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Abstract

Many modern computer games are fairly complex, with a vast amount of game states and a high 

degree of randomization. Most of those games fail to provide an adequate artificial intelligence 

which leads to the player being more adept than the computer controlled agents after a short 

amount of time. As a consequence, the developers need to artificially strengthen the computer 

controlled agents to keep up the challenge. Ultimately the player may loose interest in the game 

because he feels that the odds are not even. A real adaptive artificial intelligence would go a long 

way towards immersive digital games.

However the above mentioned characteristics of todays computer games raise some issues when 

trying to apply standard procedures known from machine learning and data mining. The desired 

learning processes need to be fast and reliable. An algorithm named 'Dynamic Scripting' has been 

developed by Pieter Spronck specifically for the deployment in modern computer games.

This thesis covers the application of 'Dynamic Scripting' in 'Jagged Alliance 2', a commercially 

developed and distributed computer game. After explaining the game's basics and the 

mechanisms of the learning algorithm, the implemented artificial intelligence is evaluated 

thoroughly. The emphasis of this paper lies in providing a real world example of implementing an 

adaptive artificial intelligence in a complex game, along with various suggestions of customizing or 

combining 'Dynamic Scripting' with other techniques.
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1. Introduction

1.1 Motivation

Digital computer games are a relatively new form of entertainment. The first serious attempt to 

commercially distribute larger amounts of copies was less than 40 years ago. In 1971 Atari 

developed a simple ping-pong simulation called 'Pong', arguably triggering the huge boom of the 

computer games industry.

Since then digital computer games have evolved tremendously. Modern graphic engines require 

special hardware to cope with the huge amount of calculations necessary for special effects and 

detailed environments. However, the artificial intelligence of computer-controlled agents has 

advanced far slower, now significantly lagging behind the visual representation (“It looks like a 

human, but it does not act like one”).

One common aspect of current game intelligences is the lack of learning processes. The behavior 

of game agents is static and thus unable to adapt to the player. This leads to very unbelievable 

characters because in reality everybody – even animals – learn from past experiences. While the 

player is mastering a game and continually getting better at it, the computer controlled agents 

always employ the same tactics. As a result, the only way to keep the game challenging is to 

artificially strengthen the computer controlled agents. This destroys the immersion for the player 

and ultimately makes him not want to play the game anymore.

There are several scientific approaches to realize learning processes. However, the one major 

issue with on-line learning systems is that you never know what they learn once distributed. So 

many game developers frown at the thought of actually shipping their product with an actively 

learning game intelligence. A procedure called 'Dynamic Scripting' was developed to dissipate 

these doubts and provide a simple way of implementing learning in modern games.



2

Basically this paper should be understood as a consolidation of the work of Peter Spronck et al. He 

was the person who developed the 'Dynamic Scripting' technology and successfully applied it to 

three different games in the context of his thesis, namely a self-made RPG called 'Mini Gate', the 

commercial RPG 'Neverwinter Nights' and an open source 'Warcraft 2' implementation called 

'Wargus' [Spr05].

Now this paper aims to apply 'Dynamic Scripting' to a slightly different type of game, specifically a 

tactic-based game called 'Jagged Alliance 2'. Interesting aspects include its turn-based nature and 

the fact that most of the actions in the game are fairly randomized. If it could be proven that 

'Dynamic Scripting' really adds to the performance and flexibility of the game AI and therefore to 

the entertainment value of the game itself, then this would be another indicator that 'Dynamic 

Scripting' is indeed a technology which is ready to be deployed in real commercial games.
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1.2 Jagged Alliance 2

1.2.1 General information

'Jagged Alliance 2' is a commercially developed computer game which was published in 1999. Like 

its predecessor 'Jagged Alliance' it was well received by many gamers and earned numerous 

awards from the specialized press [JA2awards]. Some years later two expansions providing 

additional content were released. The first one called 'Jagged Alliance 2: Unfinished Business' was 

published in 2000 and the second one (which originally started as a user modification) called 

'Jagged Alliance 2: Wildfire' was released in 2004. The latter one also contained the complete 

source code of the game on the CD.

A community evolved who tried to build upon this code to fix existing bugs and add new content. 

Derived from the latest official patch, which was version 1.12, a popular modification called 'JA2 

v1.13' [JA2v113] emerged. The goal of this modification was to keep the game's principles and 

rules intact by adding new content in the form of new items and polishing the game engine a little. 

The source code of the 'JA2 v1.13' modification is available to the public and constitutes the base 

of the implementation of this paper.

Unfortunately the source code released on the 'Jagged Alliance 2: Wildfire' CD was error-prone 

and could not even be compiled in the form at hand. That was the reason I decided to build upon 

the 'JA2 v1.13' code instead of the originally released one. It can be assumed that the results of 

this study could be transferred to the original 'Jagged Alliance 2' game without any divergences; if 

anything the results should be better, because the game AI was slightly improved in this 

modification.

Since the 'JA2 v1.13' mod is an active project, the source code gets updated quite often. I went 

through various revisions during my implementation phase, but I had to stop at one point because 

merging the new releases with my own changes of the code was too time-consuming. All of the 

statements in this thesis regarding the 'JA2 v1.13' mod are referring to the revision 2088. The 

source code is included in the publication of this thesis.
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1.2.2 Gameplay

The plot of 'Jagged Alliance 2' takes place on a fictional island called 'Arulco'. An evil female 

dictator with the name 'Deidranna' conquered the isle and oppressed the people living there. At the 

start of the game most of the area is under her control. The player controls a group of mercenaries 

who were hired by a few remaining rebels to reclaim the territory.

The gameplay in 'Jagged Alliance 2' is composed of three different layers, each one representing a 

task the player has to fulfill. Two of these layers are actually not important in the scope of this 

study, so their description will be rather brief. I concentrated on the third layer, because it is the 

core of the game and the player spends most of his time playing on this layer by design.

First of all the player has a limited amount of money in the game. Managing his finances is the first 

layer of gameplay ('financial layer'). It is possible to use the money for hiring more mercenaries or 

buying new weapons and other equipment. The game simulates a kind of virtual (and very limited) 

internet allowing the player to visit certain fictional websites to buy the above mentioned things.

Figure 1.1: 'Jagged Alliance 2' laptop view
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Another task is managing the logistics and troop movements over the island ('strategic layer'). 

Since the player can control more than one squad of mercenaries he needs to decide where the 

best positions would be and which part of the island should be freed next. There is a strategic view 

in the game containing a small map of the island split into quadratic sectors.

Figure 1.2: 'Jagged Alliance 2' strategical sector view

Finally the last and most challenging task is to control the mercenaries on the tactical screen 

('tactical layer'). This is a much more detailed view of one sector, showing the whole environment 

including buildings, plants and of course the mercenaries. Enemy soldiers or civilians are only 

visible when one of the mercenaries can actually see them. Basically the player gives movement 

orders to his troops by clicking with the mouse on the desired location and then they start to walk 

towards this point. Everything happens in real time while no enemy soldiers are seen.



6

However if any of the player controlled agents sees an enemy soldier, the game switches to a turn-

based mode. In this mode every team can only act during their turn. There are different teams in 

the game, the most important ones are the enemy team, the player team and the militia team 

(which is allied to the player's team). A complete round is finished when every team has had its 

turn once. The sequence of the turns is fixed for a specific battle (i.e. enemy team – player team – 

enemy team – player team – ...). There is one exception though, at very specific situations actions 

can be performed 'in between'. This is called an interrupt, but the detailed mechanisms are beyond 

this basic introduction.

During a team's turn each agent of that team can act in arbitrary order, but only one at a time. 

There are many kinds of actions agents can perform, including but not limited to shooting at 

enemies, running, using items, climbing, tossing explosives, etc. But to perform one of these 

actions the agent needs to have enough 'Action Points' (= APs). APs are a resource that gets 

refreshed after each round of combat. The amount of APs depends on the attributes and 

equipment of the specific agent and each action has a different AP cost associated with it.

 

Figure 1.3: 'Jagged Alliance 2' tactical view
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After each agent of a team has consumed his APs or saved them, which can be useful for various 

reasons (i.e. hoping for interrupts), the turn is ended and the next team can make its move. There 

is no time limit for a turn and the player can think about different tactics as long as he wants since 

the other team cannot do anything during his turn. Of course the computer controlled teams act 

immediately when it is their turn because the player does not want to wait and get bored.

It should be mentioned that all agents in the game have several skills, expressed as numerical 

integer values between 1 and 100. Examples of these skills are things like strength, 

marksmanship, technical adeptness, etc. A high value in a skill means that corresponding actions 

have a high chance of success (for instance an agent with a high marksmanship will hit his targets 

more often than an agent with a lower marksmanship).

Another aspect that influences the performance of an agent is his equipment. There are several 

slots containing different types of items: For example, the head slot can only hold helmets or 

different types of glasses, whereas the hand slot is designated for weapons and tools. Weapons 

have an especially large impact on the power of an agent – this is important to consider when 

measuring the performance of different artificial intelligences.

The artificial intelligence developed within the frame of this study concentrates on the tactical layer 

for several reasons. First of all, as already mentioned, the player spends at least 90% of his time 

with this task, making it the core element of the game. Secondly the 'Dynamic Scripting' procedure 

learns after each 'trial', which is a point in time at which the success of previously used tactics can 

be determined. Looking at the strategic or financial layer, this is rather difficult to define. Probably 

the end of the game would be the only definite event with meaningful information, but learning 

processes after the player has already finished the game are not very useful. On the other hand 

tactical success can be measured after each battle, providing many more occasions for the 

artificial intelligence to learn and adapt.

As with every game it is recommended to actually play the game yourself to fully understand the 

game dynamics and rules. The above mentioned basics should be enough to comprehend the 

results presented in chapter 5 though.
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1.3 Goal of this paper

The aim of this study is to develop an adaptive artificial intelligence for the digital computer game 

'Jagged Alliance 2'. It should be shown that the AI performs well enough to actually replace the 

existing AI in this commercial game. That would be another indicator that the 'Dynamic Scripting' 

technology developed by Pieter Spronck is indeed ready to be used in modern computer games.

This paper builds upon Pieter Spronck's work and takes his results as given, in particular that the 

'Dynamic Scripting' algorithm fulfills the eight computational and functional requirements (speed, 

effectiveness, robustness, clarity, variety, efficiency, consistency and scalability) [Spr05]. 
Therefore the main task is to show that 'Dynamic Scripting' really improves performance of the 

agents in this game by making them smarter and able to adapt to consistently employed tactics. 

Chapter 2 specifies the architecture and the mechanics of the 'Dynamic Scripting' algorithm. 

To reach the above mentioned goal, I implemented the 'Dynamic Scripting' algorithm as described 

in Pieter Spronck's thesis with the necessary accommodations to cope with the mechanics of 

'Jagged Alliance 2'. Please refer to chapter 4 for more details about the implementation. Then I ran 

several evaluations to test the 'Dynamic Scripting' intelligence against the original (static) artificial 

intelligence. The results are presented in chapter 5.
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2. Machine learning in computer games

2.1 Machine learning introduction

The 'Dynamic Scripting' technique is a machine learning algorithm. This sub-chapter is meant to 

provide a short introduction into the basic mechanics and taxonomies of machine learning 

processes. Please feel free to skip this part if you are familiar with machine learning basics. The 

subsequent chapter 3 provides more details about the mechanics of the 'Dynamic Scripting' 

procedure.

Machine learning is a subfield of artificial intelligence concerned with the development of 

techniques which allow computer systems to improve their performance over time on a certain 

task. This goal is reached with various computational and statistical methods, depending on the 

algorithm. Please note that the field of machine learning is closely related to the field of data 

mining. There are many different machine learning procedures, each with unique properties 

influencing the performance on certain learning tasks. 

The field of application for machine learning procedures is quite broad. Many real world problems 

have been successfully approached with machine learning solutions. Examples are medical 

diagnostics, meteorologic prognosis, natural language processing, handwriting recognition, robot 

locomotion and many more. 

Machine learning algorithms can be classified into distinct categories, depending on the available 

input and desired output. It should be mentioned that algorithms in the same category may reach 

their goal in quite different ways. 

Supervised learning

There is a set of data available which encodes examples of “how to do it right”. These examples 

are called 'labeled examples' or 'training data', because a machine learning process is supposed to 

learn from them. The task is to analyze this data and learn a general concept to deal with new 

examples. There are different ways to reach that goal and different ways of storing the knowledge. 

Examples include rule-based approaches, decision tree learners or support vector machines.



10

Unsupervised learning

There are no labeled examples available. The machine learning algorithm has to discover 

similarities or differences in the presented data. Typical examples are several clustering 

algorithms, which try to unite similar data elements together in a group.

Semi-supervised learning

This is basically a mixture between supervised and unsupervised learning. Only a subset of the 

examples are labeled and the machine learning algorithm combines the information of the labeled 

and unlabeled data to generate a concept for dealing with new unlabeled examples. For instance 

the EM1 algorithm and the Co-learning procedure belong to this type of learning algorithms.

Reinforcement learning

There is no labeled data available, but the learning process receives feedback about the quality of 

its decisions. In the context of computer games this feedback could be a boolean value ( 0

 meaning a game was lost and 1  meaning a game was won). Artificial neural networks can be 

used for reinforcement learning; another example of a reinforcement learning procedure is 

'Dynamic Scripting', the technique implemented in the frame of this study.

Please note that the introduction above is a very compressed form of knowledge, merely a short 

overview. For more in-depth information refer to [Mit97] or [Alp04].

1 Expectation-Maximization
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2.2 Application of machine learning in digital computer games

There are many different learning mechanisms that are potentially applicable for learning tasks in 

digital computer games. While research on this topic is still in its early stages [Für01], some 

algorithms have already proven to be quite successful at certain tasks. Especially classic games 

like chess, backgammon or several card games are popular candidates for this kind of research. 

For example, there is a backgammon program called TD-Gammon that uses temporal difference 

learning to improve by playing against itself [Tes95]. This program plays at the level of the best 

players of the world.

However most classic games differ in their nature from modern computer games. While a game 

like chess is unquestionably very complex, it provides full information at all time. There are no 

random factors and no hidden events that influence the outcome of the game in any way. An action 

(which would be a move in the game of chess) has always exactly the same effects  when 

performed in a constant state. And while the amount of game states is huge, it is still finite.

Backgammon on the other side has some common characteristics of typical digital games, for 

example, it has a certain inherent randomness. Temporal difference learning belongs to the class 

of reinforcement learning algorithms and basically it would be applicable for the learning tasks in 

modern randomized games. Unfortunately the standard application of temporal difference learning 

is off-line learning, which means the whole learning process occurs during development and not 

while playing against real opponents. While the algorithm itself was actually designed to allow on-

line learning, the reason for this circumstance is the huge amount of trials required to effectively 

learn new tactics with temporal difference learning. The aforementioned system TD-Gammon for 

example played over 1,000,000 games against itself. Many standard procedures known from 

machine learning research share this property.

So those methods are not suited for the task in this study, because we want an on-line learning 

system where the artificial intelligence is able to adapt to the player in a short amount of time. 

Unfortunately the research in this area has just recently come of age and real examples of games 

with such characteristics are very rare. One technology which tries to answer those expectations is 

'Dynamic Scripting' developed by Pieter Spronck [Spr05]. This is the learning algorithm 

implemented in this study.
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It is obvious that reinforcement learning procedures are especially interesting for the application in 

computer games. Their only requirement is that a feedback function can be designed, which is able 

to judge if the applied strategies were successful. This is a non-issue  in almost any game, 

because victory conditions are usually well-defined. The learning techniques supervised and semi-

supervised on the other hand require data to operate on. For many games there is no such data 

available. However, some modern games (especially those popular in the e-sport scene) allow the 

recording of whole matches, which can be re-viewed later on in the game engine. Such a recording 

contains information about all actions made by a player. An interesting approach would be to 

analyze data of games made by high skilled players with (semi-)supervised learning techniques.

Unsupervised machine learning algorithms are the least interesting form of learning techniques for 

the application in computer games. One could image a niche implementation, for example to 

automatically form groups of agents in some games, but most probably it would be simpler to just 

encode a few rules to specify the group compositions.

Please note that there are other learning algorithms which may be suitable for learning tasks in 

modern computer games. For example there are techniques which try to adapt the computer's 

strategy to the player by observing and analyzing certain key elements of his play-style. This task 

is called 'opponent modeling', an example can be found in [SBS07]. There are other approaches 

as well, for a more detailed overview of the application of various machine learning technologies in 

digital computer games please refer to [Spr05].
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2.3 'Dynamic Scripting' basics

Just like temporal difference learning, 'Dynamic Scripting' belongs to the class of reinforcement 

learning procedures. Basically these kind of algorithms work like this: At the beginning they 

produce random strategies (while of course obeying all game rules) and use them in a match 

against an opponent. The outcome of this match is fed back into the learning algorithm, which uses 

this signal to rate the just applied strategy. On a win, all used actions get a higher score, on a loss, 

their score is decreased. Then a new strategy is generated based on the updated results and once 

again it is tested in a match against an opponent. Over the course of time this gives high ratings to 

strategies which are often successful.

Thus reinforcement learning procedures can be applied whenever a reinforcement signal can be 

collected, in many cases this is just a boolean value where 0  or false  encodes a loss and 

1  or true  encodes a win. Accordingly this means that learning only occurs after a trial has 

been finished. The definition of 'trial' depends on the specific game. In many cases this is the end 

of a match, battle or round.

'Dynamic Scripting' has a few additional requirements which are in reality almost always met. First 

of all, as the name implies, the game AI needs to be available in the form of scripts. This is actually 

not only common but a de-facto standard in commercial computer games. In former times the AI of 

all computer controlled agents used to be hard-coded, which means it was implemented directly in 

the source code of the game itself. This way of programming entailed several problems though. 

Any change regarding the game AI required a re-compilation of the game. Furthermore many 

modern games encourage the players to change and add content of the game itself (called 

'modding') by providing special tools and externalizing as many parts of the game as possible. 

Scripts are basically text files encoding the behavior of game agents with if-then rules. They either 

use one of the many scripting languages available (i.e. Lua2, Python3, etc.) or come with a custom 

designed scripting language. Interpreting these scripts during run time provides more freedom for 

both the developer and the players who are interested in modding.

2 www.lua.org
3 www.python.org
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Scripts in the context of computer games – and therefore this study – are an ordered set of if-then 

rules. Each rule consists of one or more conditions (if part) and one or more actions (then part). 

Whenever a game agent needs to decide upon an action, the script is called and all rules are 

checked in sequence. The first rule that returns true (meaning that the actions of the rule can be 

exerted right now in the current game state) gets selected and the agent performs the 

corresponding action(s).

Normally these scripts are static, which means they are written by a (hobby) developer before the 

game (or the mod) ships and they don't change while the players play the game. Even though 

standard game scripts sometimes tend be quite long and complex, they encode a static set of 

tactics and experienced players can predict actions of computer controlled agents after a certain 

time of playing. Of course there is always the possibility to encode different tactics and select one 

randomly, but this doesn't change much. Firstly, the AI is still limited and cannot come up with new 

tactics and, secondly, the selection of different tactics based on a die roll does not seem very 

smart.

Now what 'Dynamic Scripting' does is to assign every rule a so called 'weight' value which is an 

integer expressing the quality of a rule. Based on these weights, scripts are being put together 

whereby rules with high weights are preferred. This enables the dynamic generation (hence the 

name) of high quality scripts for basically any given scenario. Scripts (and therefore tactics) are no 

longer static but rather flexible and able to adapt to even unforeseen game strategies, which meets 

at least partially the definition of learning. The following chapter goes more into detail about the 

mechanisms used by 'Dynamic Scripting'
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3. Dynamic Scripting

3.1 Mechanics

As mentioned before 'Dynamic Scripting' operates on script files by putting together a set of rules. 

First of all these rules need to be implemented, which is of course totally dependent on the game. 

For more information about the rules implemented for 'Jagged Alliance 2' in the frame of this study 

refer to chapter 4. All implemented rules are registered in a so called 'rulebase', which is an index 

of all rules and their corresponding weights. Please note that there may be several rulebases, one 

for every agent class in the game or one for certain game states. An agent class is the generic 

name for all computer controlled agents in a game sharing the same behavior. For example: In a 

digital soccer game there would be at least two different agent classes (with their own rulebases): 

goal keeper and field player. This is because a goal keeper has different actions available than 

field players (e.g. he can catch the ball with his hands while field players should never do this).

So a rulebase represents a behavior of a type (or class) of players, a script represents the behavior 

of a concrete instance of that type. The script generation works as follows: First an empty script is 

generated, containing only a default rule (which specifies an action that can always be performed 

or an action that is equivalent to 'do nothing'). This is just to ensure that scripts always return a 

valid behavior. Then new rules are added to the script by copying them from the rulebase and 

inserting them before the default rule, up to a maximum number of rules (see figure 3.1). The 

concrete value of the maximum rules in a script depends on the game. Which rules are selected is 

random but dependent on the rules' weights. Rules with a higher weight have a higher probability 

of getting selected. Rules with a weight of 0  are inactive and cannot be inserted in a script. 

However, their weight can possibly increase again over time. More details on the weight 

calculations will follow in the next sub-chapter.
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Figure 3.1: Script generation

For now it is enough to understand the concept behind the rule weights. They should be an 

indicator of the quality (or importance) of a rule at the current situation. If a rule has a high weight 

then the reason is one of the following: 1. The rule was several times in a script which was 

successful (the agent controlled by this script won) or 2. The rule was not in a script for several 

runs but the agent(s) always lost the game. 

To sum it up: If an agent wins a match then all rules in his script that were actually executed 

receive a weight increase. All rules that were not activated get a weight decrease. The intuition 

behind this is: Rules that were executed during a match that was won are probably good, because 

they led to a victory. Rules that were not executed during a won match are apparently not very 

important, because the match was won without them. 

On the other hand, if an agent lost his match then all activated rules have their weights decreased 

and all rules that were not activated get a corresponding weight increase. The idea is that the 

activated rules were not successful, so they are not very good. However, maybe the not activated 

ones perform better, so their probability to be selected during script generation is increased.



17

It is important to mention that scripts are generated for each instance of an agent class. For 

example imagine a game where the player has to fight against a squad of enemies who are all 

copies of each other with the same attributes and visual appearance. Normally they would be 

controlled by the same script, but with 'Dynamic Scripting' each one gets his own script. If multiple 

learning runs already occurred and some rules got a much higher weight than others, then it is 

likely that the resulting scripts are the same or at least quite similar. In the beginning all rule 

weights are the same, resulting in more diverse scripts - which is good because this way different 

tactics are tested at once and the learning process is faster.

There is one more guideline to follow when using 'Dynamic Scripting' in a game: The rules should 

not encode elementary game moves, but rather more abstract tactics. A rule can only appear once 

in a script and the first applicable rule always gets selected. So an example of a bad rule would be 

'move one square forward'. Even if a successful script could be learned with rules like this, it would 

be too specific for exactly one situation.

Imagine a tile-based game where two agents fight each other by jumping on the others head. The 

'Dynamic Scripting' agent learns to move one square (or tile) forward at the beginning of each 

match, because he evades the other agent's leap attack this way. Now the starting positions of the 

agents are changed and suddenly the 'Dynamic Scripting' agent cannot move one square forward, 

because there is a wall! He has to learn a new script in this case, even though evading at the start 

is still a good tactic. The developer of this game should rather implement an action like 'evade 

attack', which always checks for available evade spots in the vicinity. As a consequence, no new 

learning would be necessary in the above example, because the same script leads to success, 

even with changed starting positions.
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3.2 Rewards and penalties

The rule weight adaption process was outlined in the previous section, this section should provide 

some more details. We already know that the rule weight is a quality indicator of a rule – the 

higher, the better. Successful rules get a reward at the end of a fight, failed rules receive a penalty. 

But how big should these adjustments be? A constant reward for every win and a constant penalty 

for every loss would not be the optimal solution. It would be much better to scale the adjustments 

based on how close the outcome of a match was. And this is exactly what 'Dynamic Scripting' 

does.

The success of each generated script is evaluated with a so-called 'fitness function'. This is 

basically a mathematical function which generates a value between 0  and 1  indicating how 

good the script performed during the last match. A 1.0  means perfect performance, the agent 

controlled by this script played really well. On the other hand, 0.0  means a plain loss, the agent 

controlled by this script achieved basically nothing. Since computer games tend to be quite 

different, there is no general fitness function which can be used in every game. Instead one has to 

be designed for each game. In reality this poses no major problem. Most games have certain 

subgoals and the fitness function could just return the percentage of completed subgoals or 

something like the percentage of resources left. Please refer to chapter 3 for the fitness function 

used in 'Jagged Alliance 2'.

Now, what do we need this fitness value for? It is used to scale the rewards and penalties to the 

rule weights. There is a standard value called 'break-even point' which represents a kind of neutral 

point. If the fitness function returns a value equal to the break-even point then the meaning is: The 

performance of the agent was neither very good nor really bad. As a consequence all rule weights 

stay the same, there are no adjustments. Again, the concrete value of the 'break-even point' is 

dependent on the fitness function and therefore on the game. Basically the point lies between the 

fitness values of the worst winning agent and the best losing agent. So imagine a game where 

there is a competition between two teams each one consisting of three agents. A fitness function 

was designed for this game and after a few runs one notices that the winning team's agents have 

fitness values in the range from 0.6  to 1.0  and the losing team's agents have fitness values 

ranging from 0.0  to 0.4 . One could set the break-even value to 0.5  in such a case. 

Usually it is in the range of 0.3  – 0.5 . Please note that this value is normally identified by the 

programmer, an automatic calculation would be possible though.
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With a fitness value and a break-even point, how does one calculate the adjustments? Basically 

the difference of these two values determines the magnitude of the weight modulations. As the 

break-even point lies somewhere in the middle, high and low fitness values (close to 1  and 

0  respectively) entail big adjustments whereas values close to the break-even point only bring 

minor adjustments. A fitness value equal to the break-even value results in no changes at all, as 

already mentioned (see figure 3.2).

Figure 3.2: Rule weight adjustments depending on the fitness function

The 'Dynamic Scripting' algorithm specifies some parameters affecting the weight adjustments and 

therefore the whole learning process. In addition to the break-even point there are five parameters 

limiting the rewards and penalties:

RMAX : Maximum possible weight increase per trial

PMAX : Maximum possible penalty per trial

W MAX : Maximum weight for a single rule

W MIN : Minimum weight for a single rule

W INIT : Initial weight for each rule
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These parameters influence the learning process. For example, a high value for W MAX causes 

the algorithm to favor exploitation over exploration. W MIN  can be set to 0 to allow actual 

elimination of rules. If W MIN  is set to a high value then even bad rules still have a chance of 

being selected, again resulting in more diverse tactics (exploration).

So comparing the return value of the fitness function to the break-even point determines whether 

an increase (reward), a decrease (penalty) or nothing should happen to the activated rules' 

weights. Then the fitness value is used in conjunction with the corresponding parameter to 

calculate the actual weight adjustment. The exact formula is defined as follows:

w={−⌊PMAX
b−F
b ⌋ Fb

  ⌊RMAX
F−b
1−b ⌋ F≥b

In this equation w  is the weight adjustment for each active rule. F  is the calculated fitness 

value and b  is the break-even point. The function evaluates to a negative value if Fb
(resulting in a weight decrease), a positive value if F≥b  (weight increase) and 0  if F=b
(weights remain unchanged).

After all the weights of the active rules have been accommodated, the next step in the 'Dynamic 

Scripting' algorithm is the revision of all non-active rules. It is important to ensure that the sum of all 

rule weights always stays constant. This allows rules with a weight of 0  to grow even if they do 

not appear in a script. So if the activated rules are penalized, all non-activated rules (including all 

those which were not inserted in a script) receive a weight increase. On the other hand, if the 

active rules are rewarded then all non-activated rules receive a weight decrease.
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Example

There is a rulebase R  with the following rules:

1. Rule 1: weight 100

2. Rule 2: weight 100

3. Rule 3: weight 100

4. Rule 4: weight 100

Let's assume there is an agent controlled by the script A , which looks like this:

1. Rule 1 (activated)

2. Rule 2 (activated)

Furthermore the learning parameters were defined as follows:

b=0.5

RMAX=50 , PMAX=25

W MIN=0 , W MAX=300

Now let us look at two different cases:

1. The agent won ( F=0.8 )

w=⌊RMAX
F−b
1−b ⌋=⌊50 0.8−0.5

1−0.5 ⌋=30

That means that both rules in the script (Rule 1 and Rule 2) get a weight increase of 30, 

resulting in a new weight of 130. All other rules (Rule 3 and Rule 4) need to get lower 

weights to keep the sum of all weights constant. Therefore their weight is decreased by 30. 

Please note that this is not limited by the maximum penalty PMAX , because technically 

this is not a penalty but a step to ensure the constant weight sum.

2. The agent lost ( F=0.1 )

w=−⌊PMAX
b−F
b ⌋=−⌊25 0.5−0.1

0.5 ⌋=−20

Accordingly the rules in the script (Rule 1 and Rule 2) get a weight decrease of 20, resulting 

in a new weight of 80. The other rules (Rule 3 and Rule 4) get their weights increased by 20 

which leads to the same weight sum as before.

Please note that the constant sum of all weights always has priority. This means activated rules 

cannot gain weight if all non-activated rules are already at the minimum weight.
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3.3 Rule ordering

There is one more important aspect when thinking about script generation. It was stated before 

that the rules in a script are checked in a sequential order and the first one applicable gets 

executed. This implies that two scripts consisting of the same rules are not necessarily equivalent. 

Scripts are not just a set but an ordered set of rules. Which raises the question: How does rule 

ordering work in 'Dynamic Scripting'?

Actually there are different possibilities:

1. Use manually assigned priorities: Basically one fixed value for each rule is used, where 

rules with the highest priority are checked first, second-highest priority are checked second 

and so on. This works quite well in some games/scenarios, but sometimes it is too inflexible 

and does not allow enough adaption.

2. Sort the rules in a script by their weight: The rule with the highest weight is always checked 

first ('weight ordering'). This approach, while intuitive at first, has some flaws and performs 

the worst of the automatic rule ordering mechanisms.

3. Learn the rule priorities in parallel with the rule weights. This mechanism is called 'relation-

weight ordering' and is the one implemented for the tests in this study. For that reason I 

want to provide some more details in the following paragraphs. Please refer to the paper 

[TSH07] for more details about the other rule ordering approaches.

It was mentioned that the rule priorities are learned in parallel with the rule weights. This is 

technically not a complete statement, because an important point is the relative rule priority. That 

means that the algorithm does not learn a single priority value for each rule but rather multiple 

values that determine the priority over the other rules. As a consequence we need to keep n×n
values in memory, where n is the amount of rules in the rulebase. Accordingly these values are 

stored in a table (or matrix) which looks like this:

Rule R1 R2 R3 ... Rn
R1 – p12 p1 3 ... p1n

R2 p2 1 – p23 ... p2n

R3 p31 p32 – ... p3n

... ... ... ... ... ...
Rn pn1 pn2 pn3 ... –
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A single entry p i j  is an integer and has the following meaning: The rule i  occurred before 

rule j  in a script and gained the weight(s) p i j while in that constellation . Analogous to the 

weights a higher value is an indicator of better performance. Please note while weights are usually 

limited to natural numbers, the relative priorities can be negative.

If a new script is to be generated, the rule ordering is determined by adding up the relative priorities 

for each rule per row and sorting the rule by descending priorities. The rule with the highest 

ordering weight is inserted at the first position, followed by the one with the second-highest 

ordering weight and so on.

Example

Script A  consists of the following rules:

1. Rule 1

2. Rule 2

3. Rule 3

At the end of a match the rule weights get updated. After that, the relative priorities are actualized 

too, receiving the same adjustments as the rule weights. Let's say the agent with this script lost the 

game and after calculating the fitness function there is an adjustment of −30  (the agent lost, so 

the adjustment is negative). All rules in the script, namely Rule 1, Rule 2 and Rule 3 get their rule 

weights decreased by 30 . Then the priority values p1 2 , p1 3  and p2 3  are decremented 

by 30  as well. Why? Well because in this particular script, the Rule 1 occurred before Rule 2 (

p1 2 ), the Rule 1 also occurred before Rule 3 ( p1 3 ) and finally the Rule 2 occurred before 

Rule 3 ( p2 3 ). All other values remain unchanged.  If the agent would have won, then all these 

relative priority values would have been increased, because the constellation would have proved to 

be positive.

[Example continues on next page]
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If we assume that this was the first learning run ever, the relative priority weight table would look 

like this:

Rule Rule 1 Rule 2 Rule 3 ...
Rule 1 – −30 −30 ...

Rule 2 0 – −30 ...

Rule 3 0 0 – ...

... ... ... ... –

Now during the next learning run, new rules are selected which are inserted in the script. Let's say 

the same three rules Rule 1, Rule 2 and Rule 3 get selected, which is unlikely because their 

weights are lower than the other rules but still possible. We calculate the rule ordering weights by 

adding up all the relative priorities in a row:

Rule 1: −30−30=−60

Rule 2: 0−30=−30

Rule 3: 00=0

From this follows that the resulting script B  would look like this:

1. Rule 3

2. Rule 2

3. Rule 1
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4. Implementation

4.1 General

The former chapter explained how the 'Dynamic Scripting' algorithm worked in principle. Now I 

want to shine some light on the concrete implementation in 'Jagged Alliance 2'. Of course all of the 

aforementioned mechanisms still apply, but a few customizations had to be made. Some are by 

design, for instance the fitness function or the specific rules in the rule base. These are just 

concepts in the 'Dynamic Scripting' procedure, their actual implementation is game dependent. 

Aside from that there were some problems originating from the code itself. The following sub-

chapter deals with one of those quirks, more specifically the issue that 'Jagged Alliance 2' uses no 

extern scripts for the control of the agents. There is a work-around though which I would like to 

describe briefly, since this is a problem that could possibly arise in other (especially older) games 

as well.

To allow full understanding of the actual rule implementations we need to take a look at game 

states in 'Jagged Alliance 2'. Basically there are different states in which an agent can be, resulting 

in different rulebases. Again this is something which can be interesting for other games as well.

This chapter also includes all information about game specific elements of the 'Dynamic Scripting' 

algorithm. First the fitness function, which was designed to represent the core game goals and 

provide a reasonable estimation about the performance of the agents. And, secondly, the most 

important part: the rules. Basically the quality of the rules is the greatest performance affecting 

factor and thus they need to be created carefully. 
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4.2 Absence of scripts

The 'Dynamic Scripting' algorithm operates on scripts by design. I want to start this sub-chapter 

with a quotation from Pieter Spronck's thesis [Spr05, page 131-132]:

“To games that use game AI not implemented in scripts, dynamic scripting is not 

directly applicable. However, based on the idea that domain knowledge must be the 

core of an online adaptive game-AI technique, an alternative for dynamic scripting may 

be designed.”

Now 'Jagged Alliance 2' is such a case where the artificial intelligence is not available in the form of 

scripts. Instead every behavior is implemented in the game's source code (hard-coded), so a direct 

application was not possible. It turned out that simulating the presence of scripts was quite simple 

and straightforward though, and I want to present this solution briefly. 

Please note that the following solution is not meant as a design paradigm for game developing. It is 

but a work-around because incorporating a scripting system and externalizing thousands of lines of 

source code was beyond the scope of this study. Using real scripts is way more flexible and 

provides numerous advantages. However, if one wants a “quick and dirty” way of using 'Dynamic 

Scripting' in games with no scripting capabilities, the subsequent solution may prove useful.

Basically what I did was simulating the concept of scripts with object-oriented mechanisms or in 

other words: classes. In the following, I will describe the key ideas of my approach: First of all there 

is a Script class, which is in principle a wrapper class for an ordered set of rules, including 

methods for adding and removing rules (as shown in figure 4.1). Each rule is an instance of the 

Rule class, which is presented in figure 4.2.
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Figure 4.1: UML outline of the Script class

Figure 4.2: UML outline of the Rule class
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Please note that the Rule class itself is virtual (also called abstract in some programming 

languages), just like the method isApplicable(...). The execute() method does not need 

to be virtual, because it just returns a variable which encodes the next action. Each rule inherits 

from the virtual super-class and implements the isApplicable(...) method. This method 

should return true  if the rule can be executed in the current game state and false  otherwise; 

the execute() method returns an action code and sets the attribute activated to true . In 

chapter 2.3 rules were defined consisting of two parts: The if part (conditions) and the then part 

(actions); and this is just what the two methods are modeling.

The figure 4.2 is a simplified outline with a high degree of abstraction. Of course there are other 

methods, including various Getter- and Setter-methods. As already mentioned, each rule needs to 

be implemented as a new class. Then it is possible to use the 'Dynamic Scripting' algorithm without 

any further changes, resulting in the same behavior as using real scripts. I want to emphasize 

again that this is no “nice” solution (from a programmer's point of view) and was only implemented 

because of the time constraints of this work. 



29

4.3 Game states and rulebases

Before we attend to the implemented rules and the fitness function, we need to take a closer look 

to the inner workings of the game first. It is important to get a grasp of how the engine selects an 

action for an agent, as this has several consequences for the organization of the rules. The original 

game AI chooses an action based on the alarm state of an agent. When playing 'Jagged Alliance 2' 

as a player there is no visual indicator for the alarm state of an agent – this is a concept which is 

only visible in the code. There are four different alarm states:

green  nothing suspicious heard or seen

yellow heard a suspicious noise

red high alertness – definite knowledge of enemy presence

black has line of sight to an enemy at the moment

The procedure handling the selection of an action discriminates over the alarm state; that means 

that the main procedure dispatches the decision-making to an alarm-specific one. There is one 

procedure for every alarm state (namely decideActionGreen(), decideActionYellow(), 

decideActionRed() and decideActionBlack()).

After analyzing the code of all those procedures, one comes to the conclusion that some are more 

interesting than others. More specifically, the procedures responsible for the green and yellow 

states are fairly simple. The decideActionGreen() procedure for instance simulates idle 

behavior of soldiers, making them walk to random points in the vicinity. Yellow behavior is hardly 

more complicated, soldiers in this alarm state basically try to investigate the source of the noise 

they heard. There is little room for variations and the implemented behavior is pretty much the only 

one meaningful.

As a consequence, I decided to leave the behavior in the green and yellow alarm state as it is. It 

just made no sense to apply 'Dynamic Scripting' at those states, because the behavior at hand is 

just fine. Actually the goal of this study is to implement an adaptive combat AI for 'Jagged Alliance 

2' and combat hasn't even started when in green or yellow alarm state. One could even argue that 

the application of a learning procedure at those states is unrealistic, because the game agents 

should not know about enemy presence yet and therefore their behavior should be easy-going 

(and not optimized).
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Thus 'Dynamic Scripting' is only used for the red and black alarm state. These two states differ in 

many ways. An agent in the red state knows for sure that an enemy is in the sector and most of the 

time he has a vague idea where. So basically this state is all about moving. There are several 

options: Hiding, searching, preparing some other actions, supporting team mates, etc. Some of 

these actions make sense in the black state as well, but there the focus lies more on actual combat 

actions: Shooting, throwing explosives or taking cover. The rules were designed to reflect this, 

please refer to the next sub-chapter for more details.

At the moment it is enough to understand that the two states (red and black) favor diverse actions 

resulting in different corresponding rules. As a consequence there are two different rulebases, 

namely a 'red rulebase' (containing all the rules for the red alarm state) and a 'black rulebase' 

(containing all the rules for the black alarm state). Hence each agent has two different scripts: a 

'red script' and a 'black script', which get called in the respective alarm states.

Figure 4.3: Alarm states and their assigned behaviors
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4.4 Rules

This sub-chapter is meant to provide some details on the implemented rules. Each rule is 

presented with a name and a short description. I decided to print no full source code here, because 

it would be too confusing since the implementation turned out rather long. This is because the 

available AI functions require the programmer to use low-level code such as checking and 

changing animation states. Instead I opted to show the source code of just one short rule as an 

example and present the others in the form of tables for a much better readability.

Sample rule: 'TakeCover':

// constructor
GeneralBlackRule4::GeneralBlackRule4() : Rule() {

// name of the rule
setName("TakeCover");

}

bool GeneralBlackRule4::isApplicable(SOLDIERTYPE *pSoldier) {
INT16 sBestCover;
INT8 ubCanMove = (pSoldier->bActionPoints >= MinPtsToMove(pSoldier));
int iCoverPercentBetter;
// only try to find a cover if the agent is able to move and under fire
if (ubCanMove && !gfHiddenInterrupt && pSoldier->aiData.bUnderFire)

sBestCover = FindBestNearbyCover(pSoldier,pSoldier->aiData.bAIMorale, 
   &iCoverPercentBetter);

else
return false;

// if there is a cover which provides at least 15% more coverage than  
// the current spot
if (sBestCover != NOWHERE && iCoverPercentBetter >= 15)
{

// then forward the movement data to the soldier
pSoldier->aiData.usActionData = sBestCover;
setAction(AI_ACTION_TAKE_COVER);
return true;

}
return false;

}
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Some general annotations on the following tables: Most of the rules require a certain amount of 

APs (= action points,  as explained in chapter 1) to execute their corresponding actions. The check 

for sufficient APs is always part of the condition(s), even if not explicitly mentioned. If an agent has 

lesser AP than required by the action(s), then the rule evaluates as not applicable.

The rule names are quoted from the source code hence they consist of capitalized words with no 

spaces in between. So this is no orthographic mistake but the programmer's way of naming things.

Red rules:

SeekEnemy
Conditions:

● not heavily wounded
● last action was not to take cover

Actions:

● go towards the position where an enemy 
is presumed

HelpCompanion
Conditions:

● an friendly team mate is under fire

Actions:

● go towards the team member

TakeCoverPreventively
Conditions:

● there is a good cover spot nearby

Actions

● go there, even if no enemy is at sight 
currently

SaveAPForInterrupt
Conditions:

this rule has no conditions, it is always 
applicable

Actions:

● do nothing, resulting in all APs to be 
reserved for an interrupt
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BroadcastRedAlert
Conditions:

● nobody else has broadcast a red radio 
alert before

Actions:

● make a radio call, resulting in all team 
mates entering the red alarm state (if 
they are not already at black state)

MoveOutOfDangerousStuff
Conditions:

● standing in gas, water or light during 
nighttime

● there is a reachable safe spot

Actions:

● move to that spot

TurnTowardsEnemy
Conditions:

● enough APs to turn around

Actions:

● turn towards the direction where an 
enemy is presumed4

4 agents in red alarm state have no exact idea where enemies are, they just turn towards the location of the last visual 
contact or the location of a noise
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Black rules:

ShootAtEnemy
Conditions:

● a target worth shooting at
● weapon with at least one shot left
● halfway decent chance to hit

Actions

● shoot (a single bullet) at the target

ShootBurstAtEnemy
Conditions:

● a target worth shooting at
● automatic weapon with enough 

ammunition
● decent chance to hit

Actions:

● switch weapon to automatic fire mode 
and shoot

Headshot
Conditions:

● a target worth shooting at which has a 
head

● weapon with at least one shot left
● very high chance to hit

Actions:

● shoot at the head of the target

ThrowGrenade
Conditions:

● at least one target worth throwing a 
grenade at

● no friendly team members in the target 
area

● a throwable explosive
● decent chance to hit

Actions:

● throw explosive at the target

FightWithKnife
Conditions:

● a knife
● a target worth stabbing
● half-way decent chance to hit

Actions:

● stab 
● or throw knife (depending on the 

distance)
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TakeCover
Conditions:

● under fire
● there is a spot nearby that offers better 

cover than the current position

Actions:

● move to the cover

StormTheFront
Conditions:

● enough APs to move at least one square 
(smallest unit)

● there is a path to the enemy

Actions:

● move towards the enemy

HideAfterAttack
Conditions:

● the last action was an active attack with 
any weapon

● there is a hiding spot nearby

Actions:

● move to the hiding spot

Some conclusive words about the implemented rules: These rules do not raise the claim to be 

perfect. In fact, when developing a real game, this would be one of the points where heavy 

optimization is possible. 'Dynamic Scripting' can only build scripts as good as the underlying rules. 

A bunch of bad rules won't magically combine into a good tactic just because they are put together 

by a learning procedure. Actually the rules specified above are the result of several revisions and 

enhancements, but there is still room for further improvement.

Please note that the listed rules were created using my personal domain knowledge of the game 

and analyzing the existing game AI code. There are approaches of generating rules automatically 

or semi-automatically using off-line evolutionary learning algorithms ( [PMSA06] and [PMSA07]). 
Unfortunately these techniques were beyond the scope of this study.
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4.5 Fitness function

The task of the fitness function is to express the performance of a script as a number in the interval 

[0,1]. All weight adjustments scale with this value, so the estimation should be as accurate as 

possible. A bad performance should always entail a low value and a good performance should be 

rewarded with a high value. Basically it is important that the core goals of the game are 

represented in one form or another in the formula.

Now the key element of 'Jagged Alliance 2' is the combat between the player's mercenaries and 

the enemy soldiers. To win a combat the player needs to defeat all enemies in the sector, which is 

then flagged as liberated. An enemy is defeated when his HPs (= hit points) are at or below zero. 

HPs are a common concept in various types of games; basically they are integer values modeling 

the physical condition of an agent, the lower the more wounded. The maximum number of HPs is 

dependent on the attributes of the agent. Whenever an agent is hit by a weapon, his current HPs 

are reduced based on the power of the weapon and numerous other factors (distance, 

environment, etc.). The actual HP decrease is called damage. Certain attacks inflict enough 

damage to kill an agent with one hit, others can be completely absorbed by armor, doing no 

damage at all.

So at the end of the day it all comes down to doing as much damage as possible on enemy agents 

while at the same time trying to avoid as much own damage as feasible. Achieving this goal is 

more difficult than it sounds, but at least makes the design of a fitness function quite straight 

forward.

Actually there are two different fitness functions, namely the team-fitness function and the agent-

fitness function. The agent-fitness function is the 'real' fitness function, which is used to scale the 

rewards or penalties to the rule weights and priorities (as described in chapter 3.2). Technically this 

one is the only required for the 'Dynamic Scripting' algorithm, but it makes sense to use a second 

fitness function for more convenience, called team-fitness function. The exact specification follows 

soon, in principle that function is a simple performance estimation of a team of agents.

Since 'Jagged Alliance 2' is a game where teams (or squads) fight each other by design, the 

fitness of a single agent is unimportant when measuring performance. What really counts is the 

success of the whole team. So the agent-fitness function is used to scale the weight adjustments to 

the scripts, and the team-fitness function is used to measure performance of the teams.
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The team-fitness function is defined as follows:

F g =∑
c∈g { 0 {g lost }

1
2N g

1 ht c 
h0 c   {g won }

In this equation, g  refers to a team, c  refers to an agent, N g∈ℕ  is the total number of 

agents in team g ,  and h t∈ℕ  is the health of agent c  at time t . As a consequence, a 

'losing' team has a fitness of zero, while the 'winning' team has a fitness exceeding 0.5 .

This is the same team-fitness function as used by Pieter Spronck in his implementation in 

'Neverwinter Nights'. While quite different games, the concepts of HPs and damage are the same 

and therefore the above function is perfectly suitable. Actually it should be adequate for every 

game where teams of agents try to defeat each other by reducing the opponents HPs.

The agent-fitness function is defined as follows:

F a , g = 1
10

5F g 2 A a 2C g Dg 

This equation is quite similar to the agent-fitness function used by Pieter Spronck in 'Neverwinter 

Nights' [Spr05, page 87]. The only difference is the introduction of D g   and the removal of 

B g (explanation following soon). As you can see, it consists of several components with 

different factors, reflecting their respective weighting. It is obvious that the team-fitness ( F g 
as defined above) is a part of the agent-fitness function and even the most important feature, 

contributing 50% to the final value. The other components are Aa , which is a rating of the 

survival capability of the agent a , C g  , which is a measure of the damage done to all 

agents of the opposing team and D g  , which rates the duration of the encounter. All functions 

return values in the interval [0,1].
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The functions used in the agent-fitness function are specified as follows:

A a = 1
3 { d a 

d max
{a dead }

2
hT a 
h0 a 

{a alive}

In this function d a  stands for the round the agent died. So if an agent did not survive a 

match, the function returns higher values the more rounds an agent survived. The parameter 

d max  specifies the total number of rounds passed during the last match. As a consequence, 

Aa  returns at maximum  1/3  for a dead agent. Each surviving agent gets an value greater 

than 2 /3  up to 1 , depending on his HPs left.

C g = 1
N ¬g

∑
c∉g { 1 {c dead }

1−
hT c 
h0 c 

{c alive}

A straightforward implementation of the damage-done function. N ¬g  is the number of agents in 

the opposing team and c∉g  refers to all agents not in the team g. Basically this function returns 

1  if all agents of the enemy team were eliminated. Each surviving enemy agent reduces the 

returned value based on his remaining HPs. The function returns 0  if all enemies are alive and 

at full health. Again this is the same function as used by Pieter Spronck in his tests with 

'Neverwinter Nights' [Spr05, page 87].
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Please note that there is no B g  as in [Spr05, page 87]. I decided to not include this element, 

because it measures the same thing as the team-fitness function, namely the remaining HPs of all 

team members. Instead I introduced the component D g  , because it became obvious in first 

experiments, that the learned scripts contained unnecessary defensive rules. This is because 

hiding and waiting until an opponent enters the own line of sight by accident yielded the same 

result as taking out the enemy in the first round. Technically this is a valid tactic and definitely in 

the spirit of the game, but I felt that winning in a very short amount of time should be rewarded at 

least a little. At the end of the day that is a design decision which has to be made by the 

developers.

D g ={ 0 {g lost }

min 10
dmax

,1 {g won }

The function returns 1  if a fight is won within ten rounds. After ten rounds it slowly scales 

downwards. A lost fight is always evaluated with 0  in D g  . 
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4.6 Penalty balancing

The RMAX /PMAX  ratio is quite important as it has a significant influence on the learning process. 

Pieter Spronck argued in his thesis that one has to find a good balance between these values 

[Spr05, page 93]: 

“As stated in Subsection 5.2.3, the argument for the relatively small maximum penalty is that, as 

soon as a local optimum is found, the rulebase should be protected against degradation. However, 

when a sequence of undeserved rewards leads to wrong settings of the weights, recovering the 

appropriate weight values is hampered by a relatively low maximum penalty.”

I decided to implement a mechanism that scales the maximum penalty PMAX  with the number of 

lost matches in a row. On the first loss the normal value for PMAX  is used, on the second loss 

that value is multiplied with 2 and when three or more losses occur in a row the value is multiplied 

with 3. As a result a single loss (possibly caused by bad luck) does not lead to the degradation of 

the rulebase. Multiple losses in a row however are probably an indicator of a wrong tactic, hence a 

higher value is used for PMAX  to allow for faster weight recovering.
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4.7 Testing environment

Since 'Jagged Alliance 2' was designed as an interactive game and not as a testbed for AI tests, 

some changes were required to allow automatic benchmarking. The plan was to let two different AI 

teams fight each other, where one team should be controlled by 'Dynamic Scripting' and the other 

one by the original (static) game AI. Unfortunately the engine prohibits to load a sector without at 

least one player mercenary. However this proved to be no problem at all, because all computer 

controlled agents act based on their visual and aural perceptions. The (simple) solution was to 

position the player mercenary at a spot at the edge of the sector where he had no impact at all on 

the other agents' actions.

Every time the player has his turn, it is automatically ended (technically just skipping the player's 

team). This allows a single fight to run without any human interaction. A few additional changes 

were necessary to enable the automatic execution of a batch of matches. Whenever a fight is over 

(i.e. one of the teams is defeated) the sector is reset to the initial situation. Eventually, after a user-

defined number of matches, all rule weights are discarded and the learning starts again at zero. A 

sequence of fights with no rule weights reset in between is called a 'batch'. The following chapter 5 

provides more details of how the evaluation works.
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5. Results

5.1 Premises

All of the results presented in this chapter are based on the assumption that a strong playing 

artificial intelligence increases the entertainment value of a game. Of course a game should not be 

too challenging right at the beginning, but generally it is always easier to decrease the strength of 

the artificial intelligence than to increase it. More specifically there are techniques for 'Dynamic 

Scripting' to adapt to the players skills. Please refer to [Spr05] for more details about difficulty 

scaling.

To measure the strength of the agents controlled by 'Dynamic Scripting' they are competing with 

agents controlled by the standard (static) artificial intelligence. The standard artificial intelligence is 

the one implemented by the developers of 'Jagged Alliance 2' with a few enhancements made by 

the developers of the mod 'JA2v1.13'.  At the start of a new game the player has to decide upon 

four difficulty settings, namely 'Novice', 'Experienced', 'Expert' and 'INSANE'. Please note that the 

player generally has to fight against superior numbers of similar (or better) equipped agents than 

his own mercenaries, because the game would be too easy otherwise. Choosing a higher difficulty 

further increases the enemy numbers while at the same time decreasing the players financial 

income. The highest difficulty setting even boosts the APs of all enemy agents by about 25%, 

allowing them to perform more actions per round than the player.

Technically the first three difficulty options are equivalent for the sake of the evaluation. Money and 

enemy numbers have no influence on the tests, because the soldiers and their equipment are fixed 

in the test scenarios. The fourth option would make a difference though, because more APs for the 

enemy soldiers does noticeable impact the performance of them. However it would be an one-

sided advantage which complicates the comparison of the respective tactics. As a result the 

difficulty level 'Expert' was used throughout the tests.

As you can see 'Jagged Alliance 2' is a good example of how games need to apply 'cheating' 

mechanisms to keep up with the player. Technically the enemy soldiers are equal to the players 

mercenaries, yet they appear in manifold numbers to make up for their lack of variant tactics. To 

provide a concrete example:
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New players are going to notice quite fast that hiding in a building is a superior tactic. Enemy 

soldiers will spend their APs in opening the door of the building and walking into line of sight of the 

players mercenaries. This leads very often to an interrupt for the player, allowing him to take down 

the enemy agents one by one. The second of the following test scenarios was designed with this 

knowledge in mind.

As mentioned in chapter 4, the performance of the teams (and therefore the AI controlling the 

team) is measured with the team-fitness function, which again measures the remaining HPs of all 

agents in a team. This gives a quite good estimation on how close a match was. However, the 

outcome of a single match has no real significance. Please keep in mind that the game is strongly 

randomized, so winning by chance is possible even with an inferior tactic. To make a statement 

about the general performance of an AI, one should look at the average results over a large 

number of matches.

Hence I decided to average the results in a similar way as Pieter Spronck did in his tests with 

'Neverwinter Nights' [Spr05, page 90]. Each of the following scenarios looped through 10 batches 

à 100 matches, resulting in 1.000 runs per scenario. The rule weights are reset after each batch 

just as the relative rule priorities, which means that all learned tactics are discarded and the 

learning restarts at zero. Please note that 100 matches are a very low value for machine learning 

methods. This number of trials would not be sufficient for most standard algorithms, but 'Dynamic 

Scripting' was designed to learn from a small number of encounters.

How do all these values combine into a single graph? First, the team-fitness values for each 

encounter are averaged across the batches. This results in 100 average values, one for each 

encounter. Then we summarize the outcomes of the last matches in a size-10 window, which 

means the results of the last ten matches are averaged for each encounter. As a consequence the 

first possible point can be calculated after the first ten matches, averaging the values from match 1 

till 10. The second point is the average of the matches 2 till 11, and so on. This results in 91 final 

data points. 

The result graph for each scenario shows the number of passed encounters on the x-axis. A point 

on the y-axis is the average size-10 team-fitness value calculated as mentioned above. For 

reference I decided to plot a non-averaged version of the graph as well, which is colored grey.
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Example

Let us assume we want to evaluate 2 batches à 12 encounters (I chose lower numbers because 

the example would take up too much space otherwise). Here is a fictional result table with some 

invented team-fitness values.

Encounter Batch 1 Batch 2
1 0 0
2 0.4 0
3 0.4 0
4 0.6 0.5
5 0.7 0.4
6 0.8 0.8
7 1 0.9
8 1 0.9
9 1 0.8

10 1 1
11 1 1
12 1 1

So first we calculate the average values for each encounter:

Average for encounter 1: 
00

2
=0

Average for encounter 2: 
0.40

2
=0.2

Average for encounter 3: 
0.40

2
=0.2

Average for encounter 4: 
0.60.5

2
=0.55

... and so on
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Doing this for every encounter leads to the following table:

Encounter Team-fitness average
1 0
2 0.2
3 0.2
4 0.55
5 0.55
6 0.8
7 0.95
8 0.95
9 0.9
10 1
11 1
12 1

Then we construct the 10-size average values for each encounter. Since the first possible point of 

calculation is the tenth encounter, we get just three final values in this example:

10-size average fitness value, encounter 10:

00.20.20.550.550.80.950.950.91
2

=0.61

10-size average fitness value, encounter 11:

0.20.20.550.550.80.950.950.911
2

=0.71

10-size average fitness value, encounter 12:

0.20.550.550.80.950.950.9111
2

=0.79

Our final tables looks like this:

Encounter 10-size average fitness value
10 0.61
11 0.71
12 0.79

This is the table used to create the result graph.
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The following values for the 'Dynamic Scripting' learning parameters were used:

W INIT=100 : The sum of all initial rule weights specifies the available 'pool' of 

weight points that can be re-distributed.

W MIN=0 : This allows the elimination of useless rules, because rules with a 

weight of 0 have a probability of 0 of being inserted in a script.

W MAX=500 : This means that a rule cannot gain enough weight to leave all other rules 

at 0. Thus this is a rather explorative approach. Please note that a 

higher value could even improve the following results, because the agents 

would more consequently exploit successful tactics. However those 

tactics tend to be quite specialized and very dependent on one rule. While 

such a script is optimal for one scenario, it generally does not work in other 

scenarios. So this setting provides a good balance between exploration and 

exploitation.

RMAX=100  

PMAX=25 : At first the value of PMAX  may seem (too) low, but please keep in mind 

that this value can scale up to 75 if multiple matches are lost in a row (as 

described in chapter 3.6).

Both the red and the black script of each agent was limited to 4 rules.

One more note about the evaluation: The total runtime for a scenario was about 2 days (48 hours) 

on average. This is because there was no feasible way to turn off the graphical presentation. Each 

soldier's action had to be animated along with a delay after each move. Therefore even a fast CPU 

could not speed up the process, because of the fixed delays. While this is reasonable if a human 

player plays the game, it proved detrimental during the evaluation.
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5.2 Scenario 1

This is the main test scenario, which was designed to provide an objective evaluation environment. 

The 'Dynamic Scripting' team fights an enemy squad of equal strength. All agents (blue and red) 

possess the same attributes and equipment. Please refer to Appendix B for more details about the 

configuration. Both the blue and the red team consist of five soldiers. They are positioned with 

equal distance between them. Each team has a group of tightly planted trees close-by. These trees 

are an important part of the scenario, because they are the only cover in the vicinity.

The task for the 'Dynamic Scripting' team is to gain the upper hand against the identical equipped 

enemy squad. Since both teams are of equal strength such a success could only be caused by a 

superior tactic.

Figure 5.1: Layout for scenario 1
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Here are the results:

Figure 5.2: Team-fitness progression for scenario 1

Figure 5.3: Top rules for scenario 1
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Discussion:

The 'Dynamic Scripting' team consequently exploited the weak points of the static AI. First of all, 

they didn't use the 'ShootBurstAtEnemy' rule, because the ammunition was fairly limited in this 

scenario. The enemy however often fired bursts at long range, which is quite ineffective, because 

the accuracy is heavily decreased and they ended up with no ammunition in long fights. 

Furthermore, they learned to use the cover provided by the trees and they recognized that staying 

close together was an advantage in this scenario. 

The beginning of each match looked fairly balanced. Both teams stayed in cover and tried to score 

some long range hits. However, the static agents select an action based on their actual state and 

on random factors. Basically they decide between attacking and taking cover based on a dice roll. 

So after some turns (amount varies) one of the red agents always decides that is time to storm the 

front. Since the 'Dynamic Scripting' agents are standing close together, they all get a free shot at 

this red agent, most of the time resulting in his death. 

The point at which the 'Dynamic Scripting' team was significantly better than the red team is very 

low. However, the curve itself is not very steep. This is because two of the batches were a lot 

worse than the others, with turning points of 27 and 66 respectively. The other batches all had 

turning points in the range of 0-10, most even below 5. Pieter Spronck identified this phenomenon 

as 'outliers' and proposed solutions for their reduction. An enhancement called 'history fallback' is 

available to engage this issue, for more information please refer to [Spr05, page 92-97]. This 

approach was not realized in the implementation in this study, skip to chapter 6 for more 

suggestions of improvement.

Looking at the learned rules, they are straight to the point. Taking cover is very important in both 

the red and the black alarm state. The enemy is outlasted by hiding behind the trees and scoring 

long range shots.
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5.3 Scenario 2

This test scenario is a little bit different from the first one. The 'Dynamic Scripting' team faces a 

learning task where only a specific tactic leads to success. Here is the basic setup:

The red team, consisting of four soldiers, is heavily armed and armored. Each member of the red 

team wears one of the best bullet proof vests in the game and possesses high damage automatic 

weapons. They are standing close together in a barn guarding a barrel of fuel. The blue team on 

the other hand only consists of two members, wearing light camouflage equipment. Each blue 

agent holds a light pistol with a silencer, which is unable to penetrate the red teams armor 

efficiently. To make up for that lack of firepower both of the agents carry multiple grenades with 

them.

Due to the camouflage suits the red team gets no initial interrupt when the blue agents first enter 

their line of sight. The only way of winning for the blue team is to throw as many grenades as 

possible on the red team, which causes the barrel of fuel to explode. No other tactic works here, 

because the armament of the red team is way superior. Even headshots would not do enough 

damage to eliminate more than one or maybe two red soldiers. The red team could still take out 

both blue soldiers in one round with ease.

Figure 5.4: Layout for scenario 2
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Here are the results:

Figure 5.5: Team-fitness progression for scenario 2

Figure 5.6: Top rules for scenario 2



52

Discussion:

The learning task in scenario 2 obviously posed no problem for the 'Dynamic Scripting' team. It 

took less than 10 matches on average to learn the proper tactic. Please note that the best possible 

tactic is to move close enough for a good throw and then use all available grenades on the enemy 

cluster. Most of the time at least one opponent survives, but since the blue team has also gas 

grenades in their repertoire, the remaining enemies will be unconscious. The blue agents can then 

easily finish them off with their pistols5. This tactic results in a victory with a team-fitness value of 

1.0 . The 'Dynamic Scripting' team was able to learn exactly this tactic in 9 out of 10 batches. 

Even so they managed to learn a successful tactic in the remaining batch, it was slightly inferior. 

The blue agents moved too close to the enemy cluster so their own grenades did some collateral 

damage to themselves. This is the reason the blue graph does not reach the 1.0  mark on 

average.

 

There is a very small drop between the 60th and 70th match. This is because the 'Dynamic 

Scripting' team managed to lose one single match in between while applying the same tactic as 

before. Grenade throws have a small chance to miss, so the loss was probably bad luck caused by 

two or more grenades missing their target.

Looking at the top rules, there are no major surprises. The red rules are basically unimportant, 

because with the right tactic the blue agents are exclusively in the black alarm state. But there was 

one 'sub-optimal' learning batch in which the red rules were relevant. In that situation 

'MoveOutOfDangerousStuff' probably allowed the blue agents to move out of their own gas 

grenades. The black rules are straightforward: 'ThrowGrenade' the most important one, directly 

followed by 'ShootAtEnemy'.

5 The concept of captives does not exist in 'Jagged Alliance 2', hence the cruelty
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5.4 Scenario 3

This test scenario is basically a spin-off of the first test scenario (chapter 5.2). All agents start at 

the same positions with the same attributes and the same equipment. The only difference is the 

removal of the trees on both sides of the battlefield. Please note while this may seem like a minor 

difference, it is actually something major. The analysis of scenario 1 revealed that the static 

opponent team acted too offensively, so it was possible to defeat them by exploiting the cover 

provided by the trees. This tactic is not possible anymore.

The goal for the 'Dynamic Scripting' team is to learn an alternative tactic to overcome the enemy 

squad. This scenario was designed to show the limits of the current implementation of the 

'Dynamic Scripting' technology. Actually the learning task is quite difficult, because the key to 

victory in 'Jagged Alliance 2' lies very often in the intelligent use of the environment. Open field 

battles are to be avoided at all cost, because the winner of such a fight is determined by attributes 

and equipment.

Figure 5.7: Layout for scenario 3
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Here are the results:

Figure 5.8: Team-fitness progression for scenario 3

Figure 5.9: Top rules for scenario 3
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Discussion:

The 'Dynamic Scripting' team was not able to learn a superior tactic for defeating the static game 

AI. This was probably due several reasons. First of all, as already mentioned, this scenario is an 

open-field battle, and usually the better equipped team wins in such a case. Since both teams were 

equally equipped during the evaluation, victory would be decided by the random number generator. 

However, this only holds true if both teams would always employ the (arguable) “best” tactic, which 

is to shoot as often and as accurate as possible. This would lead to a 50:50 win/loss ratio over a 

larger number of matches. By the way, the static AI team generally used that strategy.

The 'Dynamic Scripting' team did not always employ this tactic though. On a loss all activated rules 

are penalized, which leads to a higher probability for selection of other rules. Different scripts are 

generated by design to try out new tactics, which may perform better. However, in the case of this 

scenario, all other tactics failed. So does that mean that 'Dynamic Scripting' cannot cope with such 

scenarios in general?

Not at all. Some adjustments are necessary to deal with this and most probably other scenarios. 

The most important question is the following: How could a human player beat this scenario and 

what prevents the 'Dynamic Scripting' AI to mirror that behavior? Unfortunately there is no data for 

'Jagged Alliance 2' to analyze human tactics, but I could think of a promising tactic with my 

personal domain knowledge. As taking cover is a crucial concept throughout the game, it may be a 

good idea in this scenario as well. There is no viable cover spot in the vicinity, but the map is much 

larger than the snippet shown in figure 5.7. An agent would have to walk two or even more rounds 

to reach a decent cover, but most probably this would be worth it. Even if some agents are 

wounded while running for defense, the advantage of the protection offered by trees or structures 

is just too critical.

The implemented rules as presented in chapter 4 do not allow the encoding of such a behavior 

though. Soldiers only consider locations for cover which are reachable in one round. Most of the 

time this is the right thing to do, because standing on a open field during the enemies' turn is 

usually a bad idea. Another aspect is efficiency: Evaluating the cover value of a game tile requires 

O(n²) calculations, so increasing the search range may noticeable impact the performance of the 

game, since these checks are possibly executed every round for every agent.
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However, in this special case it probably would be a good idea to look for more distant cover spots. 

As mentioned before, the implemented rules do not claim to be perfect, optimizing them could 

increase the performance of the 'Dynamic Scripting' team in this scenario.

Another way of dealing with the issue would be the usage of a static tactic for certain scenarios 

(like this one). Basically the problem could be solved like outlined in the following pseudo code:

if (openFieldBattle == true) then
ApplyTactic('Shoot');

else
ApplyDynamicScripting();

This approach could be used for other situations as well. The idea is to use static tactics when a 

situation arises where a well-known best tactic exists. However one should not over-use this 

approach, because it limits the potential of adaption for the 'Dynamic Scripting' AI. The following 

chapter 6 provides more suggestions to embed 'Dynamic Scripting' into real games.
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6. Conclusion

6.1 Summary

The outcomes of the three test scenarios were discussed in chapter 5. This chapter should provide 

a short summary along with my personal interpretation. 

The results presented in chapter 5 are very promising in my opinion. I use the word 'promising' to 

indicate that there is of course room for improvement (see scenario 3). Basically a lot of fine-tuning 

could happen with more manpower, which would result in better (and maybe faster) learning 

results. But even with the time constraints of this thesis it was possible for the 'Dynamic Scripting' 

AI to learn tactics that exploited the weaknesses of the static original game intelligence in a very 

reasonable amount of time (speak: trials). Therefore the goal formulated in chapter 1.3 was 

reached.

I am very well aware of the fact that time constraints exists in commercial game development too, 

so there is only a limited amount of optimization that can be done. But my argument is that the time 

required to implement 'Dynamic Scripting' into a new game and do proper testing is not much more 

than the time required to write and test all static scripts. Or to put it more bluntly: If a single student 

who needed to read up on tens of thousands lines of source code could provide a nicely working 

implementation in three months, imagine what a bunch of professional programmers could do in 

the same amount of time.

Actually there are very few differences in the development process between a static scripted AI 

and an adaptive 'Dynamic Scripting' AI. The implemented rules may even be the same, the only 

difference would be that the static scripts are manually put together while the 'Dynamic Scripting' 

AI learns them. Both approaches require testing and optimization phases.

Please note that the definiteness of the results may raise the theory that the weaknesses of the 

static AI were implemented with intent. But this is most probably not the case, as the AI utilizes 

cheating mechanisms to keep up with the player (as described in chapter 5.1). The application of 

'Dynamic Scripting' to 'Neverwinter Nights' had the same initial success and the developers of that 

game even released a patch with major fixes to the AI after those results were published 

[SprNWN]. 
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Pieter Spronck designed 'Dynamic Scripting' as a technology for the deployment in real 

commercial games. I want to stress that point again: This is not academic research just for the 

sake of it, but a real applicable technique that could greatly improve the 'fun factor' of a upcoming 

commercial computer game. Assuming a careful implementation there are little risks and many 

rewards.

The biggest worry regarding learning AIs is the unpredictability of what is learned. While this is a 

valid concern which is inherent to learning procedures of all kinds, 'Dynamic Scripting' has many 

characteristics that minimize this issue. A careful implementation of all rules in a rulebase is the 

first step to ensure that only meaningful behavior is generated. Another big advantage of 'Dynamic 

Scripting' is how the learned information is stored. The rule weights which are used to generate the 

scripts can easily interpreted by humans; rules with a low weight value are considered bad and 

rules with a high weight value are probably important for the success of an agent. If you think about 

other learning algorithms such as neural networks, this point no longer holds true. 
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6.2 Deficiencies in the current implementation

The implementation at hand is basically too general for an efficient use throughout the game. 

Every soldier has just one red and one black script; right now they learn these for each new 

scenario. Now the problem is that the scenarios (or sectors) are quite different from each other. 

Which means that a script that worked well in one case may perform very poor in another one.

For example take a look at scenario 2. The blue agents learned to assault the building and plaster 

the enemies with grenades. A very efficient tactic for conquering buildings; on an open field 

however this would be a bad idea. Soldiers should rather take cover there and attack from as far 

as possible, because trying to get in range for a grenade throw would almost certainly mean death 

for any agent.

There are probably several solutions for this issue. One possibility would be to classify the sectors 

into distinct categories. The agents could learn tactics (with 'Dynamic Scripting') for each different 

class of sectors then. This could be realized as static tags by the developers, so a sector with a 

large building gets a different tag than a sector which is a forest area. Or it could even be 

implemented as another learning task (with another learning procedure), where the classification of 

a sector is learned from a feature vector.

The problems regarding scenario 3 are obvious: The current rules did not allow the encoding of a 

superior tactic for that scenario. Possible solutions are the refinement of the implemented rules or 

the use of static tactics in situations like this (as described in chapter 5.4).

Another point of improvement would be the introduction of agent classes. Right now every 

computer controlled soldier is the same. Typical players however tend to specialize their 

mercenaries. For example they hire a mercenary with a high attribute value in marksmanship and 

dedicate him as a sniper and use another mercenary with a high value in explosives for placing 

bombs and such. The computer player does not make such differentiations, all soldiers are treated 

the same. While the allocation to different agent classes would even make sense without the use 

of 'Dynamic Scripting' it is all the more a good idea with it. Different agent classes could use 

distinct rulebases with specialized rules. Possible agent classes could be assault, sniper, 

grenadier, medic and more.
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Also please keep in mind that a game featuring 'Dynamic Scripting' would not be shipped with all 

rule weights set to W INIT . Naturally the developers would encode pre-learned tactics in the rule 

weights. The point of an on-line adaptive AI is not to deploy random acting agents who slowly learn 

meaningful behavior, but to provide the possibility of learning new tactics after the current one has 

been exploited.

There is one disadvantage regarding the 'Dynamic Scripting' procedure though. The final goal is to 

make digital games more immersive by providing intelligent acting agents. 'Dynamic Scripting' tries 

to reach this goal by optimizing the applied tactics in a stochastic manner. As a consequence 

scripts may be learned which are admittedly successful but contain unnatural looking rule 

sequences. Especially unnecessary rules are a problem, i.e. a single rule contained in a sequence 

of rules which provides no benefit at all. For example there was a case in 'Jagged Alliance 2' where 

an agent controlled by 'Dynamic Scripting' learned to hide behind a tree and then to run to an 

injured team member. This looked unnatural, because this agent was not under fire and one would 

expect him to help his companion immediately without a intermediate stop in another direction. 

Please note that this behavior was unlearned after some time, because the script generation is 

subject to a certain randomness. So at some point in time a script was generated which did not 

contain the rule responsible for hiding behind the tree, and this script was as successful as the 

other one. But since 'Dynamic Scripting' is designed as an on-line learning procedure, events like 

this may occur while a player is playing the game.

There are some countermeasures though, which provide no guarantee to eliminate the above 

mentioned incidents, but which should be able to reduce their probability of occurrence. 

Firstly, one could limit the size of the learned scripts to a smaller number. This way scripts 

containing unnecessary rules are most probably not successful, which results in their early 

rejection. However this only limits the 'living time' of those scripts, it does not avoid their creation. 

Additionally, reducing the maximum number of rules in a script may prevent certain tactics from 

being learned. 

Secondly, one could add additional conditions to certain rules, to ensure the rule is only applicable 

when it really makes sense. This is more complicated than it sounds, because foreseeing all 

possible situations in which a rule would be meaningful can be next to impossible (depending on 

the specific rule). Some obvious unwanted sequences of rules can be eliminated with that method 

though. A typical condition could be of the type 'if last action was/was not'.
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6.3 Further improvements

This sub-chapter is meant to provide concepts for the general application of 'Dynamic Scripting' 

(i.e. not specific to 'Jagged Alliance 2'). 

Basically the most important point is that 'Dynamic Scripting' is very flexible and combines well with 

many standard approaches. For example it should be mentioned that scripts in computer games 

are not exclusively used to store tactics and strategies. They may also contain triggers for starting 

specific events or story sequences. These events are technically rules too, consisting of conditions 

and actions. However they should not be included in the rulebase for learning purposes, but rather 

be a static part of certain scripts. This is easy to realize with 'Dynamic Scripting' by just adding 

those events as default rules to the respective scripts.

It became obvious in the last sub-chapter that learning one general script for an agent for use 

throughout the game is not the optimal solution. 'Dynamic Scripting' receives no input of the current 

situation and/or state of the agent, therefore the developer has to make sure that a learned script is 

useful in the respective situation. As a consequence it makes sense in many cases to learn several 

scripts for each agent class and select one matching the situation (or game state). The challenge 

hereby is to find a balance between adaption to a specific situation and re-use of already learned 

knowledge.

For example take a typical FPS (= first-person-shooter): It could be the best solution to learn a 

behavior for every map (which is the counterpart to a scenario in 'Jagged Alliance 2') in such a 

game, since maps are quite often very different from each other. Also, players tend to play the 

same maps over and over again to improve their movement and learn about the important spots. 

This provides many opportunities for the 'Dynamic Scripting' procedure to learn as well.

On the other hand a typical RTS (= real-time strategy) game has slightly different characteristics. 

While there are different maps (or scenarios) as well, they are often not as individual as in FPSs. A 

more general classification could prove advantageous for those games. For example, since many 

real-time strategy games feature naval warfare, it may be meaningful to classify maps as 'water' 

and 'land-only'. This way tactics are not specifically-tailored towards one single map, which may 

circumvent the AI to explicitly exploit a custom feature of the scenario. However knowledge learned 

from a match on one map could be transferred to other maps, resulting in a more global adaption.
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Please note that these were just examples, of course there may be real-time strategy games with 

very distinct maps favoring another approach than a rough classification and vice versa. At the end 

of the day everything depends on the game and all decisions regarding the AI are based on the 

custom rules and quirks of the game.

There are other ways of customizing 'Dynamic Scripting'. For example modifying the agent-fitness 

function on a per-agent basis opens up interesting possibilities. That means while two agents (or 

agent classes) draw the rules of their scripts from the same rulebase, they each got a different 

fitness function and store their own rule weights. For instance one could decrease the factor of 

Aa  (survival capability)6 and increase the factor of C g   (damage done)6 for one type of 

agents to produce more aggressive tactics. That would be a simple yet efficient way of realizing 

different attitudes or personalities. A disadvantage would be the slower learning process though.

To sum it up: There are numerous ways of embedding 'Dynamic Scripting' in a game with many 

opportunities to customize the resulting behavior. Looking at the massive research in the fields of 

artificial intelligence and machine learning one can safely assume that the days of static game AIs 

are numbered. Basically it is only a matter of time when the first big game studio releases a major 

title with an adaptive AI, forcing the competitors to follow up.

6 as defined in chapter 4.5
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Appendix A – 'Dynamic Scripting' pseudo code

The following pseudo code is taken from [Spr05, page 82-83]:

Algorithm 1 Script generation

ClearScript()
sumweights = 0
for i = 0 to rulecount - 1 do

sumweights = sumweights + rule[i].weight
end for
for i = 0 to scriptsize - 1 do

try = 0
lineadded = false
while try < maxtries and not lineadded do

j = 0
sum = 0
selected = -1
fraction = random(sumweights)
while selected < 0 do

sum = sum + rule[j].weight
if (sum > fraction) then

selected = j
else

j = j +1
end if

end while
lineadded = InsertInScript(rule[selected].line)
try = try + 1

end while
end for
FinishScript()
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Algorithm 2 Weight Adjustment

active = 0
for i = 0 to rulecount – 1 do

if rule[i].activated then
active = active + 1

end if
end for
if active <= 0 or active >= rulecount then

return {No updates are needed.}
end if
nonactive = rulecount – active
adjustment = CalculateAdjustment(Fitness)
compensation = -round(active * adjustment / nonactive)
remainder = -active * adjustment -nonactive * compensation
{Awarding rewards and penalties:}
for i = 0 to rulecount – 1 do

if rule[i].activated then
rule[i].weight = rule[i].weight + adjustment

else
rule[i].weight = rule[i].weight + compensation

end if
if rule[i].weight < minweight then

remainder = remainder + (rule[i].weight – minweight)
rule[i].weight = minweight

else if rule[i].weight > maxweight then
remainder = remainder + (rule[i].weight – maxweight)
rule[i].weight = maxweight

end if
end for
{Division of remainder:}
i = 0
while remainder > 0 do

if rule[i].weight <= maxweight – 1 then
rule[i].weight = rule[i].weight + 1
remainder = remainder – 1

end if
i = (i + 1) mod rulecount

end while
while remainder < 0 do

if rule[i].weight => minweight + 1 then
rule[i].weight = rule[i].weight – 1
remainder = remainder + 1

end if
i = (i + 1) mod rulecount

end while



65

Appendix B – Agent configuration

Szenario 1 + 3

The behavior of all red agents was set to 'Aggressive'. All blue and red agents possess the same 

equipment and the same attributes, namely:

Attribute Value
Experience level 3

Life 80
LifeMax 80

Marksmanship 80
Strength 80

Agility 80
Dexterity 80
Wisdom 80

Leadership 80
Explosives 80

Medical 80
Mechanical 80

Morale 80

Slot Item name
Head Kevlar Helmet
Torso Kevlar Vest
Legs Kevlar Leggings

Hands FN FAL
Inventory Slot 1 Combat Knife
Inventory Slot 2 Mag, 7.62x51mm, Mag 5
Inventory Slot 3 -empty-
Inventory Slot 4 -empty-
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Scenario 2

Attributes blue agents (1 and 2):

Attribute Value
Experience level 4

Life 80
LifeMax 80

Marksmanship 80
Strength 80

Agility 90
Dexterity 90
Wisdom 80

Leadership 80
Explosives 90

Medical 80
Mechanical 80

Morale 80

Equipment blue agent 1:

Slot Item name
Head Coated Kevlar Helmet
Torso Coated Kevlar Vest
Legs Coated Kevlar Leggings

Hands Beretta 92F
Inventory Slot 1 Mk2 Defensive Grenade
Inventory Slot 2 Mustard Gas Grenade
Inventory Slot 3 9x19mm Pistol Mag 15
Inventory Slot 4 -empty-

Equipment blue agent 2:

Slot Item name
Head Coated Kevlar Helmet
Torso Coated Kevlar Vest
Legs Coated Kevlar Leggings

Hands Beretta 92F
Inventory Slot 1 Mustard Gas Grenade
Inventory Slot 2 Stun Grenade
Inventory Slot 3 9x19mm Pistol Mag 15
Inventory Slot 4 Mk2 Defensive Grenade
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The behavior of the red agents was set to 'Defensive'. All red agents possess the same attributes 

and equipment.

Attributes red agents:

Attribute Value
Experience level 1

Life 60
LifeMax 60

Marksmanship 60
Strength 30

Agility 30
Dexterity 30
Wisdom 30

Leadership 30
Explosives 30

Medical 30
Mechanical 30

Morale 30

Equipment red agents:

Slot Item name
Head Treated Spectra Helmet
Torso Treated Spectra Vest
Legs Treated Spectra Leggings

Hands AK-74
Inventory Slot 1 5.45x39mm Magazine
Inventory Slot 2 -empty-
Inventory Slot 3 -empty-
Inventory Slot 4 -empty-
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