

the two term weights. The third phase takes on term and searches for titles

which correspond exactly to the term. The weight of the term is used for

the weights of the found pages. All found pages are sorted descending by

their assigned weights and recommended to the user.

set found pages = {}
for (i = 2 to Min(term . Count , l imi tPhase1))

for (j = 1 to i − 1)
for (k = 0 to j − 1)

select pages where
term [i] in t i t l e AND
term [j] in t i t l e AND
term [k] in t i t l e

set s e l e c t e d pages weights =
term [i] . weight +
term [j] . weight +
term [k] . weight

add s e l e c t e d pages to found pages
for (i = 1 to Min(term . Count , l imi tPhase2))

for (j = 0 to i − 1)
select pages where

(term [i] + term [j]) in t i t l e OR
(term [j] + term [k]) in t i t l e

set s e l e c t e d pages weights =
term [i] . weight +
term [j] . weight

add s e l e c t e d pages to found pages
for (i = 0 to Min(term . Count , l imi tPhase3))

select pages where
term [i] = t i t l e

set s e l e c t e d pages weights =
term [i] . weight

4.3 Transactional Goal 36

add s e l e c t e d pages to found pages
sort found pages by weight descending

4.3 Transactional Goal

The algorithms supporting the transactional goal are based on the Machine

Learning Library developed by Arne Beckhaus[Bec06]. The library contains

several classifier algorithms which uses the stream of events to classify which

task the user is currently working on. Additionally to a simple wrapper for

one classifier algorithm from the library we implemented a voting classifier

which makes a weighted vote over the classifications of several classifier

algorithms to classify the current task. Both algorithms have in common

that once they have classified the actual task they recommend the resources

assigned to this task.

4.3.1 Classification Recommender

All classifiers in the machine learning library are based on a stream of

instances that are created from the events. This stream is send through

several preprocessors, which filter useless instances and split lists of terms

combined in one instance into multiple individual instances. After being

prepared the stream is sliced into windows of a designated length. Each

window then represents a feature vector which contains the information

whether the window contains a particular feature or not. This vector is

submitted to the classifier algorithms which used their previously learned

model to compute what is most probably the actual task the user is working

on.

During the learning phase the algorithms are provided with labeled in-

stances and are using N-Fold-Cross Validation[Rip96] to learn the best clas-

sifying model: The learning data is provided at once and separated into N

parts. In N phases N − 1 are used for learning a model and the remaining

part is used for validating the quality of the learned model. After this N

phases the average quality of all models is good representing value for the

quality of this classifier.

The machine learning library contains the following classifier algorithms

which all can be used for our classifier recommender:

• Naive Bayes

4.3 Transactional Goal 37

• Descision Tree ID 3

• Descision Tree ID 3 with Post Pruning

• Euclidean Distance

• Irep

• Irep with just Splitting

• Irep without Prunning

• Sequential Minimal Optimization (SMO)

A detailed description of this algorithms can be found in [Bec06].

To make the machine learning library usable for our application we first

created lairing material in the expected format out of the event data stored

in the database. Additionally we created a instance stream slicer that slices

the instance stream into windows of an exact length. And finally we im-

plemented an online instance stream which provides the classifier algorithm

with instances directly from the events that are collected during the users

work.

4.3.2 Voting Recommender

The Voting Recommender is making a majority vote over the classifica-

tion of multiple Classification Recommender for the actual task. Since it is

possible that we can get equal number of votes for multiple tasks we imple-

mented a three decision level voting to ensure that we always can break the

tie. The positions of the Classification Recommender in the provided list

are also their weights. As long as we have a tie at a decision level we are

going to the next level, but only with the votes that are in the tie at the

current decision level. This are our three decision levels:

• Maximum Count of Votes - on this level the voting recommender

classifies the actual task with the task that has received the maximum

count of votes.

• Minimum Sum of Weights - on this level classification of the actual

task is set to the task with the minimum sum of weights (out of the

votes that have been in the tie the level before).

4.3 Transactional Goal 38

• Lowest Single Weight - on this level the tie from the level before is

braked by classifying the task by the vote with the lowest weight.

Since each weight is unique there can not be a tie after this decision

level.

An example how this three decision level voting works is presented in

Figure 4.4

Figure 4.4: Example of Three Decision Level Voting

Chapter 5

Evaluation

In this chapter we describe the evaluation of our supporting system. First

we defined 12 Tasks which have be performed by 20 participants during

the first phase without any support to collect training and evaluation data.

The User Interaction Emulator in combination with the collected data have

been used to debug and to improve our algorithms by a manual analysis. As

soon as the algorithms run stable we created several different configuration

for each algorithm and used the Automatic Analysis Tool to find out which

algorithm in which configuration is the best for each of the three user goals.

In the second phase, the Field Study, we let 15 of the 20 participants perform

the tasks a second time with support from our system to collect information

about how our system helped them to fulfill the task faster and easier. After

the second phase the participant filled out an questionnaire to collect their

impressions of our supporting system.

5.1 Tasks

With the tasks that we selected for our evaluation we tried to cover a wide

spectrum of the typical daily work of a knowledge worker. The tasks should

be easy and short enough that every participant is able to complete them

in about five minutes. The field study was designed to be finished in less

than one hour for each participant.

• Create a one slide presentation on Generics in Java

Create a very short PowerPoint-presentation pres.ppt about how to

use Generics in Java. You might want to investigate on Generics in

the Internet first.

5.1 Tasks 40

• Update the SRN page of your Project

Since your job is also to initiate collaboration between projects you al-

ways have to update the SAP Research Net webpage with your current

focus of interest. Check for the correctness of information included in

your projects SRN page and update the website if necessary.

• Distribute Presentation Slides

A college requests the slide series of presentation you recently held.

Find the slides in the folder Slides and send the content of the folder

to the mailing list DL SAP Research APOSDLE Evaluation.

• Visualization of Research Results

You just received the research results of your student assistant. The

document research.xls containins the global revenue for showering gel.

You want to visualize the year sums graphically in a diagram.

• Leave request

Find out on which date is easter next year. You might want to create

a leave request in the SAP Portal for the week before easter. Check

out in the Leave Request Overview whether you still have enough days

for vacation to book the whole week.

• Translation of Executive Summary

Your project partner supplied a short description of his activities in

the last year. You have to translate the document in order to forward

it to the European Commission. Open the file original.txt. It contains

a German text. Translate it to English and save the translation in the

file translation.txt.

• Prototype Development: Hello World in Java

Knowledge work sometimes includes software development activities.

In your work plan there is a task to create a software prototype for

a demonstration. Write a java-program hello.java that prints out the

words ”Hello world” to fulfill this task.

• Inventory Update

Suddenly your work process is interrupted by a request of your lo-

cation manager. You should help him to update the local inventory.

Therefore you have to write an email with the Equipment Number of

your computer to Matthus Martynus.

• Handout

You have to hold your presentation testing.ppt tomorrow. Create a

short handout testing.doc with a few key facts of this presentation.

5.2 Data Collection 41

• UML

Create an UML-diagram of the following class: The name is SAP-

Worker, a subclass of person. It has the attributes name and position.

It should be stored as a picture in UML.*. (You can choose the type

of the picture.)

• Budget Calculation

For your project a budget of 10.000 euro has been assigned. You and

your two co-workers will get 1.234 euro each of it. You will need seven

students for the evaluation and each of them will cost you 789 euro.

How much money will be left for the catering at the final presentation?

Save the calculation in calculation.*. (You can choose the type of this

file.)

• Software Update

The IT Security department kindly asked you to update the software

on your computer. Please check in the SAP Software Corner, whether

there is a newer version of SnagIT than the one installed on your

computer. In case, please update the outdated version.

5.2 Data Collection

During the data collection phase we let each of our participant perform the

12 tasks. We stored the collected event data in the database and labeled it

with the task during which it was collected. To avoid correlations between

the tasks the participant got the tasks in a random order. To make the data

more suitable for the algorithms we specified the file names and one folder

as location for all files created or needed during the tasks.

5.3 Manual Analysis

During the manual analysis phase we tested, adjusted, and evaluated the

implemented algorithms. The User Interaction Emulator replaced the Con-

text Monitor and fed the User Interface with event data. The content of

the send events was shown in the emulator so that it was possible to see

how the algorithms react on which data. Since each event is labeled with

the time when it was collected and the algorithms use this data instead of

the time when they receive the event. In this manner it was possible to

send the events uncontinously and to see the impact of each each individual

event on the analysed algorithms.

5.4 Automatic Analysis 42

After debugging the algorithms and finding some influencing parameters

we ran the emulator in real-time mode and analysed what the evaluation

participant would have seen if the recommender algorithms would have run

during the data collection phase. The shown event data gave us hints about

the participants intention and we could analyse how the recommended re-

sources would fit to it.

5.4 Automatic Analysis

During the automatic analysis we ran our algorithms with more than 3000

different configurations for their influencing parameters. To show the influ-

ance of an parameter we took all results for an algorithm and grouped them

all used values for this parameter. We used special candlestick charts to

visualize the results: The vertical lines show the distribution by starting at

the minimal reached value and ending at the maximal reached value, while

the short horizonatl line show the average reached value.

For the analysis of the support for the navigational goal and the trans-

actional goal we also compared the results the different algorithms to each

other. For the parameters they have in common we compared the influance

of this parameters to the numbers reached for complete analysis data. Ad-

ditionally we compared the best configuretions for each algorithm to each

other on task basis: It can be seen how good each of the algorithms worked

during each of the twelve tasks.

5.4.1 Analysis of Recommended Navigational Objects

For the algorithms supporting the navigational goal we analysed how good

the recommended navigational objects match to the navigational objects

exracted from the events. For each extracted navigational object we looked

up whether this object could be found in the top 20 positions of the recom-

mendet list before his event has been propagated. We performed a N-fold-

cross analysis: The session beeing analysed was excluded from the database

on which the recommendations of the the algorithms were based on.

Sequence Probability Recommender

For the Sequence Probability Recommender we analysed the influance of

the following parameters:

5.4 Automatic Analysis 43

• Navigation Object Count - Values: 1, 2, 3, 4, 5

• Minimum Supporting Users - Values: 1, 2, 3, 4, 5, 7, 10, 15

Figure 5.1: Sequence Probability Recommender - Influence of Event Count

Figure 5.1 is showing the influance of the Navigation Object : The more

navigation objects are used as input the lower is the found percentage.

Additionally it can be observed that the average of the found percentages

is much nearer to the maximum than to the minimum what is an indication

for a few significantly lower found percentages for the some configurations

with higher Navigation Object Count. A higher Navigation Object Count

results in a longer sequence beeing searched in the database and it is more

probable that the sequence is not present in the database or none of the few

occurrences of it is followed by the actual navigation object.

The numbers visualised in Figure 5.1 show that the amount of Minimum

Supporting Users has only a small influance on the found percentages: From

one supporting user to ten the average found percentages are slowly going

up, but also the spreading. The maximum is going up but the minimum

is going down so we can argue that the configurations with less minimum

supporting users are more reliable but with lower aaccuracy. The numbers

for minimum 15 supporting users show that it is not efficient to use as much

minimum supporting users as possible.

In combination with Figure 5.1 it can be stated that the higher Nav-

igation Object Count and high Minimum Supporting Users are the worst

5.4 Automatic Analysis 44

Figure 5.2: Sequence Probability Recommender - Influence of Minimum

Supporting Users

configuration for the Sequence Probability Recommender, while the combi-

nation of a ”Single Navigation Object Sequence” with minimum ten sup-

porting users results in the highest found percentage.

Graph Probability Recommender

For the Graph Probability Recommender we have two different kind of

navigation object selection with their own sets of parameters parameters:

• Navigation Object Count Based Selection

– Navigation Object Count - Values: 1, 2, 3, 4, 5

– Minimum Supporting Users - Values: 1, 2, 3, 4, 5, 7, 10, 15

• Time Interval Based Selection

– Interval Seconds Count - Values: 30, 60, 90, 120

– Minimum Supporting Users - Values: 1, 2, 5, 10, 15

Figure 5.4 is showing the influance of the Navigation Object Count on

the Graph Probability Recommender. It can be observed that with higher

Event Count the found percentages are also going up. That is reasonable

5.4 Automatic Analysis 45

Figure 5.3: Graph Probability Recommender Last N Events - Influence of

Event Count

since more used navigation objects result in more nodes in the graph whose

edge probabilities will be accumulated and in this way multiple nodes can

support one common neighbour which stands for a navigation object which

often follows multiple of the previously extracted navigation objects. The

found percentages for one navigation object are the the same as for one

navigation object at the Sequence Probability Recommender since search-

ing for a ”Single Navigation Object Sequence” is the same as using the

probabilities of the edges of a single node in the directed navigation object

graph.

In Figure 5.4 the effect of more Minimum Supporting Users on the found

percentage of the Graph Probability Recommender with Navigation Object

Count Based Selection of navigation objects. The found percentages are

going up with more minimum supporting users, but only up to ten; for 15

the numbers are going significantly down again.

Figures 5.5 and 5.6 are showing the influance of the parameters Interval

Seconds Count and Minimum Supporting Users on the found percentages

of the Graph Probability Recommender with Time Interval Based Selection

of navigation objects. It is obvious that the length of the interval has no

influance on the found percentages and they only depend on the amount of

Minimum Supporting Users: Again the found percentages are rising with

more minimum supporting users up to ten and falling for 15.

5.4 Automatic Analysis 46

Figure 5.4: Graph Probability Recommender Last N Events - Influence of

Minimum Supporting Users

Figure 5.5: Graph Probability Recommender Last T Seconds - Influence of

Interval Seconds

5.4 Automatic Analysis 47

Figure 5.6: Graph Probability Recommender Last T Seconds - Influence of

MinimumSupportingUsers

Overall it can be stated the Graph Probability Recommender has his

highest found percentage with a Navigation Object Count Based Selection

of navigation objects with five navigation Objects and a minimum of ten

supporting users.

Graph Partition Recommender

For the Graph Partition Recommender we analysed the influance of the

following parameters:

• Interval Seconds Count - Values: 30, 60, 90, 120

• Minimum Supporting Users - Values: 1, 2, 5, 10, 15

• Partition Count - Values: 5, 10, 15, 20

The following parameters remained unchanged, since they showed no

influance during the manual evaluation phase:

• Graph type - weighted nodes and edges

• partition algorithm - pmetis

5.4 Automatic Analysis 48

Figure 5.7: Graph Partition Recommender - Influence of Interval Seconds

Figure 5.8: Graph Partition Recommender - Influence of Minimum Sup-

porting Users

5.4 Automatic Analysis 49

• Navigation Object Ordering - by all adjacent edges

Figure 5.7 shows that the the Interval Seconds Count has only a very

small influance. With a longer interval all numbers are getting a little

bit worse. In contrast to this Figure 5.8 shows significant influance of the

parameter Minimum Supporting Users : With a higher amount the average

found percentages are getting better and there is less spreading. The average

found percentages again rise until ten users and become a little bit worse

for 15 users.

Figure 5.9: Graph Partition Recommender - Influence of Partition Count

With the parameter Partition Count Figure 5.9 shows the influance of

the only one investigated algorithm specific parameter. For five partitions

the algorithm reaches the best found percentages in average, minimum, and

maximum. For more partitions the average found percentages stay stable

at a much lower value, while there is more spreading.

Overall the best configuration for the Graph Partition Recommender

was an 30 second interval with a minimum of 15 supporting users and five

partitions. The reason for this is that with a high demand of minimum

supporting users the graph becomes more sparse and only the important

navigation objects remain that were used by almost every user. Additionally

the low number of partitions combines navigation objects used for multiple

similar tasks into one partition so that it is more probable to select the

right partition: One significant navigation object (for example the start

5.4 Automatic Analysis 50

of an application) can be used in all tasks whose navigation objects are

combined in the selected partition.

Spreading Activation Recommender

For the Graph Partition Recommender we analysed the influance of the

following parameters:

• Activated Navigation Object Selection Type

– Navigation Object Based Selection - Values: 1, 3, 5, 10

– Time Interval Based Selection - Values: 30, 60, 120

• Decaying Type

– Decay Factor 0.5

– Decay Factor 0.75

– Edge Probabilities

• Firing Threshold - Values: 0.01, 0.1

• Graph Type - undirected or directed

• Minimum Supporting Users - Values: 2, 7, 15

• Spreading Type

– For 5 Iterations

– For 10 Iterations

– For 15 Iterations

– Until Stabelised

• Recommending of Initially Activated Navigation Objects - filter or rec-

ommend

We investigated only simultaneous firing without node refiring, since the

alternatives with firing ”most activated” node first and multiple firing per

node resulted in much higher calculation time with not better recommen-

dations.

In Figure 5.10 we display the found percentages depending on the parametrised

Activated Navigation Object Selection Type: It can be observed that for the

Navigation Object Count Based Selection the best results were produced

5.4 Automatic Analysis 51

Figure 5.10: Spreading Activation Recommender - Influence of Activation

Type

with the single last extracted navigation object. The more navigation ob-

jects have been used the lower the found percentages have become. In

contrast to this the seconds count for the Time Interval Based Selection

has nearly no influance on the found percentages. Most intresting is that

the activation of the single last extracted navigation object results in the

same found percentages as the activation of all navigation objects extracted

in the last 30, 60, or even 120 seconds.

Figure 5.11 shows the influance of the Decaying Type, the Firining

Threshold and the Graph Type It can be seen that none of them has any

infuance on the found percentages. The Minimum Supporting Users have

an influance on the found percentages as well for Navigation Object Count

Based Selection as for the Time Interval Based Selection. for both the aver-

age found percentages get better with mor minimum supporting users, but

there is less spreading for a minimum of seven supporting users than for a

minimum of 15 supporting users.

In Figure 5.13 we visualised teh influance of the Spreading Type and

the Recommending of Initially Activated Navigation Objects. As it can be

clearly seen they both have had no influance on the found percentages.

Overall the best configuration for Spreading Activation Recommender

was a Time Interval Based Selection for an interval of 120 seconds, with

edge probability depending decaying type, a firing threshold of 0.01, on a

5.4 Automatic Analysis 52

Figure 5.11: Spreading Activation Recommender - Influence of Decaying

Type, Firing Threshold, and Graph Type

Figure 5.12: Spreading Activation Recommender - Influence of Minimum

Supporting Users

5.5 Field Study 53

Figure 5.13: Spreading Activation Recommender - Influence of Spreading

Type and Recommending of Initially Activated Navigation Objects

directed graph with a spreading until stabalised and a minimum of seven

supporting users.

More experimental results can be found in the appendix but are not

described in more detail here.

5.5 Field Study

During the Field Study 15 of the initiall 20 participants fullfilled the twelve

tasks a second time. To avoid the influance of remebering already done

tasks betwwen the two evaluation phases alapsed about four weeks.

In the Figures 5.14 to 5.16 we visualize the logs for the evaluation

sessions of the participants. The green and the red areas show whether

the transactional recommender classified the task correctly at this time.

the three dotted lines represent the three used recommedners: The lowest

stands for the Transactional Recommender, the middle for the Navigational

Recommender, and the highest for the Informational Recommedner. Each

black point on it represents a click on one of the recommended resources.

The other colors mark the lots of each of the tasks on the complete sessions.

The sessions are normalized, so that the width of the task lots displays their

precentage on the session duration.

5.5 Field Study 54

Figure 5.14: Field Study Results - Session Logs(1)

5.5 Field Study 55

Figure 5.15: Field Study Results - Session Logs(2)

5.5 Field Study 56

Figure 5.16: Field Study Results - Session Logs(3)

5.5 Field Study 57

It can be claerly obsereved that most of the used resources were recom-

mended by the navigational recommender. And only a few by the infor-

mational recommender. The classification accuracy were about 50 perecent

and the lots of the tasks are very different for each of the participants.

Figure 5.17: Field Study Results - Relation Clicks to Duration Change - By

Tasks

Figure 5.18: Field Study Results - Relation Clicks to Duration Change - By

Participants

5.6 Questionnaire 58

Figure 5.19: Field Study Results - Relation Clicks to Duration Change -

Table

Figures 5.17 to 5.19 summarize the corelation between used resources

and reduction of needed time for eahc of the tasks. In 5.17 the dots are

cloured by tasks and in 5.18 by participants: In none of them two a group-

ing of a color can be observed. By none of the user and during no task a

significant high number of clicks or high reduction of time is showed. Fig-

ure 5.19 shows the numbers for the other two diagramms: It is interesting

to see that all users saved in average nearly two third of their time during

the ”Update SRN” task and that only user 2 needed more time for the tasks

during the second phase, but he was very interested in the theory of the

system.

Finally Figures 5.20 and 5.21 show how many resources have been used

in average during the tasks and on which position of the lsit tha have been

clicked. The numbers confirm the observations from the session logs that

most of the used resources come from the navigational recommender. But

it can also be clearly seen that the average position is much lower for the

transactiona recommender, what is obvious since this recommender used

short predefined lists of usefull resources.

5.6 Questionnaire

To make this evaluation more comparable with the evaluations of other

supporting systems we started our questionnaire with questions matching

the DIN EN ISO 9241. Additionally we asked which of the three user goal

5.6 Questionnaire 59

Figure 5.20: Field Study Results - Goal Support - Clicked Resource Counts

Figure 5.21: Field Study Results - Goal Support - Resource Positions

5.6 Questionnaire 60

supporting lists was most useful respectively less useful for the participants

and during which task the recommended resources were good respectively

bad in particular. Finally we asked them whether they could imagine to

use a similar software in the future or not.

Figure 5.22: Questionaire Results - DIN Questions

5.6 Questionnaire 61

Figure 5.23: Questionaire Results - Goals And Tasks

Chapter 6

Conclusion

The initial intention of this thesis was to investigate how the different goals

of a knowledge worker can be identified and supported. During the im-

plementation and the evaluation we realized that it is hard to distinguish

between the three different goals and that it is a good approach to support

the Navigational Goal, the Informational Goal, and the Transactional Goal

simultanously. The reason for this is that the different kinds of persons

want to have their individual support for the different tasks they have to

accomplish.

During the implementation of the algorithms and the evaluation plat-

form we tried used a database and stored procedures to make the evalua-

tion configurable and maintainable in a decentralized manner. By switching

some entries in the database we could set the used algorithms and their con-

figurations for all participants. Additionally we analysed if the algorithms

run more efficient locally on the clients side oder as part of the database.

The result were a clearly votum for the local algorithms and contra the ones

running in the database.

With the help of our User Interaction Emulator and the collected data

we could look back in the past and see what our participants would have

seen when they would have been supported by our recommender algorithms.

By this strategy we could debug and perfect our system. Since we collected

very much logging data during the automatic analysis we could analyse the

influance of many parameters on the algorithms perfomance. Not all of the

results could be decribed in detail in the Evaluation Chapter.

During the field study the participants of our evaluation were very sat-

isfied about the good recommendations of our alorithms. Especially the

support for the navigational goal enjoed great popularity. The reason for

the lower popularity of the support for the transactional goal could be the

63

small amount of learning data compared to the twelve partly to similar

tasks. The spares use of the support for the informational goal can be jus-

tified by the selected tasks: They duration of a task was to short and there

were to few tasks which needed a research for a theme or help to make

something correctly.

Future Work

We analysed multiple aspects of the Adaptive Support of Knowledge Work by

Analysis of User Objectives, but during our work we also found some aspects

which could be analysed in a future research: For the navigational goal other

algorithms could be investigated; maybe some of the graph algorithms could

be modified for this purpose. To get better support for the transactional goal

disambiguation of terms or using of position information could be analysed.

Finally for the transactional goal the generation of new features could be

interesting:They could extracted from some of the collected events or by

combining multiple events to one more valuable feature. Additionally could

the selection of other tasks with longer durations and other core themes

lead to different results during a field study.

Bibliography

[AB08] MySQL AB, Mysql 5.1 reference manual,

http://dev.mysql.com/doc/refman/5.1/en/index.html (2008).

[And88] J. R. Anderson, A spreading activation theory of memory, Read-

ings in Cognitive Science: A Perspective from Psychology and

Artificial Intelligence (A. Collins and E. E. Smith, eds.), Kauf-

mann, San Mateo, CA, 1988, pp. 137–154.

[Bec06] Arne Beckhaus, Machine learning on desktop enviroment events,

December 2006.

[Coo08] Microsoft Cooperation, Named pipes,

http://msdn.microsoft.com/en-us/library/aa365590.aspx

(2008).

[Fow97] Martin Fowler, Uml distilled, Addison-Wesley, 1997.

[Her94] Michael Herczeg, Software-Ergonomie: Grundlagen der

Mensch-Computer-Kommunikation, Addison-Wesley, 1994.

[JBS07] Bernard J. Jansen, Danielle L. Booth, and Amanda Spink, De-

termining the user intent of web search engine queries, WWW

’07: Proceedings of the 16th international conference on World

Wide Web (New York, NY, USA), ACM, 2007, pp. 1149–1150.

[KK] George Karypis and Vipin Kumar, Metis: unstructured graph

partitioning and sparse matrix ordering system, Tech. report.

[LGFM08] Robert Lokaiczyk, Eicke Godehardt, Andreas Faatz, and Marek

Meyer, On resource acquisition in adaptive workplace-embedded

e-learning environments, Proceedings of the International Con-

ference on E-Learning in the Workplace (ICELW), New York,

USA, June 2008.

[Rip96] Brian D. Ripley, Pattern Recognition and Neural Networks,

Cambridge University Press, 1996.

Appendix A

More experimental results

A.1 Further Analysis of Recommended Nav-

igational Objects

A.1.1 Comparison

Figure A.1: Comparison of Navigational Recommenders - Influence of Filter

Seconds - Best Average Positions

A.2 Analysis of Extracted Terms IX

Figure A.2: Comparison of Navigational Recommenders - Influence of Filter

Seconds - Best Found Percentages

Figure A.3: Comparison of Navigational Recommenders - Influence of Min-

imum Supporting Users

A.1.2 Task Performances

A.2 Analysis of Extracted Terms

For the algorithm supporting the Informational goal we realised that only

the collected data of the task ”Create a one slide presentation on Generics

A.2 Analysis of Extracted Terms X

Figure A.4: Comparison of Navigational Recommenders - Found Percent-

ages on Positions

Figure A.5: Comparison of Navigational Recommenders - Accumulated

Found Percentages on Positions

in Java” provided us with compareble results. The other tasks were to

short and did not need a support for the informational goal. We analysed

how often the term ”Java” was extracted and on which averaged position

in was in the extracted term list.

A.2 Analysis of Extracted Terms XI

Figure A.6: Tasks Performances of Navigational Recommenders - Sequence

Probability Recommender

Figure A.7: Tasks Performances of Navigational Recommenders - Graph

Probability Recommender

For the Term Extraction Algorithm we analysed the influance of the

following parameters:

• Used Event Types

A.2 Analysis of Extracted Terms XII

Figure A.8: Tasks Performances of Navigational Recommenders - Graph

Partition Recommender

Figure A.9: Tasks Performances of Navigational Recommenders - Spreading

Activation Recommender

– Keyboard Events

– Clipboard Events

– Application Events

A.3 Analysis of Classified Tasks XIII

Figure A.10: Tasks Performances of Navigational Recommenders - Com-

parison

– Foreground Windows Events

– Combinations - Keyboard/Clipboard, Keyboard/Clipboard/Ap-

plication, all four

• Extraction Interval Seconds - Values: 30, 60, 90, 120

• Stopword Count - Values: 100, 1.000, 10.000

• Stopword Language - English, German, or mixed English-German

A.3 Analysis of Classified Tasks

A.3.1 Comparison of Classifier Algorithms

A.3.2 Sequential Minimal Optimization Classifier

A.3.3 Voting Classifier

Figure A.11: Informational Recommender - Influence of Used Event Types

- Found Percentages

Figure A.12: Informational Recommender - Influence of Used Event Types

- Average Positions

A.3 Analysis of Classified Tasks

Figure A.13: Informational Recommender - Influence of Interval Seconds -

Found Percentages

Figure A.14: Informational Recommender - Influence of Interval Seconds -

Average Positions

A.3 Analysis of Classified Tasks

Figure A.15: Informational Recommender - Influence of Used Stopwords -

Found Percentages

Figure A.16: Informational Recommender - Influence of Used Stopwords -

Average Positions

A.3 Analysis of Classified Tasks

Figure A.17: Transactional Recommender - Classifier Comparison - Influ-

ence of Interval Seconds

Figure A.18: Transactional Recommender - Classifier Comparison - Classi-

fied Task Distribution

A.3 Analysis of Classified Tasks

Figure A.19: Transactional Recommender - Classifier Comparison - Classi-

fication Accuracy

Figure A.20: Transactional Recommender - SMO Classifier - Influence of

Interval Seconds

A.3 Analysis of Classified Tasks

Figure A.21: Transactional Recommender - SMO Classifier - Classified Task

Distribution

Figure A.22: Transactional Recommender - SMO Classifier - Classification

Accuracy

A.3 Analysis of Classified Tasks

Figure A.23: Transactional Recommender - Voter Classifier - Influence of

Interval Seconds

A.3 Analysis of Classified Tasks

Figure A.24: Transactional Recommender - Voter Classifier - Classified Task

Distribution

Figure A.25: Transactional Recommender - Voter Classifier - Classification

Accuracy

Appendix B

Declaration of Honor

I hereby confirm that I created this master thesis without help of third

persons and solely with the literature sources and other resources marked as

citations. All passages taken from the literature have been indicated as such.

This thesis has not been presented to any other examination commission.

Ehrenwörtliche Erklärung

Hiermit versichere ich, die vorliegende Masterarbeit ohne Hilfe Dritter und

nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben.

Alle Stellen, die aus den Quellen entnommen wurden, sind als solche ken-

ntlich gemacht worden. Diese Arbeit hat in gleicher oder ähnlicher Form

noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, September 2008 Matthäus Martynus

