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Abstract

Clustering of data is a well-researched topic among computer sciences. There
exist various approaches designed for different tasks. In biology many of these
approaches are hierarchical and the result is usually represented in dendro-
grams, e.g. phylogenetic trees. However, many non-hierarchical clustering al-
gorithms are also well-established in biology. The approach in this thesis is
based on such common algorithms. The algorithm which was developed as part
of this thesis uses a graph clustering algorithm to compute a hierarchical clus-
tering in a top-down fashion. It performs the graph clustering iteratively, with
a previously computed cluster as input set. The innovation is that it focuses on
another feature of the data in each step and clusters the data according to this
feature. Common hierarchical approaches cluster e.g. in biology, a set of genes
according to the similarity of their sequences. The clustering then reflects a
partitioning of the genes according to their sequence similarity. The approach
introduced in this thesis uses many features of the same objects. These features
can be various, in biology for instance similarities of the sequences, of gene ex-
pression or of motif occurences in the promoter region. As part of this thesis not
only the algorithm itself was implemented and evaluated, but a whole software
also providing a graphical user interface. The software was implemented as
a framework providing the basic functionality with the algorithm as a plug-in
extending the framework. The software is meant to be extended in the fu-
ture, integrating a set of algorithms and analysis tools related to the process of
clustering and analysing data.

The thesis deals with topics in biology, data mining and software engineering
and is divided into six chapters. The first chapter gives an introduction to the
task and the biological background. It gives an overview of common clustering
approaches and explains the differences between them. Chapter two shows the
idea behind the new clustering approach and points out differences and similar-
ities between it and common clustering approaches. The third chapter discusses
the aspects concerning the software, including the algorithm. It illustrates the
architecture and analyses the clustering algorithm. After the implementation
the software was evaluated, which is described in the fourth chapter, pointing



out observations made due to the use of the new algorithm. Furthermore this
chapter discusses differences and similarities to related clustering algorithms
and software. The thesis ends with the last two chapters, namely conclusions
and suggestions for future work. People who are interested in repeating the
experiments which were made as part of this thesis can contact the author via
e-mail, to get the relevant data for the evaluation, scripts or source code.
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1. Introduction

This chapter gives an overview of the topics involved in this thesis. Basically,
there are four sections. In this thesis, a novel clustering approach was developed
and evaluated with an emphasis on biological data. The first section gives an
introduction into clustering. It will depict that there are two different general
approaches. One common approach, namely a graph clustering approach was
used as the underlying clustering algorithm on which the novel clustering ap-
proach is based. This approach is called ”"hybrid” because it uses a common
clustering approach together with different features of the data to construct a
hierarchical clustering. Section two introduces different features of biological
data used by the hybrid clustering approach. As part of this thesis a software
for the new clustering approach was implemented including a graphical user in-
terface, making the clustering process more efficient. Section three introduces
clustering software, especially related to biology. It will introduce some com-
mon clustering programs, show that many different programs are involved in
the clustering process and depict the requirements of a clustering software. Sev-
eral data sets containing biological data where used to evaluate the software.
These data sets are introduced in section four.

1.1. Clustering

Clustering is an extensive field among data mining as well as among bioinfor-
matics. The task is to decompose a set of data in a way that similar data is
grouped together in a so-called cluster. There are many applications of clus-
tering, e.g. finding a common topic for different data, maybe cluster HTML
pages resulting from a web search query ”jaguar”, so that the user can directly
see which pages belong to the topic "cars” and which belong to the topic ”an-
imals”. The result will be a number of sets, each set representing one topic
and containing a number of pages delivered by the search for ”jaguar”. In
bioinformatics a common task is for instance to gain information about species
relations. This approach differs slightly as it is hierarchical in nature. The
result is usually represented in a dendrogram, e.g. a phylogenetic tree. Figure
1.1 shows a non-hierarchical clustering. In this case, a k-means clustering. An
efficient implementation of such a clustering algorithm is for instance given by
Kanungo et al. [13]. The large dots visualize the cluster centroids (the mean).
The small dots represent the data objects to cluster, e.g. HT'ML pages. Each
object is allocated to the cluster with the closest cluster centroid. After each
allocation, the cluster centre is re-computed as the mean of its components.
A hierarchical clustering is illustrated by figure 1.2. It is a phylogenetic tree
depicting relations between genes in different species. It can be observed that
larger clusters are composed out of smaller sub clusters.
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Figure 1.2.: Hierarchical clustering (phylogenetic tree). The image was
taken from http://www-personal.umich.edu with the author’s
permission.
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1.1.1. Non-hierarchical approaches

There are various approaches for computing a non-hierarchical clustering. One
example was already introduced, the k-means clustering. In this case an object
is usually represented by a vector. The objects to cluster can already be on
hand in such a representation or in a representation similar to it. Usually the
data has to be transformed in such a vector representation. An example is
weather data used for instance to forecast rain. Each record consists of values
like air pressure, humidity and temperature leading to a table as illustrated by
figure 1.3. Each column of the table is interpreted as a column vector, with the
column header as the vector identifier.

Sample 1 Sample 2 | Sample 3
Air pressure 970 hPa 1013.6 hPa | 1002.1 hPa
Humidity 20.0% 15.5% 72.3 %

Temperature 20°C 17°C 24°C

Figure 1.3.: A representation of weather data. The set contains three samples.
Each sample can easily be transformed into a vector, namely by
interpreting the value of each property p; as a coordinate value on
the i-th axis. It is therefore a vector in three-dimensional space.

Sometimes the transformation is just not possible, or cannot be computed
efficiently enough. A popular example related to biology is comparing protein
or DNA sequences. A task may be finding out whether two proteins from
different species have a common function. A very high similarity between their
sequences can indicate this. To compute the similarity of sequences, they are
represented as strings. Since such sequences might have different length it is not
reasonable to transform them into a vector and compute the distance between
them. Instead of this, a so-called alignment of the strings is performed, which
will also deliver a similarity value.

This value is an indicator for the number of deletions, insertions and substi-
tutions of characters which are performed on one sequence string, to make it
identical to the other one. There exist various approaches to solve this problem.
However, aligning sequences is not the focus of this thesis and the interested
reader should refer to the richly available information about this topic. In-
teresting for this thesis is that aligning sequences delivers a similarity score.
Comparing a number of sequences pairwise thus leads to a matrix of similarity
values. Figure 1.4 shows a small similarity matrix resulting from the pairwise
alignments of three DNA sequences.
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S$1: AGCAATAAATTAAGTGATGCAACTCTATAAGATATCGTAAGATGATGAAATGTTTAATAAACTAATTAA
S$2: AAAATAAGCAACTGATTCAA GTATCAAATCATACACTTAAAATTATCTC AAAAA
§3: TTTCC CATTTGTACCCAAAATTTGATGTTTCACTAGCTCTTACTGGATAATTGGAAGAAAAACAAGTGTGA

S1 S2 S3
$1 0 15 8
S2 15 0 30
S3 8 30 0

Figure 1.4.: Three sequences and the similarity matrix after computing their
pairwise similarity. It is obvious that each sequence has the simi-
larity O to itself, indicating identity. The higher the score, the less
similar two sequences are in this example. It has to be noticed that
this example is imaginary. Comparison of these sequences with a
common alignment algorithm will lead to different values.

Such a matrix can also be used to compute a clustering. The basic underlying
idea is the same: objects which are rather similar should be in the same cluster
and objects which are different should be in different clusters. Contrary to
the vector representation we do not use the geometrical distance of vectors
of the objects but pre-computed similarities from the alignment. We cannot
make any use of the location of vectors in space as the k-means clustering
does, since we just do not have such a vector representation of the sequences.
Most of the clustering approaches using pre-computed similarities are graph-
theoretical. They interpret the set of objects as a set of nodes, and the similarity
matrix is interpreted as a matrix of weighted undirected edges, each (i, j)-entry
(respectively (j,1), since the graph is undirected) indicating the weight of the
edge which connects ¢ and j. How such a representation could look like is
illustrated in figure 1.5.

Figure 1.5.: The graph representation of the matrix of figure 1.4.

The task is then to find a decomposition of the graph into disjoint sub graphs.
Each sub graph is then interpreted as a cluster. This separation has to be done
in a way that the edges between nodes in the same sub graph (the so-called
intra-cluster distances) have on average a low weight, and the edges between
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two nodes of a different sub graph (the so called inter-cluster distances) have on
average a high weight. Figure 1.6 illustrates such a graph-theoretical clustering
by cutting edges to achieve disjoint sub graphs. Not that in this example the
graph is not complete. If we transform a matrix of pairwise similarity values
into a graph, the graph will always be complete. In general graph clustering
algorithms also work on incomplete graphs.

The algorithms focus on several measures, e.g. they try to minimize the
cluster diameter (which is the maximum distance from a node n; to a node n;
in the same cluster). A recent approach was proposed by Flake et al. [8] using
so-called cut trees. This approach is described in more detail in section 5 since it
is a candidate for being used to perform a hybrid clustering, in the same way as
the graph clustering algorithm used within this work. The resulting clusterings
gained by the current hybrid approach and a hybrid approach unsing the graph
clustering algorithm described in [8] could then be compared.

Figure 1.6.: Illustration of a graph clustering. The image was taken from http:
//www.physik.uni-wuerzburg.de with the author’s permission.

1.1.2. Hierarchical approaches

Hierarchical approaches differ from the approaches introduced in the former
section. The result of such approaches is not a partition of the data set, but a
dendrogram. There are two ways to perform a hierarchical clustering, top-down
(also known as divisive) and bottom-up (also known as agglomerative).

In the top-down approach the whole set is at the beginning treated as one
cluster containing all elements and iteratively decomposed into smaller clusters.
The bottom-up approach starts with as many clusters as there are objects to
cluster, each cluster containing one element. In each step, the two most similar
clusters are melted to one new cluster consisting of the elements the two former
clusters contained. This step is also performed iteratively. Part of the problem
is computing the distances between two clusters. Obviously, it mainly depends
on the distance between the elements the clusters contain. There are three
common approaches to compute the distance between two clusters:
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e Single-link: The minimum distance d,;, between two elements of the
clusters C7 and Cs, calculated as

Amin(C1, C2) = min{d(z,y)|z € C1,y € Cs}

e Complete-link: The maximum distance d,,q; between two elements of
the clusters Cq and C5, calculated as

yaz(C1, Cy) = max{d(z,y)|z € C1,y € Cy}

e Average-link: The average distance d,,y between two elements of the
clusters C7 and C5, calculated as

ZIECI,Z/GCQ d(fL’, y)
|C1| | C

davg (Cla CZ) =

Such a hierarchical clustering leads then to a tree, with the root node rep-
resenting the cluster containing all elements and the leaf nodes representing
a single element. A hierarchical clustering can always be transformed into a
non-hierarchical clustering by cutting the tree at a certain level, leading to a
set of sub trees. Each root node of a sub tree then represents one cluster, as
illustrated by the figures 1.7 and 1.8.

A ST

Figure 1.7.: A tree of a hierarchical clustering, computed with HCFE

A 5T

Figure 1.8.: The clustering tree from 1.7 was cut, delivering three disjoint main
clusters.

1.2. Biological data

The main task was developing and evaluating a novel clustering using biological
data. The data used in this thesis contains information about genes and pro-
teins. This data has many different features which will shortly be introduced.
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The idea is to make use of different featuers of the data for the clustering. This
idea is related to information fusion, but while information fusion focuses on
various features at the same time (it ”fuses” the values of the features to an
average value), this approach focuses only at one feature at the same time, but
it is performed iteratively, focusing on another feature at each step.

It is often the case that some objects are less similar regarding one feature,
but more similar regarding a different feature and thus it is reasonable to firstly
cluster according to the former "rough” feature, and use the latter more fine-
grained feature as a refinement. However, doing it the other way around may
also deliver interesting results since there might be elements in the data set
behaving different from the rest. Such members can be identified by clustering
in another way than the majority of the data suggests. The following sections
introduce the features being used in this thesis.

1.2.1. Sequence

The sequence of amino acids or the sequence of nucleotides is a feature which
is very basic in protein and DNA analysis. The sequence is usually represented
as a string, either consisting of characters representing one of the amino acids
(proteins) or a nucleotide (DNA). For instance

AT1G68550: ACAACTTTTAGTTAGCTCAATTTTATTT

is such a sequence. AT1G68550 is a locus identifier (a locus is a fixed region
on a chromosome, here the position of a gene) referring to a gene. This
specific gene encodes a transcription factor in the species Arabidopsis thaliana.
Additionally, the transcription factor is a member of of the ERF' (ethylene
response factor) subfamily B-6 of the FRF/AP2 transcription factor family
(see glossary for further information). Arabidopsis is a family of small
flowering plants related to cabbage and mustard, as mentioned in [1] and [22].
The sequence shown here is a short section from the gene’s promoter region.
The characters within the sequence refer to the four DNA nucleotides
(A=Adenine, C=Cytosine, G=Guanine, T=Thymine).

1.2.2. Gene expression

When a gene is activated, it is transcribed into an mRNA which is thereafter
translated into a protein. The amount of mRNA in the cell reflects the
expression level of the gene. A common approach to measure gene expression
is using Microarrays. Here, DNA spots (either bounded ¢cDNA or synthetical
oligonucleotides) are put on a surface. After that, DNA from the object to
analyse is labeled with fluorescent dye and put on the array. This DNA binds
now to the spots on the array with the matching complementary sequence.
After washing the array, only the hybridized parts remain on it. The
fluorescence signal is then read with a laser and translated to the level of gene
expression.
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1.2.3. Sequence motif

A sequence motif is a short nucleotide or amino acid sequence pattern (usually
between 5 and 30 nucleotides, respectively amino acids) which is conjectured
or known to have an important biological role. On the one hand, the
occurrence of a motif in the exon of a gene may indicate that it encodes a
certain structural pattern. On the other hand, the occurrence of a motif in the
promoter region of a gene may indicate that certain transcription factors bind
to it. Sometimes there is a certain variability in the sequence motif and thus a
common technique is to use consensus sequences. For instance, the motif

HD-Zip 2: CAAT(G/C)ATTG

is such a consensus sequence motif. The middle term (G/C) indicates that at
this position either Glycosine or Cytosine can occur, this is variable. The
motif is related to the homeodomain-leucin zipper (HD-Zip) factors, a class of
proteins that seems to be peculiar to plants. Sessa et al. state in [20] that the
study of the DNA-binding properties showed that the HD-Zip 2 recognizes
exactly the pseudo palindromic pattern above (pseudopalindromic because of
the complementary relation between left and right). Sequences which contain
this motif are according to [20] candidates where the HD-Zip 2 transcription
factor binds to.

1.3. Clustering software

As part of this thesis a clustering software was implemented. This section
introduces two common clustering programs used in biology, namely HCE and
Clustal. The current situation in biology is illustrated, depicting that there
are various programs involved in the clustering process. In the last section the
clustering software requirements from the user’s point of view are listed and
explained.

1.3.1. Common clustering software

There are various programs involved in clustering and many of them are
especially designed for analysing biological data. A popular example is the
Blast family. Blast collects tools for analysing data, among others tools for
searching proteins sequences in data bases. A common clustering software is
the Hierarchical Clustering Explorer (HCE) . This program was developed at
the University of Maryland. It provides various functionality, e.g. different
similarity measures (Euclidean distance, Pearson correlation or Manhattan
distance), different cluster-distance measures (Single-, complete-,
average-linkage), cutting the cluster tree to get a non-hierarchical clustering
and so on.

Figure 1.9 is a screenshot of HCFE. Here a clustering of raw data, containing
gene expression data from a part of the Arabidopsis family, was performed.



1. Introduction

The result is a hierarchical clustering represented by a tree. It can be
observed that a bar is used to cut the clustering tree, leading to six clusters.
This clustering can be printed to a file in plain-text format.
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Figure 1.9.: HCE (Hierarchical clustering explorer). In the main window, the
resulting clustering tree of the computation is shown, which was
already cut to gain six clusters. Below is a matrix with different
colors indicating the gene expression levels.

Another program is Clustal. Clustal computes multiple sequence alignments
under use of pairwise alignments and a hierarchical clustering. In the first
step of the computation, Clustal computes pairwise similarities of the
sequences. The result is used to compute a hierarchical clustering represented
by a tree. This tree is then used as a guide tree to compute a multiple
alignment. Such a clustering tree computed by Clustal is shown in figure 1.10.
In contrast to HCE, Clustal focuses on the sequences respectively sequence
alignments for the computation.
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Figure 1.10.: A clustering computed with Clustal. The lengths of the branches
indicate the similarity of the sequences. The longer the branch,
the less similar the sequences.

1.3.2. Current situation in biology

There are numerous programs involved in the clustering process in biology as
well as in general. They focus on several tasks, some of them are only used for
specific tasks (e.g. only computing pairwise similarity values of sequences) and
some of them cover almost the whole clustering process. They also vary in
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appearance, there are full programs including a graphical user interface,
command-line based programs and programs accessible via a web interface.
The user has to handle all of the programs he needs as well as the data being
involved in the clustering process. Different programs may store the produced
data at different locations. If the data produced by one program should be
used as input for another program, sometimes this cannot be done directly
due to format conflicts, and thus many users also have script files
transforming the data into the desired format. Figure 1.11 illustrates the
current situation with the user handling various software applications as well
as different data produced by these programs.

I
Export the

similarity set
Sc:mug::; to a file, so
simcillarilies that another
application

can work with it.

Application A
Computes sequence
similarities (command

line)

Load and
compute  Export to file

Sequence raw data

Compute a
clustering

Application B
Performs a clustering

from pre-computed
similarities

Load and
compute

Sequence
similarities

User
Export to a file

Export to file

Compute a
clustering

Export to a file

Application C

Performs a clustering

from raw data

—Load and compute-

Clustering result J

Gene expression
raw data

|

Compare clusterings

Application D

Compares two different
clusterings

xport to fil Load and

compute

Clustering result 2

Figure 1.11.: The current situation of clustering in biology with the user han-
dling several software applications. To communicate between ap-
plications, the user has to store, load and transform the data.
This makes it challenging to keep the overview on all the files,
since they may be distributed over the whole file system on the
hard disk.

1.3.3. Software requirements

This section gives an overview of the identified user requirements (identified
by the prefix "UR”) of the clustering software. How the requirements are
fulfilled will be shown in chapter 3. The software was implemented as a
framework. Developing a framework leads to additional requirements. These
requirements are important for people interested in modifying or extending
the framework and thus listed in the appendix as framework requirements
(identified by the prefix "FR”).
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UR1:

Three different kinds of data should be distinguished: Raw data,
data containing similarities and data containing clusterings.

All this data is involved in the clustering process. Raw data (for instance gene
expression data) can be used to compute pairwise similarities between
elements. These similarities are used to compute a clustering.

UR2:

Different views to visualise the data sets should be available.

Data containing a clustering is different from raw data or data with similarity
information. Consequently there should be specific visualisations. There are
also different ways of representing data (e.g. represent pairwise similarities as
a matrix, a weighted graph or just as a list).

UR3:

It should be possible to import data sets from foreign software.

It should be possible to import for instance similarity sets computed by other
software applications.

UR4:

An export function should make the computed data accessible for
foreign software.

Consequently, data produced by the software should be usable by foreign
software applications (e.g. software comparing or measuring clusterings).

URS5:

Tools for analysing the data should be included in the software.

Tools can be measuring or comparing clusterings computed by the software.

URG6:

Different users working on the same computer should have their
own configuration and data home directory to work on.

If two or more users work on the same computer but on different data the
data should be separated i.e. one user should not see the other users’ data.

URT:
The hybrid clustering algorithm should be integrated in the software.

The hybrid clustering algorithm should be part of the clustering software.

12
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URS:

A wizard should help the user configuring and launching the
algorithm.

This should help making the process more efficient. E.g. possible input sets
for the clustering should be listed by the wizard so that the user does not have
to search for them manually.

URO:

All the data the user currently works on should be listed in a
browser-like view.

The user wants to have a good overview of the data being involved in the
current task.

UR10:
A tutorial should be part of the software.

A tutorial should help the user getting started with the software.

1.4. Evaluation

The main aim of this thesis was to develop a software application for
clustering data following a novel approach and evaluate it under the use of
biological data. On the one hand it is more helpful to have a small data set
with carefully selected elements to point out noticeable peculiarities. On the
other hand the clustering approach in this thesis differs from the common
approaches and should also be evaluated under mathematical aspects.

The tasks of pointing out biological observations and evaluating a clustering
under mathematical aspects lead to differerent requirements on the data sets.
Studying specifics under biological aspects may require a smaller data set.
Contrary, a mathematical measuring of the clustering leads to the need of a
larger data set. In a small data set, a few elements which do not behave in the
expected way may lead to a result deviating from the average. This may lead
to misinterpretation. Having a larger data set should avoid this case. Figure
1.12 illustrates this in an abstract way. In this example it has to be
determined if a set of values has a linear character. Obviously, if the sample is
to small the result may be misleading due to incorrect values (which may just
result from measurement errors).

An important part of software development is testing and debugging.
Semantic errors in the program may not cause obvious errors, e.g. the
program will not terminate with an error message. It can happen that the
program still seems to do what it is expected to do, but in fact the output is

13
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not correct. In terms of clustering a semantical error can for instance lead to
an element being present in two disjoint clusters at the same time while
another element is not present in any cluster. The clustering may seem
correct, even counting the elements will not reveal the error. Finding such
errors is even harder if the data set is very large and thus it is reasonable to
use a very small data set for testing and debugging.

n=30 n=5

30
e
4 — .

254 . S

0\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Figure 1.12.: The size of the data sets becomes important when analysing the
set mathematical terms. On the left, even if some elements do not
lie on the straight line, the linear character of the set is obvious.
In the right diagram, it cannot be determined if the set follows
a linear order because the sample is too small. Two or three
elements behaving unexpectedly may lead to misinterpretation.
Using a larger data set is here the better choice.

Four groups of data sets were used for the evaluation. The first group contains
only one data set (only one feature) and is very small. It is gene expression
data from a cold stress study in Oryza sativa cv Indica, to which in the
following will be referred just by Indica, a cultivar of rice. The data was
produced from an in-house experiment at Goteborg University. This set is
only used for determining if the clustering algorithm works correctly and to
help improving the outputs and displays. It can be directly seen if the
computed clustering is correct or if the display of a clustering makes sense (or
if it should be improved). To be more precisely, the data is from differentially
expressed genes in the WRKY family. This is a family of transcription
factors. For more information about the WRKY family the reader should for
instance refer to [24].

The second group of data contains data related to Arabidopsis, more precisely
data from the AP2/FREBP family of transcription factors. These

transcription factors have a central role regarding abiotic stress in this species,
according to the authors of [17]. There are three members of this family being

14
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very similar and having a common function in cold stress resistance, as
Gilmour et al. state in [10]. The data contains 34 members out of this family.
Three different data sets belong to this group, namely sets with sequence,
motif and gene expression data.

The third group contains also data related to Indica. It is from the same
experiment as the WRKY data. In biology, Arabidopsis and cultivars of rice
are often analysed together. Nakano et al. give in [18] a complete overview of
the AP2/ERF gene family (which refers to the same transcriptional regulators
as AP2/EREBP does) in Arabidopsis, and perform a comparative analysis
between these genes in Arabidopsis and rice. The used data group here was
larger than the data of the AP2/EREBP group, it contains the entire data of
the differentially expressed genes, i.e. 1301 elements. Two data sets were used
for the clustering, sequence similarities and gene expression.

The last group contains data from the AtGenFxpress experiment by d’Angelo
et al. described in [4]. It contains all the differentially expressed genes in
Arabidopsis. The set is large, it contains about 2000 genes from different
families. It is used to find out if the clustering algorithm might be suitable as
a classifier. Three data sets were used, with sequence data, motif data and
gene expression data.

15



2. Hybrid clustering

This chapter describes the ideas behind the novel approach. A common
clustering algorithm was taken and performed iteratively to compute a
hierarchical clustering and thus the approach is a hybrid one. In each
iteration the underlying clustering algorithm gets another data set as input
reflecting a different feature of the data. The algorithm itself is introduced
and discussed in the first section. Section two describes the underlying
algorithm - a non-hierarchical clustering using a graph algorithm. The third
section then analyses the algorithm with respect to time and space
consumption. The last section illustrates how the different features introduced
in section 1.2 are used as input for the hybrid clustering algorithm.

2.1. The hybrid clustering approach

As mentioned in section 1.1 there are mainly two different approaches in
clustering. Biological data consists of various features which may all be useful.
The idea behind the approach from this thesis is to take a non-hierarchical
clustering algorithm and cluster the objects according to a certain feature,
leading to a set of clusters. Each cluster is then taken as input for the
algorithm again, but now the algorithm clusters according to another feature
(of course maybe also according to the same feature again, to achieve a better
refinement; but this is not of a high interest here, since it basically leads to a
classical hierarchical clustering focusing on a single feature). This may be
repeated for a number of times leading to a hierarchical clustering in a
top-down fashion as illustrated by figure 2.1.

Figure 2.1 depicts that the hybrid clustering uses a classical clustering
algorithm which is executed for several times to achieve a hierarchical
clustering. The innovation is that the algorithm focuses on a different feature
in each iteration. The clustering tree also looks a little bit different from the
results of ”classical” hierarchical approaches which are used in bioinformatics.
The result of common hierarchical clustering algorithms such as the
Neighbour-Joining or the UPGMA algorithm is always a binary tree (it may
even be an unrooted tree, but this is not of importance here), i.e. each node
(except the leaf nodes) has two successor nodes, cf. the clusterings from
Clustal illustrated in figure 1.10.
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Figure 2.1.: Illustration of the hybrid clustering. After the first step, the focus
is changed to another feature. This leads to different similarities
than before, illustrated by a different positioning of the objects.

In contrast to the tree shown in figure 1.2, resulting trees from the hybrid
approach are always rooted and can have more than one successor (cf. figure
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2.2). Here, the root node at level 0 represents the initial set of all objects,
with which the algorithm was started. It then clusters according to one
certain feature, e.g. gene expression, leading to a clustering consisting of three
clusters at level 1. Each of those clusters are then clustered again, but
according to another feature. As the result of the middle set at level 1 shows,
it may also happen that the set is clustered again to one single cluster, if the
objects within that set are already very similar; there is no further refinement
in this case.

Figure 2.2.: Resulting tree from the hybrid clustering approach.

At each level of the tree a different feature is used for the clustering. Figure
2.3 illustrates how the hybrid works in general by describing the pseudo code
of the algorithm.

18



2. Hybrid clustering

Input parameters:
O: set of objects to cluster
M]1..n]: array of similarity matrices.
(Mi] contains the similarities with respect to feature i.)

Variables:
S1, S : clusterings, therefore sets of sets of objects.
(e.g. S1 = {01, Oz} contains two sets of objects.)

ComputeClustering(O, M) returns a set of sets of objects
(clustering according to the similarity matrix M).

HybridClustering(O, M| ]):
initialize S; = {O}
for i =1..n){
Sy =10
forall (O’ € S1) {
Sy = Sy U ComputeClustering(O’, M[i])
}

S1 =55
}

return S;

Figure 2.3.: The hybrid clustering algorithm.

The function ComputeClustering(O, M) can be any clustering algorithm
which returns a set of sets of objects. As described in section 1.1.2, a
hierarchical approach could also be used, since it can be transformed into a
non-hierarchical clustering by cutting the resulting tree (cf. the figures 1.7
and 1.8). The process which has to be performed to use a hierarchical
clustering is shown in figure 2.4
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Figure 2.4.: The result of the hierarchical clustering has to be transformed by
cutting the tree, leading to a non-hierarchical clustering at the end.
This result can then be used for the hybrid approach.

The pseudo code is rather abstract. The described algorithm does not prepare
any tree structure, it just clusters all the clusters in iteration 7 with respect to
the similarity matrix belonging to i. This example shows how the different
similarity sets, each reflecting one feature, are used. If a hierarchical
clustering algorithm is used, each node in figure 2.2 ultimately refers to a tree
then (resulting from the cut). For computing the next step, the tree is then
reduced to its leaf nodes with the resulting set being clustered according to
the desired feature. This in turn establishes the trees, to which the nodes at
the next level refer. It has to be noticed that those trees are of course not sub
trees of the original tree, since it (the original tree) resulted from a clustering
according to the former used feature. The trees at the next level resulted from
cutting a hierarchical tree, which was computed according to another feature.
It is therefore a transformation of the former tree.

2.2. Underlying clustering algorithm

The underlying clustering algorithm used in this thesis, i.e. the algorithm
called by the ComputeClustering(O, M) statement (cf. the hybrid clustering
algorithm described in figure 2.3), is a graph algorithm which uses a threshold
value. Its similarities can have a different interpretation according to the
feature they reflect. E.g. a low E value (reflecting the feature ”sequence”)
indicates a high similarity, while for Pearson Correlation (reflecting the
feature ”gene expression”) a low value indicates a low similarity. This is
abstracted here, so the assumption is always that a low value indicates high
similarity.
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Input parameters:
E: set of elements to cluster (each initially marked as not visited)
M: similarity matrix
t: threshold value

Variables:
R: a set of clusters
S: a cluster (set of elements)
stack: DFS stack

ComputeClustering(E, M, t):
R=1
forall (e € E) {
if (e not visited) {
S=10
initialize stack as empty
push e on stack and mark as visited
while (stack not empty) {
pop e from stack
S=SUe
forall (ex € E) {
if ((e2 not visited) A (e1 # e2) A (Mle1,e2] <1t)) {
push es on stack and mark as visited
}

R=RUS
}
t

return R;

Figure 2.5.: The underlying graph clustering algorithm.

The algorithm traverses the graph in a depth-first-search manner. It can be
observed that the algorithm is not recursive. Instead of this it uses a DFS
stack. The algorithm starts with one single node on the stack. For every node
(a node represents an object to cluster) which the algorithm currently visits
(popped from the stack), it checks the similarities (represented by the
similarity matrix) with all neighbour nodes (i.e. all other elements since the
graph is complete). If the similarity score is lower than the threshold it pushes
the neighbour node on the stack and marks it as visited. When the stack is
empty, all the elements which could be reached from the initial node have
been marked as visited and thus belong to one cluster. The procedure is
repeated with another unvisited initial node while there are unvisited nodes
left. The algorithm cuts the edges with a similarity score higher than the
threshold and thus the graph is decomposed into disjoint sub graphs.
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2.3. Space and run time analysis of the algorithm

Since the set of elements to be clustered can be of a large size, it is necessary
to analyse the space and time the algorithm needs with respect to the input
size. In the real implementation, the used basic data structures are arrays (a
2-dimensional array for the similarity matrix and a 1-dimensional array for
the elements to cluster), hash tables (for the cluster sets) and stacks (for the
DF'S search, cf. figure 2.5). The used operations are:

e Adding elements for hash tables (adding an element to a cluster)

e Reading an element at aspecified position for arrays (fetching an
element, fetching the similarity between two elements)

e Pushing an element on the stack (an element to visit)
e Popping an element from the stack (the element currently visited)

It is known that these operations take constant time, so we take the pseudo
code algorithm described in figure 2.3 and figure 2.5 and assume that every
statement takes constant time.

2.3.1. Run time analysis

First we analyse the run time of the underlying graph clustering algorithm.
The clustering algorithm described in figure 2.5 is decomposed into an inner
and outer part.

Outer part:
ComputeClustering(E, M, t):
R=1
forall (e € E) {
if (e not visited) {
InnerPart(R, e, E, M, t)
}

}

return R;
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Inner part:
InnerPart(R, e, E, M, t):
S =0
initialize stack as empty
push e on stack and mark as visited
while (stack not empty) {
pop e1 from stack
S = S U el
forall (eg € E) {
if ((e2 not visited) A (e1 # e2) A (Mler,ea] <)) {
push es on stack and mark as visited
¥

¥

¥

R=RUS
Assume that the size of the input set E is n, i.e. the number of elements to
cluster. In each run of the inner part a number of nodes in the graph is
visited. Let k; be the number of elements visited in the i-th launch of the
inner part. All these elements were then pushed on the stack during this
process. The while-loop is therefore iterated for k; times. In each iteration of
the while-loop the for-loop iterates over all the n elements. Within the
for-loop the operations take the constant time c.

The time for the i-th launch of the inner part is then

T("runiof inner part”") =k; -n-c

Now we look at the outer part. When the outer part comes the i-th time into
the if-structure the inner part visits k; elements, which takes k; - n - ¢ time.
Since k; elements were visited in one iteration of the outer part, there are

k; — 1 more iterations of the outer part where the inner part is not launched
(the if-clause delivers false because they were already visited in the inner
part). Thus to every i-th launch of the inner part clustering k; elements
belong k; — 1 launches which take only constant time.

Let [ be the number of iterations where the inner part is launched and starts
visiting the reachable, unvisited nodes, which then represent one cluster. [ is
therefore equal to the number of clusters the algorithm will return.
Consequently, we can decompose the number of elements n into

l
n = Zkl
=1

When n = |E|, the number of elements, then the overall run time with respect
to the input size n is:

T(n) = Z[ (kz — 1)61 + ki -n-co ]

inner part not launched  inner partlaunched
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l l l
= Z[ki(cl +necg) — 1] = (c1 + neg) Z ki — ch
i=1

1=1 =1

= (c1 4+ nex)n — lep € O(n?)

For the whole hybrid clustering algorithm (cf. figure 2.3) assume we use r
features. In each iteration ¢ = 1..r we have a set C; of I; disjoint clusters

C; ={Cin1,Cip2,...,Cyy, } resulting from former clusterings (respectively the
whole set containing all elements at the beginning). Let k; ; be the number of
elements in C; ; (the j-th cluster of iteration i). Thus for every iteration i

l;
kij=n
j=1
meaning that the elements of the sub clusters of the i-th iteration sum up to n

since all clusters are disjoint. Since the time for clustering n elements with the
graph clustering algorithm 7'(n) is in O(n?) and

l l
Zk?SnQ@Zki:n
i=1 i=1

we can assume that the overall time for iteration i is in O(n?), i.e.

l; l;
Z T(ki,j) < T(n) = Z ki,j =N

=1 =1
= eomz,) eomr 7

meaning that clustering disjoint sub sets C; of a set C takes less time than
clustering the whole set C' (since the graph clustering runs in O(n?) time).
Thus the time for the hybrid graph clustering with n elements and r
iterations/features is in O(r - n?).

2.3.2. Space analysis

For the graph clustering algorithm, on the stack there can never be more than
n elements, same for the cluster sets R and S. This is by far less than the
space the similarity matrices consume, since their space consumption lies in
O(n?) (each pair of elements has a similarity value). Thus the space
consumption of the hybrid graph clustering algorithm with n elements and r
different features (i.e. r different similarity matrices) lies in O(r - n?).

2.4. Features for the hybrid clustering algorithm

This section shows how the several features can be used for the hybrid
clustering. It was shown in section 2.1 that the algorithm uses similarity
matrices. In section 1.2 different features were introduced. The following
sections describe how the data was transformed to gain similarity matrices
which can be used by the hybrid clustering algorithm.
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2.4.1. Sequences

For the sequences Blast was used to calculate F wvalues. In general Blast
searches for a query sequence within a data base. The E wvalue of the query
sequence q and the matching sequence m indicates the expected number of
other sequences in the data base having a higher similarity to ¢ than m. Thus
a low E wvalue close to 0 indicates that the two sequences are very similar. If a
set of n elements should be clustered according to the sequences, the n
sequences of the elements are taken as the data base and each sequence is
taken once as query sequence. The output Blast computes is a set of tuples
(s1,82,€). s1 is the identifier of the query sequence ¢, s is the identifier of the
matching sequence m and e is the F value of ¢ and m. This output can
directly be transformed to a matrix and used by the hybrid clustering
algorithm. Table 2.1 illustrates a Blast output.

Query ID Sequence ID E value
AT1G22190 AT1G22190 0.0
AT1G22190 AT4G28140 2e-017
AT1G22190 AT5G44210 3e-013
AT1G22190 AT4G23750 3e-007
AT1G22190 AT5G53290 4e-006
AT1G22190 AT5G11590 4e-006
AT1G22190 AT2G46310 2e-005
AT1G22190 AT1G64380 7e-005
AT1G22190 AT4G25480 0.004
AT1G22190 AT2G44940 0.004
AT1G22190 AT4G32800 0.016

Table 2.1.: A Blast output.

2.4.2. Gene expression

Gene expression values result from Microarray experiments. For each target
we get a set of gene expressions at several time points. Table 2.2 illustrates
how the raw data looks like. The pairwise similarities of two elements were
computed as the Pearson correlation of their gene expression data rows. This
was done by a PHP script.
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ID GE(0h) GE(0.5h) GE(1h) GE(2h)
AT2G23340 0.988 0.891 0.877 1.0275
AT4G17490 0.964 1.21 3.187 10.1085
AT4G17500 0.974 0.228 0.532 0.459
AT4G36920 0.999 0.69 1.018 0.919
AT4G36900 1 1.286 1.011 1.0055
AT5G25190 0.979 0.969 1.557 1.5395
AT5G61590 0.999 0.778 0.797 0.5805
AT5G53290 1 1.058 1.09 2.942
AT5G51990 1 1.048 1.249 20.6245
AT5G51190 0.998 1.05 1.526 1.7785

Table 2.2.: Raw gene expression data which has to be transformed to pairwise

similarities.
2.4.3. Motifs

For a set of motifs, the number of occurences of each motif in the promoter
region of a sequence was computed. For a set of sequences this leads to a
matrix similar to the gene expression matrix shown in table 2.2. But in this
case for each column we do not get a gene expression at the corresponding
time point but the number of occurences of the corresponding motif. For each
gene or protein sequence we get a data row not of gene expression at different
time point but of occurences of different motifs, illustrated by table 2.3. Like
the gene expression data, pairwise similarities were computed as the Pearson
correlation of their motif data rows.

ID #O0cc.(M1) #Occ.(M2) #Occ.(M3) #Occ.(M4)
AT1G22190 9 0 0 0
AT1G28370 8 0 0 0
AT1G64380 10 0 0 0
AT1G68550 12 0 0 0
AT2G23340 4 0 0 0
AT2G28550 6 0 4 2
AT2G35700 13 0 0 2
AT2G39250 10 0 0 0
AT2G40350 13 0 0 0
AT2G44940 15 0 2 0

Table 2.3.: Raw motif data which has to be transformed to pairwise similarities.
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3. Software

This part discusses in detail the software which was written for the purpose of
this thesis. In the first section the main ideas are introduced, providing
solutions for the requirements. Section two explains the architecture of the
software. It describes the software on a large scale, in order to answer
questions as ”How should the software be decomposed into small components,
to keep it clearly and reasonably arranged?”, or "How can it be accomplished
that the software can easily be modified in the future?”. More detailed
information about the system architecture is given in the technical
documentation, which is part of the appendix.

3.1. Solutions to the requirements

This section describes the ideas, which mainly result from the user
requirements (UR). The solutions are therefore in the same order as the order
of the requirements given in section 1.3.3.

UR1

Three different kinds of data should be distinguished: Raw data,
data containing similarities and data containing clusterings.

Solution: All the data which belongs to an experiment can be bundled in a
so-called project. A project in turn contains three folders for raw data,
similarity sets and clusterings belonging to the objects which are to be
analysed in the experiment, e.g. the AP2/ERFEBP transcription factor family.
All the kinds of data are treated as very abstract, for instance raw data can
be a DNA sequence as well as gene expression data which belong to a
transcription factor.

UR2

Different views to visualise the data sets should be available.

Solution: If the user selects a set in the browser, the framework collects all
the classes from the plug-ins which provides displays for this data set and
adds the displays in the tab page on the right part of the main window. There
are different plug-ins which provide several views for similarity sets and
cluster sets: matrix views and info views for the similarity sets, tree views,
measure views and info views for the cluster sets.
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UR3

It should be possible to import data sets from foreign software.

Solution: When the user wants to import a set, the framework displays a file
browser where he can select the desired file. The framework checks all the
installed plug-ins for possible importers. When more than one importer
accepting the file is found, a list of the conflicting importers is shown, and the
user has to select one. After that, the framework launches the selected
importer, and adds the imported set to the right folder in the browser.

UR4

An export function should make the computed data accessible for
foreign software.

Solution: One of the plug-ins provides a view where the user can cut a
clustering tree from the hybrid clustering. When the user has cut the tree, he
can print the delivered clustering to a file. The format is similar to the format
of the files that HCFE creates.

URS

Tools for analysing the data should be included in the software.

Solution: One of the plug-ins provides a display which computes four
measures of a clustering which resulted from cutting a cluster tree. It
measures the average Intra-Cluster distance, the Inter-Cluster distance, the
Jagota measure and the Davies-Bouldin measure. Furthermore, another
program was written which can take the prints of a clustering mentioned
before as well as clusterings from HCE, and compare them by calculating the
Rand Index and the Adjusted Rand Index. The measures are described in
detail in section 4.2.

URG

Different users working on the same computer should have their
own configuration and data home directory to work on.

Solution: The framework has a system which is similar to the workspace
system of Eclipse. This is a software framework for software development.
The workspace points to a certain directory on the file system, defined by the
user. This workspace directory contains all the data the user works on. He
can just switch the workspace if he wants to. A user can therefore also have
more than one workspace, and different users can have different workspaces.
The system recognizes also the current system user, so if different users work
on the same computer and have different windows accounts, the framework
will always display the matching workspace for the current user.
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UR7
The hybrid clustering algorithm should be integrated in the software.

Solution: The hybrid clustering algorithm is included in a plug-in bundle
which also defines the classes for clusters and displays for this class. These
displays are basically the clustering tree and a matrix which visualises
elements in the same cluster, but they also include tools for cutting the
clustering tree, plotting the result and computing several measures.

URS

A wizard should help the user configuring and launching the
algorithm.

Solution: The wizard for the hybrid clustering algorithm is included in the
same bundle as the algorithm itself. With this wizard, the user can select the
elements to cluster and the number of iterations. For each iteration, he can
select the desired similarity set for the computation, and a threshold value.

UR9

All the data the user currently works on should be listed in a
browser-like view.

Solution: There is a browser view in the application which shows all the
current projects the user works on, including the contained sets in the
corresponding folder.

UR10
A tutorial should be part of the software.

Solution: The tutorial can be opened via the main menu bar, or by clicking
on the shortcut item on the tool bar. It displays the names of the available
tutorial pages in a list. When clicking on an item, it displays the
corresponding tutorial page. This can be a HTML page, a PDF file, an image
ete.

3.2. Software architecture

This section describes the structure of the software at a large scale. Two main
patterns within software engineering where used, the so-called
Model-View-Controller (MVC') pattern, which is an architectural pattern, and
the Observer pattern, which belongs to the class of design patterns. These
patterns are discussed in the first two parts. The software is a framework
providing basic functionality. It is able to adapt to various tasks related to
clustering. The specific functionality (functionality concerning the hybrid
clustering) is implemented as plug-ins extending the framework. The third
part illustrates how the framework integrates the plug-ins.

29



3. Software

3.2.1. System architecture

The architectural design is a variation of the MV pattern. This is used
especially to make it easier to exchange the graphical user interface (GUI).
The idea of MV is to separate the view from the model and the controller so
that the model is not dependent on view and controller. In the selected
programming language C'# the technique of partial classes assists the
separation of view an controller. A disadvantage is that the view and the
controller e.g. of a formula are grouped together by the developing
environment and cannot be distributed in different folders. Therefore a folder
called ”ui” groups the classes with the view and the controller part together.
Figure 3.1 shows the dependencies and the access between the three parts of
MVC. The classes of the model are collected in the folder "model”. There are
also other parts of the system located outside the MVC logic. A more
detailed description of the architecture is given in the technical
documentation, which is part of the appendix.
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Figure 3.1.: Model-View-Controller

3.2.2. Design patterns

The major design pattern is the Observer pattern. It is used to separate the
model from the view. This is reasonable, because if they are not separated,
every change on the representation (view) would then imply a change of the
model as well. This is usually not desired. The pattern therefore becomes
important whenever the model changes. It is often used in combination with
the MVC architectural pattern. As depicted by figure 3.1 if the model
changes it does not directly update the view. In this case the model would be
dependent on the view. Instead of this, it sends an abstract change notification
which is independent from the concrete implementation of the view. The
concrete view takes the information given by the model and updates itself.
The minor design pattern used in the software is called the Singleton pattern.
It is especially useful whenever only one singleton instance of a class is desired
and it should be prohibited to have multiple instances of the same class. For
the detailed description of the patterns (including the concerned parts of the
software), refer to the technical documentation, which is part of the appendix.

30



3. Software

3.2.3. Framework concept

The application is designed as a software framework providing the basic
functionality and the interfaces to extend it. These interfaces are called
extension points. All the concrete models for the sets, the displays, algorithms,
their configuration wizards, set importers and the file system managers for the
sets are provided by the plug-ins as extensions. A complete overview of the
extension points is given by figure C.1, which is part of the technical
documentation. Figure 3.2 illustrates how plug-ins extend the framework.

Framework

Plug-in 1
Extension point1 Extension1
Plug-in 2

Extension1
Extension point2

Plug-in 3

==
o

Extension point3

Extension2

The framework provides the A The plug-ins extend the framework .
base functionality and the They provide additional functionality
extension points (interfaces). by implementing extension points .

Figure 3.2.: Framework concept
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This chapter describes the evaluation of the software respectively the hybrid
clustering algorithm. The first section gives information about the data which
was used. It describes the biological background and specifics, as well as
information about the origin of the data. Section two and three discuss formal
and informal methods used for the evaluation of the clusterings. This includes
measures for analysing the quality of a clustering, measures for comparing two
clusterings (which may be the result of two different algorithms) and the
informal methods of inspecting the clusterings. The fourth section compares
the hybrid clustering approach with two common approaches focusing only on
one aspect, namely Clustal and HCE, as well as with another approach
focusing on various features. It is an information fusion approach described by
Kasturi et al. [14]. The results are presented in the last section.

4.1. Data sets

This section describes the data sets used for the evaluation. Four groups of
data sets were used. They differed in size in order to make facilitate
debugging, observe biological specifics and analyse the quality of the
clusterings.

4.1.1. WRKY transcription factors

This is a family of transcription factors which have according to Wu et al. [24]
a significant role in responses to biotic and abiotic stress. An overview on the
family is given by Zhang et al. [28] and Eulgem et al. [7]. More information
about the family and its members can be found at
http://www2.mpiz-koeln.mpg.de/~somssich/. The data group was mainly
used to test the application, especially to find semantical errorsduring the
system tests. The group is rather small, containing just 26 transcription
factors. There is only one similarity set for this group with Pearson
correlations between gene expression profiles.

4.1.2. AP2/EREBP transcription factors

AP2/EREBP refers to a family of TFs (transcription factors). These TFs
have an important role, among others in Arabidopsis. This is a family of small
flowering plants related to mustard and cabbage. Within biology, this family
is very important, since a member of this genus is thale cress, known as
Arabidopsis thaliana. According to the information given by

arabidopsis.org [1] it is widely used as a model organism in plant biology. As
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stated by the on-line article from wikipedia.org [22], Arabidopsis thaliana was
the first plant of which the entire genome was sequenced. There is plenty of
information available for this organism, e.g. at
http://www.arabidopsis.org/. As mentioned in [1] the genome sequence
was completed in 2000. The site also contains a couple of more references to
articles related to Arabidopsis, to which the interested reader can refer.

The data used for the evaluation contains data from the AP2/EREBP family.
Due to this TF family a process is initiated which helps the plant to resist
abiotic stress (i.e. environmental stress, not caused by living creatures, like
wind, temperature, etc.). Especially three TFs are interesting, namely,
AT4G25470, AT4G25480 and AT4G25490. These names are the locus
identifiers for which http://www.arabidopsis.org can be browsed. Other
names for them are (in this order) CBF2, CBF3 and CBF1 as well as (also in
this order) DREB1C, DREB1A and DREBI1B. As stated by Kizis et al. [17]
they are induced by cold or water stress and their transcripts accumulate at
high levels shortly after stress treatment. Furthermore Gilmour et al. [10]
come to the conclusion that they are in fact functionally identical.

Three data sets containing similarities between the TFs were used. The first
set contains sequence similarities computed by Blast. The cut-off value was
10.0 which is the standard value Blast uses. All similarities which score a
higher F value than 10.0 are discarded. How the clustering algorithm handles
the missing values is described in the technical documentation (see section
C.5.3). The second set was computed from gene expression data from a
microarray experiment. The raw set contains a series of gene expressions at
several time points. To calculate the similarity, the Pearson correlation was
used. The third set was computed from motif data. A set of motifs was taken
from the PlantCare and the PLACE data bases. The number of occurences of
each motif was computed leading to a series of motif occurences on a
sequence, as described in section 2.4 (table 2.3). As for the gene expression,
the Pearson correlation was computed to obtain pairwise similarities. The
data sets contain similarities between a set of 34 TFs. In appendix C a list of
the elements is shown, more precisely a table which also includes their gene
expression raw data, from which the Pearson correlation was computed
(figure B.1).

4.1.3. Indica

Oryza sativa cv Indica is a cultivar of rice. It is quite popular in experimental
studies of plant genetics. Here, it is often used together with Arabidopsis. Wu
et al. [24] analysed the role of the WRKY family of TFs in rice and
Arabidopsis. The data was primarily used to analyse the clusterings using
mathematical measures and contains 1301 genes. Like the data from the
WRKY group, the data comes from a cold stress study in Indica. It was
produced from an in-house experiment at Goteborg University. In the
experiment, rice seedlings (Oryza sativa, cv Indica, v Jumla Marchi) were
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grown under controlled conditions having 25°C day/20°C night temperatures,
with 14h-light (intensities of 250umol m2 s-1)/10h dark cycle. 15 days after
germination, seedlings were exposed to cold stress at 4°C. Leaf tissues were
harvested after 30min, 2h, 4h, 8h and 24h stress treatment. Control plants
were harvested at the same day as the stressed plants. Two biological
replicates for each time point, i.e. two biological samples were harvested for
each cold stress time point.

Two kinds of similarity sets where used, each reflecting a different feature.
The first one contains gene expression similarities. These similarities where
generated by computing the Pearson correlation of gene expression raw data
from a cold stress study. The second set contains sequence similarities from
Blast. A lower cut-off value as for the AB2/ERFEBP group was chosen to save
space, namely e-10. Every F value higher than this value is discarded. For
this set this was quite important, because the size was very large. On the one
hand, the cut-off value therefore avoids an excessive waste of memory. On the
other hand this leads to missing similarity scores. How the clustering
algorithm solutes this problem is shown in the appendix C.5.3.

Just to briefly outline how much more efficient it is to use a cut-off process for
the computed similarity set, one must compare the different sizes of the sets
on the hard drive. Without a cut-off on the gene expression similarities the
set size was 12,132,227 Bytes, approximately 12 Megabytes. In contrast the
size of the similarity set computed by Blast using of the cut-off value e-10 was
165,880 Bytes. This is approximately 1.37% of the size of the gene expression
set. Figure 4.1 shows that a massive number of similarities were discarded
leading to a much smaller size. On the other hand this leads to problems
when calculating measures as will be shown in section 4.5, because no
”distance” value can be retrieved for the affected pairs.

For the gene expression normalized expression values were derived using the
GC-RMA algorithm as described by Wu et al. [25] implemented in GeneSpring
version 7.3. Statistically significant differentially expressed genes were
detected using a 3-fold change in combination with a FDR p-value <0.05 (as
given by Benjamini et al. [2]). There is no published paper at hand yet, the
writing of the report is still in progress. The Pearson correlation of the gene
expression was computed using a cut-off value of 0.7 in order to save space.
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Figure 4.1.: A screenshot of the application. It shows the similarity set imported
from a Blast result with a cut-off value of e-10.

4.1.4. AtGenExpress

This is a cold stress experiment performed by D’Angelo et al. [4]. The group
contains about 2000 genes from different families. The relevant data for the
experiment is available at http://arabidopsis.org. According to [4], plant
material from 18 days old Arabidopsis thaliana plants was analysed. Shoot
and root tissue were analysed separately. For the gene expression the material
was harvested at the time points 0.5h, 1h, 3h, 6h, 12h, 24h. For each time
point two samples serving as replicates were collected. This was done by the
researchers involved in the experiment. Furthermore the data group contains
sequence data and motif data. The sequence similarities were computed by
Blast with the cut-off value 10.0, leading to a large set used to determine if
the algorithm can handle sets with many elements efficiently (with respect to
space and time). The motif occurences were computed in the same way as for
the AP2/EREBP group, leading to a matrix with data rows as described in
section 2.4.3 (cf. table 2.3). Both motif similarities and gene expression
similarities were computed as the Pearson correlation.

4.2. Formal methods

This section describes formal methods which where used for evaluating the
application. The first part describes measures which where used to calculate
similarities between clusterings, while measures in the second part indicate
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how similar elements in the same cluster respectively how dissimilar elements
in different clusters are.

4.2.1. Comparing two clusterings

These indices are measures for the similarity of two clusterings. The two
clusterings should both be sets of disjoint subsets, forming equal unions. The
clusterings are clusterings of the same set of elements S with the size n = |S|.
The Rand Index of two clusterings C7 and Cs is then, according to Yeung et
al. [26], [27] defined as the value

a+b a+b
R(Cy.C5) = =
(€1, C2) atbtctd ()

a is here the number of pairs of elements of S which belong to the same
cluster in C'y and in Cs. b is the number of pairs of elements of .S which belong
to different clusters in both C7 and C3. The sum of these values if called the
number of ”agreements”. ¢ and d are the numbers of pairs which are, for ¢, in
the same cluster in C, but in a different cluster in Cy. For d is is the other
way around. The sum ¢ + d is therefore called the number of ”disagreements”.

The Rand Index is then the number of ”agreement pairs”, in relation to all
possible pairs. In information retrieval there is a very similar value called
7accuracy”. It is the sum of correctly retrieved documents and correctly not
retrieved documents (i.e. the number of documents, which where not
retrieved, and are indeed not relevant) in relation to all documents.

As stated by the authors in [27], the Rand Index has the problem that it does
not take a constant value on two random partitions. They suggest to use
another score called the Adjusted Rand Index. This index is defined as the
value

>y (5) 132 (5) 325 (5)1/(5)
02 (5) + 255 (9)) = 2 (5) 2, (D)1 (5)
The value n; indicates the number of elements in the i-th cluster of C7, and n;

is the number of elements in the j-th cluster of Cs. n;; is then the number of
elements which are both in the i-th cluster of Cy and the j-th cluster of Cb.

RAdjusted(Clu 02) =

4.2.2. Measuring a cluster

Four measures were used for the clusterings computed by the hybrid
clustering algorithm. The average intra-cluster distance measures the average
distance between elements of the same cluster while the average inter-cluster
distance measures the average distance between elements in different clusters.
Another measure, as stated by Gerber [9] proposed by Jagota, is the value

k
0= Z éz 2 dle )
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d(x, p1i) is here the distance from element z of the cluster C; to the cluster
centroid u; of C;. Since we do not have points in the space here, for which this
kind of measure is actually made, the distance from z to the centroid is
calculated as the average distance from x to all other elements in the same
cluster.

The last measure is called the Davies-Bouldin Index defined by Davies et
al. [5] as the value

}

k: . -
DB(C) = ;Zmax{A(gz) + A(G)
i=1

Ci, Cj)

A(C;) is here the intra-cluster distance of C;, and 6(Cj, C;) is the inter-cluster
distance between C; and Cj;. For the computation of the intra-cluster
distance, the average intra-cluster distance was used. For the computation of
the inter-cluster distance analogue, the average inter-cluster distance was
used analogously.

It has to be said that the results of these measures have to be taken with
caution. The measures are actually designed for a set of objects having a
distance in a space with a metric, e.g. the Fuclidean metric. Here, we just
have similarity scores at hand. Those scores have a different character, e.g.
compare Blast E values from sequences (small value indicates high similarity)
to Pearson correlations from gene expression (high value indicates high
similarity). Furthermore some of the similarity values might have been cut off
during the computation. In this case, there is actually no ”distance” value for
the affected elements at hand. The algorithm which was implemented tries to
solute this by introducing penalty terms for missing values, under the
assumption that a similarity score which was cut off during computation, was
on average twice as bad as the worst similarity score which was not cut off.
The reader who is interested in the algorithm can request the code from the
author.

4.3. Informal methods

The formal methods introduced in section 4.2 are useful to express the quality
of a clustering or the similarity of two clusterings, according to a certain
measure. However, in some cases it might be hard either to adapt the
measures to the given data set or to interpret the results of the measure. One
clustering might, according to a measure, be not as good as another
clustering, but can nevertheless point out a conspicuousness clearer than
another clustering does, due to the characteristic of the data. In each case it is
indispensable that the clusterings are, regardless of the high quality a measure
indicates, inspected and interpreted. It is important that this process is
performed in a structured way with well-selected tools assisting it.
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4.3.1. Inspecting the clustering tree

The application shows the result of a clustering in a tree view, as depicted by
figure 4.2. A clustering with many very small clusters or singletons is
probably not very useful, though e.g. the intra-cluster similarity would
indicate a high quality. If there is knowledge about the data at hand, this
information should also be used. If it is known that there is a group of
elements within this data which is supposed to have a high similarity, then a
close look on those elements might also give important information. This can
also be of importance when the clustering was performed according to another
feature. This means that it is for instance known that five elements of the set
are known to have a high sequence similarity but the clustering is performed
according to the gene expression similarity.
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Figure 4.2.: The tree view of a clustering result, computed by the hybrid clus-
tering approach.

4.3.2. Comparing different levels of the clustering tree

It was mentioned above that, when there is knowledge at hand about the
relation between some elements according to a certain feature, the clustering
according to another feature can provide interesting information. It might be
of importance that some elements are very similar in sequence, but not in
gene expression or occurence of motifs in the promoter region, especially when
the majority of the other elements in the set does not show this behaviour.
When knowledge about some elements according to a feature is at hand, it is
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quite easy to check whether they show the same behaviour according to
another feature or not. On the other hand, when this knowledge is not
available it is much harder to determine such a conspicious behaviour of a
group of elements. The hybrid approach can assist this process. The following
example should illustrate that:

e A group g of elements in a set S has a high similarity in feature A, but
is very dissimilar with respect to feature B.

e The set S is now clustered according to feature A in the first round.
e The elements of g should then end up in the same cluster.

e Each of the clusters from the first round is now clustered according to
feature B in the second round.

e The elements of g (in which the elements are very dissimilar to each
other with respect to feature B) will then be in a different cluster at the
next level of the clustering tree.

e If this behaviour is significant for the group, the majority of the other
elements does not show this behaviour, i.e. other pairs of elements are
either in the same cluster after the first and the second round, or are in
different clusters in the first and the second round.

As mentioned in section 1.1.2, a hierarchical clustering can always be
transformed into a non-hierarchical one, by cutting the hierarchical clustering
tree. We produce now to clusterings from this tree by cutting it at the first
and the second level. In the case of the example above, the clusterings would
be quite similar, except for the elements in g. Therefore the two clusterings
resulting from the cuts at the first and the second level should be inspected
and compared. To assist this the application provides a matrix view of
non-hierarchical clusterings. Figure 4.3 shows a clustering result from a
hybrid clustering with three rounds. The tree was then cut at the second
level, resulting in the non-hierarchical clustering shown in the tree on the left.
In the matrix view on the right, each row and column indicates one element.
If the elements ¢ and j are now in the same cluster, the (7, j) entry of the
matrix is black as well as the (j,7) entry and thus the matrix is symmetrical.
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Matrix of the curent cut. Black points mark that element[iow] and element[column] are in the same cluster
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il annelalic Y. 21: AT4G32800 (Clustert)

Figure 4.3.: A cut of the clustering tree leading to the non-hierarchical clus-
tering shown on the left and the matrix view shown on the right.
The two marked entries in the matrix indicate the entries (9,21)
and (21,9) The arrows show that for the entry (9,21) 9 refers to
AT2G44940 and 21 refers to AT4G32800. The entry in the matrix
is black because both belong to the same cluster.

When there is now a group of elements which shows a significant behaviour,
then the majority of the elements should not change (pairs either remain in
the same cluster or in different clusters) when the tree is cut at the next level,
while the significant elements do change (the pairs of the group are in the
same cluster in one clustering, but in different clusters in the other clustering).
This is illustrated by the matrix of the cut. When there is a significant group
the two matrices should look quite similar, only a few entries which reflect the
elements of the significant group should change. Figure 4.4 shows two
matrices which resulted from cutting a tree at different levels. This result does
not seem to be very significant, since approximately half of the elements
remain in the same cluster and half of the elements split up at the next level.
However, a look on the affected elements might give important information.
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Figure 4.4.: Two matrices which resulted from cutting the clustering tree at
different levels.

4.4. Comparison with common clustering approaches

4.4.1. HCE and Clustal

To compare the hybrid clustering with HCE and Clustal the AP2/EREBP
group was used. Both of the clusterings focus on raw data. They were chosen
because HCFE clusters with respect to gene expression while Clustal uses the
sequences. For the clustering with HCE, the used similarity measure was the
Pearson correlation and the linkage method was average-linkage (see section
1.1.2 for the definition of average-linkage). The resulting hierarchical tree was
cut at two different positions leading to two non-hierarchical clusterings with
two respectively three clusters. The result is shown in figure 4.5.

To compare HCFE with the underlying graph clustering algorithm, the hybrid
clustering was performed only for one round with the gene expression
similarities. This was done for two times, with the thresholds 0.7 respectively
0.8. The result is shown in figure 4.6. It can be observed that the clustering
computed using threshold 0.7 contains two clusters while the clustering
computed with the threshold 0.8 contains three clusters.
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# of ltems Left= 35
Minimum Similarity = 0.510 ¥ of Clusters = 2 #l of Alones = 0

# of ltems Left = 35
Minimum Similarity = 0.623 # of Clusters = 3 # of Alones = 0

Figure 4.5.: The hierarchical clustering tree computed with HCE was cut at
two positions leading to two clusterings consisting of two (top) re-
spectively three (bottom) clusters.
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Figure 4.6.: The two clusterings computed by the graph clustering with respect
to gene expression similarity using the thresholds 0.7 and 0.8.

The two clusterings from HCE as well as the two clusterings from the graph
clustering were printed to a file to compare them using the measures
introduced in section 4.2. The two clusterings containing two elements were
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compared as well as the two clusterings containing three elements. As
depicted by figure 4.7 the two clusterings containing two clusters each are
identical, indicated by the Rand Index and the Adjusted Rand Index being 1
(left part of the figure). The clusterings containing three clusters each
computed by the graph clustering algorithm and HCE differ (right part of the
figure). The two clusterings containing three clusters were then compared
with the quality measures. Figure 4.8 illustrates that the result from the
graph clustering algorithm is slightly better with the Jagota measure and the
average inter-cluster distance is better, while the clustering computed by HCE
is better with respect to the Davies-Bouldin Index and the average
intra-cluster distance is better.

— Camputation rezults: Rand index
Rand index: 1

Pairs in same cluster

in both clusteringsz [al: 399
Pairz in different clusters

if both clusterings [b): 196
Murnber of pairs: 595

— Camputation rezults: Rand index

Fand index: 0732773
Pairs in same cluster

in both clusteringsz [al: 240

Pairz in different clusters

if both clusterings [b): 196
Murnber of pairs: 595

— Computation results; Adjuzsted rand index — Computation results; Adjuzsted rand index

Adjusted rand index: 1 Adjusted rand index: 0 485055
Indes: 399 Indes: 240

P airnLim inides: 399 P airnLim inides: 2135
Expected index: 267 564706 Expected index: 163.905882

Figure 4.7.: The comparisons with Rand Index and Adjusted Rand Indez of the
clusterings computed by the graph clustering algorithm and HCE.
The comparison of the two clusterings consisting of two clusters
each is shown on the left, while the comparison of the clusterings
containing three clusters each is shown on the right.

Intra-cluster distance [average].  1.543507 Intra-cluster distance [average]:  1.551887
Inter-cluster distance [average].  3.352272 Inter-cluster distance [average]: 3713333
Jangota measure; 4 B3Nz Jagota measure; 4 BRRER

D avies-Bouldin meazure: 0.836958 D avies-Bouldin meazure; 0.E71578

Figure 4.8.: The results from the measure computation for the two clusterings
computed by the graph clustering algorithm (left) and HCFE (right).

Figure 4.7 also illustrates that for dissimilar clusterings the Rand Index scores
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higher than the Adjusted Rand Indezx. Yeung et al. state that, in a work from
Milligan and Cooper from 1986, the authors recommend the Adjusted Rand
Index as the index of choice [26].

HCE has a lot of functionality which is currently missing in the application
from this thesis. First of all, HCE can cluster from raw data like gene
expression data. The application from this thesis supports that in general due
to the framework concept, but the functionality (i.e. adequate plug-ins) is still
missing. Furthermore, HCE has an efficient way to cut clustering trees by
using a cut bar and can also compute k-means clusterings, as illustrated by
figure 4.9. The cut bar can be dragged up and down with the mouse, and the
result of the cut is dynamically displayed by showing the sub trees resulting
from the cut. The k-means clustering can both cluster columns and rows of
the data set, in this case it was gene expression data.

#of tems Left =35 x
Minimum Similarity = 0.641 & of Clusters =3 # of Alones = 0

ATAG25470
ATAG25480
ATSGATZZ20
AT4G17480
AT G28370
ATAG25480
ATAGIZE00
AT GES2E0
ATS G050
AT2 G44940
AT1GEESSD
AT GIE900
AT2GI02E0
ATIG15210
AT2G23340
ATSGA4210
ATSG1 1580
AT2GA0350
ATAGIEAZ0
AT2GIST00
ATIGA0ZE0
ATAGZE140
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Figure 4.9.: HCE provides a lot of functionality. A cut bar (top) helps to ef-
ficiently cut hierarchical clustering trees. The software can also
compute k-means clusterings (bottom).

To illustrate the benefit of the hybrid clustering approach figure 4.10 shows
the clustering trees of Clustal and HCFE together. Clustal clusters according
to the sequences while HCFE uses the gene expression for the computation. It
can be observed that according to gene expression there are seven elements
being rather similar. Four of those elements are highlighted in the figure,
namely ATG25490, AT5G51990, ATG25480 and ATG25470. If we only look
at the sequences as computed by Clustal, only ATG25490, ATG25480 and
ATG25470 are rather similar. If we only look at the gene expression we can
assume that ATG25/90, AT5G51990, ATG25480 and ATG25470 and three
additional elements are rather similar. The hybrid clustering now shows that
ATG25490, AT5G51990, ATG25480 and ATG25470 are rather similar
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compared to the other elements with respect to both gene expression and
sequences. If we look at both features they differ from the other elements, as
depicted by figure 4.11. How the hybrid clustering is configured is discussed in

the latter sections when the results are presented.

wATG25490

AT5G51990

» ATG25480
w ATG25470

AT1G22190

AT2G35700

ATSG47230

ATAG25470

AT4G25490

AT4G25480

ATHG25190

AT5G61590
AT1628370
AT1G83550

AT1GB4380

AT3G50260

Figure 4.10.: Two clusterings computed by HCE (gene expression, top) and

Clustal (sequences, bottom).
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Figure 4.11.: The hybrid clustering shows that ATG25490, AT5G51990,
ATG25480 and ATG25/70 are rather similar according to both
gene expression and sequences. They remain in the same cluster
at the second level of the clustering tree.

4.4.2. Information fusion approach

Another approach also using multiple features of the data is described by
Kasturi et al. [14]. The main difference between the approach of this thesis
and the approach in [14] is that the approach described by Kasturi et al.
focuses on all the aspects at the same time, while the hybrid clustering focuses
on one aspect at each iteration step. The algorithm which Kasturi et al.
describe is an information fusion approach. Their method extends a
self-organizing map (SOM). This is an artificial neural network. It is trained
using unsupervised learning. Further information about self-organizing maps
is for instance given by Haykin [11], while Dayan gives an overview on
unsupervised learning [6]. For the information fusion approach the authors

of [14] weight the information which is given by the different aspects. Among
other things, they also use gene expression data and motif data. Assume that
a set of genes g1, go, ..., gn, is given. Furthermore for each gene there is data of
k categories at hand. The algorithm then iterates until convergence. In each
iteration, one gene g and one category r is randomly selected. The distance
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from g to each cluster centre according to the category r (e.g. gene
expression) is calculated. g is assigned to the closest cluster and after that,
the weights of this cluster are updated using a learning rule.

They use two different distance functions for the gene expression and the
motifs. For the gene expression, they use the Relative entropy or
Kullback-Leibler divergence which is according to the authors [14] given by

Diple) = 3 plaliog 2

zeX ( )
The authors state that it was shown by Kasturi et al. [15] that this measure
performs better on gene expression than the standard distance measures such
as Pearson correlation. For the motifs, they use the Extended Jaccard
Similarity Coefficient which is according to the authors given by

Zf\il min(z;, y;)

SDist(z,y)=1—
(@) Zfil max(xi, yi)

After analysing the results the authors come to the conclusion that ”genes
with similar function might possibly share a common expression pattern under
a certain experimental condition and might share a common motif” [14] - an
assumption which supports the use of multiple aspects of the data. As already
mentioned, the approach from this thesis and the approach from Kasturi et al.
have in common that they both focus on several aspects of the data. As
shown in [14] this seems to be reasonable, providing new insights which might
not be obtained when focusing only on one aspect. On the other hand, the
hybrid approach leads to a hierarchical clustering while the information fusion
approach leads to a non-hierarchical clustering. In their experiments, the
authors also repeated their clusterings with different input parameters i.e.
different weights of the aspects, to get another view on the data. A method
which was also used in this thesis, cf. for instance section 4.5.1. As the
information fusion approach described in [14] is related to this thesis, it could
be of interest to run the hybrid clustering algorithm on the data Kasturi et al.
used for their experiments and compare the results. Furthermore the two
distance measures the authors use are interesting. Since both of them are used
for data which was also used in this work (gene expression and motifs), they
could be adapted for the hybrid approach. Even the algorithm itself might be
a candidate for being used as base algorithm for a hybrid clustering.

4.5. Results

This section shows the results from the evaluation and is divided into four
subsections. The first part shows biological specifics which were observed on
the results of the AP2/EREBP group. The second part analyses the
clusterings. It measures the clusterings which were computed from the larger
data group of Indica. Furthermore, it compares clusterings from this
algorithm with clusterings from HCE. In the third part the results from
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clustering the data group of AtGenFxpress are illustrated. It was also
analysed if the hybrid clustering could be used for classification. The results
of this analysis are described in the last part.

Before the results are presented it should first be described how the algorithm
was used. Most of the clusterings which were computed consisted of two or
more iterations. In each iteration another similarity set reflecting a specific
feature was used, for instance it was first clustered with respect to sequence
similarity. Each cluster resulting from this procedure was then taken again
and clustered in the second iteration according to another feature, for instance
gene expression. As figure 4.12 depicts, it is also necessary to set a threshold
for each round. The graph clustering algorithm needs this threshold since it
cuts off all the edges representing similarities violating the threshold, as it was
illustrated by figure 1.6. The graph, represented by the similarities, is by that
decomposed into clusters which are retrieved by a depth-first-search. The
interpretation of the threshold depends on the character of the similarity set
(compare E values and Pearson correlation) and has to be selected by the
user as well.

Selecting good thresholds is a task requiring experience as well as knowledge
about the data. If the user does not know about the interpretation of E values
for instance, it would be really hard to select good thresholds. It is also
helpful if the user knows for instance that the elements in the data set are
known to be rather similar with respect to the feature of choice. In this case
the threshold should be set higher (if higher values indicate higher similarity)
to avoid that almost all elements will be in the same cluster. The order how
the features should be used is also defined by the user. Usually in this work
the sequences were chosen as the first feature for the hybrid clustering. The
reason for that is that the sequence is the primary structure of a protein or
gene mainly defining function and structure. It is very unlikely that two
proteins totally different in sequence have the same function, or that the same
transcription factors bind to genes totally different in the nucleotide sequence.
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Figure 4.12.: Configuration of a hybrid clustering. For the first round a simi-
larity set computed by Blast containing F values (sequence sim-
ilarity) was used. The lower the value, the better the similarity.
In contrast, when computing a Pearson correlation, a high value
(with the upper bound one) indicates a high similarity (cf. the
second round). The hybrid clustering is performed with three
iterations, with a different similarity set in each iteration.
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Figure 4.13.: A tree resulting from a hybrid clustering for three rounds. The
root (depth 0) represents the set of all elements before the clus-
tering and a leaf node (depth four) represents a single element.
The nodes at levels one, two and three represent the clusters of
the first, second and third iteration.

4.5.1. Results from clusterings of the AP2/EREBP group

Clusterings of the 34 members of the AP2/EREBP were made. For the
clusterings, three features were used, namely sequence similarity, gene
expression similarity and motif occurence similarity. That means that the
hybrid clustering algorithm executed the underlying graph clustering
algorithm for three iterations under the use of a different similarity set for
each round.

Observation: AT3G11020 and AT5G05410

The first two clusterings belong together. The configuration of the second
clustering is a permutation of the configuration of the first clustering, meaning
that the features were used in a different order but the thresholds remained
the same. In the first computation the set was clustered for three rounds. In
the first round, it was clustered according to Blast E values with a threshold
of e-10 (maximum threshold). In the second round the motif correlations
where used with a threshold of 0.8 (minimum threshold). In the last round, it
was clustered with the gene expression similarities and a threshold of 0.9
(minimum threshold).

Figure 4.14 shows a part of the clustering tree resulting from the
computation. As figure 4.15 illustrates, when cutting the tree at level two only
one more pair of elements is not in the same cluster anymore compared to the
cut at level one. The elements are AT5G05410 and AT3G11020. Their motif
correlation was thus lower than 0.8, while the motif correlations of all the
other pairs in the same cluster was at least 0.8 so they remained in the same
cluster at the next level.
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In this clustering, it cannot be directly observed if AT3G11020 and
AT5G05410 would also be rather dissimilar with respect to gene expression
since they are already in different clusters at level two. If so, they would be
dissimilar with respect to both gene expression correlation and motif
occurence correlation. Another clustering was performed, but now in the
second round gene expression was used (again with threshold 0.9) while in the
third round it was clustered with respect to motif occurence correlation (again
threshold 0.8).

The resulting tree was then cut at level two, i.e. at the level of the gene
expression clustering. The results from this cut were printed to a file. As can
be seeen in the printout in figure 4.16, with respect to gene expression with
threshold 0.9 most of the elements are in different clusters, while AT3G11020
and AT5G05410 belong to the same cluster, meaning that they have a gene
expression correlation higher than 0.9. On the one hand the gene expression
similarity of AT8G11020 and AT5G05410 is in contrast to most of the other
elements rater high. On the other hand their motif occurence similarity is
comparatively low, in contrast to the other elements of the data group.

Inspecting the gene expression similarity set shows that the Pearson
correlation of the gene expression profiles of AT5G05410 and AT3G11020 is
0.9231, while inspection of the Pearson correlation of motif occurences in
AT5G05410 and AT3G11020 shows a value of 0.7681, which is much less than
most of the other similarities in this set. According to the information found
at the Arabidopsis site [1], both AT5G05/410 and AT3G11020 have a role in
drought stress resistance, but no comparative analysis of these two elements
could be found.
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Figure 4.14.: Clustering tree of the first computation. The elements
AT8G11020 and AT5G05410 are in the same cluster at level one,
but not at level two and three.

Figure 4.15.: The two matrices resulting from the cut at level one (left) and level
two (right). It can be observed that AT3G11020 and AT5G05410
belong to the same cluster at level one indicating sequence similar-
ities, but not at level two indicating motif occurence similarities.

93



4. FEvaluation

CLUSTERT1 LEAFO AT1G22190
CLUSTER2 LEAF1 AT5G44210
CLUSTER2 LEAF2 AT4G28140
CLUSTER3 LEAF3 AT4G23750
CLUSTER4 LEAF4 AT5G53290
CLUSTERS LEAFS AT5G11590
CLUSTERS LEAF6 AT2G35700
CLUSTERG LEAF7 AT4G32800
CLUSTERG6 LEAF8 AT2G44940
CLUSTER7 LEAF9 AT4G25480
CLUSTER7 LEAF10 AT4G25490
CLUSTER7 LEAF11 AT5G51990

CLUSTER7 LEAF12 AT4G25470
CLUSTERS8 LEAF13 AT2G46310
CLUSTER9 LEAF14 AT5G47230
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Figure 4.16.: Plot created by the clustering software. It resulted from the cut
of the tree of the second computation at level two indicating
gene expression similarity with threshold 0.9. AT3G11020 and
AT5G05410 are in the same cluster.
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Observation: AT4G25470, AT4G25480, AT4G25490

The former clusterings (see section 4.5.1) were then inspected at the last level
to find out if there are elements in the data group rather similar with respect
to all three features. Figure 4.17 shows the cut at level three from the second
clustering described in the former section 4.5.1 (first round gene expression
with threshold e-10), second round gene expression with threshold 0.9 and
third round motifs with threshold 0.8). It can be observed that there is a
cluster consisting of four elements, AT/G25470, AT4G25480, AT/G25490 and
AT5G51990. Especially the first three of those are interesting. They are also
known as CBF1-CBF3 or DREB1A-DREB1C. According to Gilmour et al.
they have an important role in Arabidopsis regarding biotic stress [10].

The authors manipulated CBFI-8 in plants and set them under cold stress.
They observed that the plants with the manipulated CBF1-3 degenerated,
they were smaller and grew much slower [10]. As figure 4.5.1 illustrates most
of the clusters contain at level three only one element. It seems to approve
what the authors state: CBF1-3 are very related [10].

_ Matrix of the curent cut. Black points mark that element[row] and element [column] are in
Cut tree at level: vl the same cluster
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Figure 4.17.: Clustering tree and matrix from the cut of the second clustering
described in section 4.5.1 at level three. AT4G25470, AT4G25480,
AT4G25490 and AT5G51990 are in the same cluster meaning
that they are similar with respect to sequences (E value <e-10),
gene expression (Pearson correlation >0.9) and motif occurrence
correlation (Pearson correlation >0.8).

4.5.2. Results from clusterings of the Indica set

We will now turn to the measures for evaluating cluster quality. The measures
refer to distances between objects in a k-dimensional space. Since we have no
location at hand, the similarity scores have to be used. Due to cut-off values
in the pre-computation of the similarity sets (as for instance used by Blast)
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some of the similarity scores are missing. A penalty term was introduced for
these missing values. Let S be the set of similarity sets which are at hand.
The penalty score of two elements for which no similarity value is at hand, is
then defined as the value:

penalty(ey, e2) = 2 x max {distance(x,y)}
(zy)es

The group was firstly clustered according to blast similarities with a threshold
of e-20. After that, the algorithm clustered according to gene expression
similarities with a threshold of 0.8. The resulting clustering tree was then cut
at the first and the second level. The purpose was to find out whether the
hybrid approach improves the quality of the clustering. If this assumption
holds the measure should indicate a higher quality at the second level. Before
the results are presented, it has to be noticed that the hybrid approach is not
meant to replace common clustering algorithms. Instead of this the hybrid
approach is meant to make use of common clustering algorithms (in this case
a graph clustering algorithm) by executing them iteratively with a different
feature in each iteration. This is not meant to improve the clustering in terms
of mathematical quality but to obtain new insights by taking various features
into account.

The result is shown in figure 4.18. The clustering consists of 916 clusters while
the total number of elements is 1301, meaning that there are a lot of clusters
containing only one element. This is due to the Blast cut-off value. For a lot
of pairs there is no similarity value at hand and thus the graph clustering
algorithm treats such pairs as most dissimilar implying that the elements will
be in different clusters. The clustering at level two contains 1010 clusters
meaning that there are even more clusters containing only one element. Thus
it is not surprising that the average intra-cluster distance of the second
clustering is lower, because for clusters containing only one element the
intra-cluster distance is 0, and the second clustering has more such clusters.
The average inter-cluster distance in contrast was nearly the same. The
increase of the Jagota measure could be explained analogously since this
measure only focuses on the intra-cluster distance. In the first clustering there
are more clusters containing only one element and thus delivering the distance
0 when calculating the distance from the single element to the cluster’s
centroid - itself.

However, the higher Davies-Bouldin Index on the first clustering is surprising.
It may be due to the missing values. Since the first clustering contains many
small clusters, calculating their inter-cluster distances may include a lot of
missing values resulting in a high penalty value. This makes the denomiator
(cf. the formula for the Davies-Bouldin Index) on the average higher. The
missing values may lead to a decrease in measure quality. Another reason
might be that the measure is more useful to compare clusterings of the same
set which have the same number of clusters. To analyse this, a possibility is to
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have another clustering approach which delivers the same number of clusters
(or at least approximately the same number), but in a manner that the
clusters decompose the set in another way than this algorithm. Thus the
measures have to be interpreted cautiously if the clustering was computed
from a similarity set with missing values, due to a cut-off value in the
pre-computation.

Intracluster distance (average). 0.287678 Intra-cluster distance (average):  0.119057
Intercluster distance (average):  2.168352 Inter-cluster distance (@average):  2.188126
Jagota measure: 263513099  Jagota measure: 120247212

Davies-Bouldin measure: 230851 Davies-Bouldin measure: 1.260617

Figure 4.18.: The result from the measure computation for the cuts at the first
(left) and the second level (right). It can be observed that the
measures indicate a quality improvement for the cut at the second
level although there are more singletons.

To analyse if the measures are more reliable a clustering was performed only
for one round with the gene expression similarities and a threshold of 0.9. For
pre-computation of the gene expression similarities, no cut-off value was used
and thus for every pair there is a similarity value at hand. The result is shown
in figure 4.19. The clustering contained only 11 clusters and thus there are
not many singletons. Intiutively, such a clustering seems to be more
reasonable under mathematical terms (similar elements should be in the same
cluster and dissimilar elements should be in different clusters) than a
clustering where almost all of the clusters contain only one element (implying
that almost all of the elements are in different clusters). The measures
approve this assumption, the Jagota measure as well as the Davies-Bouldin
Index indicate that the mathematical quality of this clustering is much better
compared to the former clusterings with many singletons.

Intra-cluster distance (average). 0.453014
Intercluster distance (average):  2.684398
Jagota measure: 5.049155
Davies-Bouldin measure: 0.756782

Figure 4.19.: The result from the measure computation for second clustering,
focusing only on gene expression
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4.5.3. Results from clusterings of the AtGenExpress group

The elements of this group were clustered for three iterations. In the first
iteration, it was clusterered according to sequence similarities with a threshold
of e-2. The reason for that is that the data group contains genes from
different families. Compared to the members of the AP2/FEREBP TF family
they are less similar and thus a higher threshold was chosen (not that for £
values, lower values indicate higher similarity). After that in the second
iteration the threshold was 0.8 and the motif correlations were used. The
motif threshold of 0.8 turned to be a good value in the formerly computed
clusterings. In the last iteration the threshold was 0.95 and the gene
expression profile correlations were used. The purpose was to have a strong
refinement at the last level. As can be observed in figure 4.21 a lot of elements
land in one cluster. The other clusters are comparatively small, and thus the
total number of clusters is with 1124 rather high. The upper matrix in figure
4.20 illustrates the distribution of the elements. In the second iteration it was
clustered according to the motif correlations with a threshold of 0.8. As can
be seen in the second matrix in figure 4.20, the situation does not really
change, the number of clusters is approximately the same. But the cut at level
three reflecting the clustering of the third iteration, according to gene
expression with threshold 0.95 shows a change, depicted by the third matrix
in figure 4.20. Especially was the large cluster depicted by in figure 4.21
divided into two clusters, as illustrated by figure 4.22, meaning there is a set
of elements which all have a pairwise sequence similarity of at least e-2 as well
as a motif correlation of at least 0.8. Clustering them according to gene
expression correlation with a threshold of 0.95 divides them into two sub
clusters. None of the elements from one sub cluster has a gene expression
correlation of at least 0.95 to one element of the other sub cluster.
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Figure 4.20.: The matrices from the clustering of the AtGenFxpress group, re-
sulting from cuts at levels 1-3. It can be observed that there is not
much of a change between levels one and two, but at level three
many clusters were decomposed into smaller sub clusters (less el-
ements are in the same cluster and thus the matrix has less black
entries).
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Cut tree at level: |1 'I Cut tree at level |1 hd Cut tree at level |1 >
= ot EI AT1GEI7E0 B = Cluster! 111 -]
[=)- Clusterl AT1G21000 ATEGE4510
AT1GMOT0 AT3IGEF040 =) Cluster1 112
AT4G01550 AT1G13050 ATHGEE4550
[ Cluster2 AT2G20560 i E]- Cluster1113
AT1GO1120 ATEGE4410 ATEGE4E40
AT2G15090 AT1GT2070 =) Cluster1 114
AT1GEBSI0 AT4G39675 ATBGEES120
AT2G28630 ATEGET390 =) Cluster1 115
[=]- Cluster3 [=) Clusterd ATHEES390
ATIGO1140 AT1G0T300 [l Cluster1 116
AT3G24520 (=) Clusterd ATBGES490
ATEGE15950 AT1G01390 =) Cluster1117
AT1G26790 AT1G01420 ATHGEESEED
AT3GE1830 ATEGE3500 ) Cluster1 118
ATEGE10930 (= Clustert ATEGES210
AT4G22820 AT1G01470 =) Cluster1119
AT2G41900 (=) Cluster? ATBGREES20
AT1G27200 AT1G01500 =) Cluster1 120
ATEGZE110 (= Clusterd ATHGEEESS0
AT1GEA830 AT1G0TSED E)- Cluster1121
AT3G23000 (= Clusterd ATBGEE?070
ATEGE3320 AT1GO1E50 =) Cluster1 122
ATEGZE230 (= Cluster10 ATBGES160
ATAG23040 AT1G02270 - Cluster! 123
AT4G14580 AT1G214E0 ATEGEE7420
ATEGEETEI0 (= Cluster11 =) Cluster1 124
AT2G35700 :I AT1G02310 LI ATBGRE7480 EI

Figure 4.21.: Three parts from the clustering tree, which resulted from a cut
at level one. As the leftmost and the middle parts show, a lot of
elements land in the second cluster. This can be seen by looking
at the position of the scrollbar in the middle picture. But there
are also a lot of elements which are the only ones in their cluster,
depicted by the right part. Therefore, the total number of clus-
ters is comparatively high, although the threshold of e-2 is quite

relaxed.

Cut tree at level |3 'I Cut tree at level |3 > Cut tree at lewel |3 =
= oot i’ - ATAGIT 20 B - ATEG58350 =]
1 Cluster] ATEGATED AT3GEE000
L ATIRD10T0 - AT1GMS20 - AT1G03560
- Cluster2 - ATEGE03340 = - 4T1G28680
] AT4GM S50 AT1G039058 AT2G33050 —l
[=1- Cluster3 - AT3G28210 - AT3E10120
o - AT1GED1120 - AT2G46270 - AT2629420
- Clusterd - ATSGE2300 - ATIETI0
§ - AT2E15030 - AT1GF7450 - AT2G31945
- Cluster5 - AT1GM720 - ATEE39610
- AT1GEESI0 - AT1GE0T90 - AT1G02850
[=1- Cluster§ - AT1GE2890 - AT1G17170
. AT2E28830 - AT2G19810 - AT3G04070
- Cluster? - ATEG43280 - ATAGOF100
ATIGI140 AT2G45820 ATEG 44380
- AT3E24520 - AT3GE4030 - AT3GMSE70
- ATEGE15350 - Clusterd - AT2G18050
AT1G2E7I0 AT2G26580 ATAGI430
- AT3GE1890 - AT4G27300 - 44623300
- ATBE10930 - AT1G055E0 - 472625090
AT4G22820 AT2G42480 AT3G20270
- AT2G41900 - ATEGEE330 - AT4G11530
- AT1G27200 - ATEGE 25770 - AT1623020
ATEG2E170 ATEGOE380 ATEGEEEF0
- AT1GE4830 - AT1G11380 - AT1G70530
- AT3E23000 - AT3GR0EI0 El- Clusterd
- ATSGEEI320 - AT3G16570 ATSG52640
- ATEEZEZ30 4| - AT3G14090 =l B Clusterl0 =l

Figure 4.22.: The tree resulting from the cut at level three. The large cluster,
shown in figure 4.21, was divided into two large clusters after
clustering according to gene expression with a threshold of 0.95.
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4.5.4. Hybrid clustering as a classifier

Clustering algorithms can sometimes be used as classifiers. One example is a
k-means classifier. Assume that we have knowledge about data and come to
the conclusion that this data can be distributed into five clusters. Now we
take this clustering as the base for our k-means clustering, meaning that k = 5
and the cluster centroid of a cluster is the mean vector computed out of the
vectors of this cluster’s members. How this could look like was illustrated in
figure 1.1. Now we find a new element, for example a transcription factor, and
want to find out to which class the transcription factor belongs. We obtain
therefore gene expression data in an experiment. We could then simply assign
it to the class with the closest cluster centroid and then recompute this
cluster’s centroid. This method is of course naive. There are other
approaches, for instance Support Vector Machines. They are not discussed in
detail here, but there is plenty of information, e.g. Kecman explains them in
the context of learning from experimental data [16]. A brief overview is given
by the article at Wikipedia [23].

To determine whether the hybrid approach may be useful for classifying (in
this case family classification) the data from the AtGenEzxpress group
consisting of around 2000 members was analysed. The clustering described in
section 4.5.3 was used again. Within this group there are some members of
the AP2/EREBP family. This knowledge was used meaning that this family
forms a class within the whole group. If the hybrid clustering could work as a
classifier, these members should be in the same cluster, or at least almost all
should. Under the assumption that a class has a high similarity, regardless if
looking at sequences, motifs or gene expression, it should furthermore not
make much of a difference at which level we cut the tree. Since the cuts at
level one and level two lead to quite similar results, as described in section
4.5.3, we only look at the clusterings which result from the cuts at level one
and three.

The members of the AP2/EREBP family were loaded from
http://www.arabidopsis.org/browse/genefamily/AP2EREBP. jsp. For
each member it was checked whether it occurs in the clustering. Furthermore,
an integer value was assigned to each cluster indicating the number of
members from the AP2/EREBP family it contains. If member m was found
in cluster ¢, then the value of ¢ was increased by 1. If the hybrid clustering is
now a good classifier, almost all of the members should be concentrated in one
cluster. This condition should also hold if we look at the clustering obtained
by cutting the tree from the hybrid clustering at different levels. Figure 4.23
shows the results in two charts. 35 members of the AP2/EREBP family were
identified within the data set from section 4.5.3. The upper chart resulted
from cutting the tree at level one, reflecting the clustering according to
sequence similarity in the first iteration. 31 out of those 35 members occurred
in cluster three, three members occurred in cluster 78 and one member
occurred in cluster 989. 31 out of 35 members seems to be quite good,
although four members landed not in cluster three which is about 11%. The
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lower chart shows that if the tree is cut at level three, reflecting the gene
expression similarities, only 24 members remain in the same cluster.

As shown in figure 4.22, the large cluster at level one and two was split up
into two large clusters at level three. The 31 members which were in the big
cluster of level one distributed over the two big clusters at level three. Five are
in cluster seven and 24 are in cluster eight, as the lower chart in figure 4.23
illustrates, summing up to 29, meaning that two other members are located in
none of the big two clusters at level three. Under these observations, the
conditions for having a good classifier do not hold. The hybrid approach is not
meant to be a new or a better classifier which should replace existing ones. Its
use is clearly not to classify data. It should help to analyse data from different
perspectives which are reflected by the various features the data offers, e.g in
biology like gene expression, sequences, motif occurences and so on.
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Occurences of members of AP2/EREBP in clustering of level 1
(x-axis: cluster number; clusters with 0 members are not displayed)
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Occurences of members of AP2/EREBP inclustering of level 3
(x-axis: cluster number;clusters with 0 members are not displayed)
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Figure 4.23.: Charts resulting from counting the number of occurences of

AP2/EREBP members for each cluster. The upper chart shows
the occurences in the clustering resulting from cutting the tree
at level one, while the lower chart shows the occurences in the
clustering resulting from cutting the tree at level two. The config-
uration of the clustering is the same as for the clustering described
in section 4.5.3.
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5.1. AT3G11020 and AT5G05410 from the AP2/EREBP
family

As observed in section 4.5, these elements show a high motif occurrence
similarity but a low gene expression similarity. The members from the
AP2/EREBP family analysed for this thesis, tend to have a high gene
expression similarity, but a low motif correlation if they are rather similar in
sequence (F value computed by Blast was lower than e-10). Further
comparative analysis of these two members of AP2/EREBP might be an
interesting task for people related to biology. As mentioned in section 4.5.1,
these members of the AP2/EREBP family have a role in drought stress. This
can be found out by browsing the Arabidopsis data base
(http://www.arabidopsis.org).

5.2. Genome-mean expression profile

The Genome-mean expression profile (GMEP) is an approach introduced by
Chiang et al. [3]. Their work is closely related to motifs and transcriptional
regulation. According to the authors, ”many methods have been described
that identify sequence motifs enriched in transcriptional control regions of
genes that share similar gene expression patterns” [3]. Therefore most of the
approaches identify the motifs by a ” group-by-expression” method, i.e. they
first identify genes with similar expression patterns and analyse their
transcriptional control regions for the presence of shared sequence motifs. A
review of these approaches is given by Ohler et al. [19]. The assumption
behind these approaches is according to the authors of [3] that ”genes with
similar expression patterns are likely to be regulated by common factors, and
thus should share binding sites for these factors in their non-coding

regions” [3]. However, as the authors state there is one major problem with
these approaches: As stated by Holmes et al. [12] they do not take into
account that the process of regulation is in general influenced by multiple
independent factors. As the authors of [3] state it often depends on the
several conditions in an experiment whether two genes would be identified as
e.g. co-expressed or not. They might be co-expressed under one set of
conditions, but differentially expressed under others. Motivated by this
observation Chiang et al. try an alternative approach. They analyse the
behaviour of a motif in several conditions by calculating the so-called
Genome-mean expression profile. Assume that for a motif m, G will be the set
of genes which contain the motif in their TCRs (transcriptional control
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regions). The Genome-mean expression profile of a motif m under the
condition j is then defined as:

EgEG Wing - Dy
ZgEG Wmg

GMEP(m); =

Wy is the number of occurrences of motif m in the sequence of the
transcriptional control region of gene g. D is a data matrix with r rows, each
indicating a single gene, and ¢ columns, each representing a single condition.
D,; indicates therefore the expression of gene g under condition j. The reason
for the use of the GMEP is the following assumption the authors make: If a
sequence motif carries transcriptional information (i.e. it is bound by a
transcription factor) they ”expect the expression pattern of genes containing
this motif to have non-random features that reflect the activity of the
corresponding transcription factor” [3]. The expression pattern of such genes
differs therefore significantly from those of the entire population. Since the
GMEP of a motif is the weighted mean expression of the genes containing the
motif, it should differ significantly if the motif carries transcriptional
information. The authors calculated the GMEP for a set of motifs under
various conditions like abiotic stress. By that they obtained a data row of
GMEPs for each motif and clustered the motifs according to this. It can be
observed in [3] that there is indeed a significant behaviour of the motifs in the
same cluster. For each cluster the authors calculated the cluster correlation as
the Pearson correlation for all motifs within the cluster, showing that the
intra-cluster-correlation (the correlation between GMEPs of motifs in the
same cluster) is rather high.

The GMEP approach is not directly related to the hybrid clustering of this
thesis since the main focus of the work of Chiang et al. lies on finding
significant motifs. Clustering is what they did to show the use of the GMEP.
However the GMEP has a high importance for sequence motifs and
transcriptional regulation. In this thesis motifs were also used to cluster data.
The use of the GMEP might help to improve the quality of calculating motif
occurence similarities. In this thesis the motifs were taken from to data bases,
PLACE and PlantCare. By the GMEP functionally related motifs can be
identified, furthermore the GMEP helps to identify important motifs for a
certain condition. If data is for instance to be clustered to obtain new insights
in a drought stress study, using the GMEP can help to identify motifs having
an important role in drought stress. The task of analysing how the GMEP
can improve the motif data might be of interest especially for people related
to data mining and knowledge engineering as well as for biologists.

5.3. Information fusion approach

In the approach introduced by Kasturi et al. [14] the authors clustered data
related to yeast which they took from several experiments on budding yeast.
In their work they describe precisely where the data comes from and how they

65



5. Future work

prepared the data for using it with their approach. As mentioned in section
4.4.2 the authors come to the conclusion that ”genes with similar function
might possibly share a common expression pattern under a certain
experimental condition and might share a common motif” [14]. Under the use
of the data they used as well as with other data, and maybe in combination
with the Genome-mean expression profile, it could be analysed if this
observation can be confirmed with the hybrid approach. This is also a task
especially for people related to data and knowledge engineering and biologists.

5.4. Another graph clustering algorithm

It would be interesting to use another clustering algorithm than the current
one, and to compare the results. This is maybe of interest for people related
to algorithmics. Like the underlying clustering algorithm used in this thesis,
the algorithm from Flake et al. [8] is a graph-based clustering algorithm. To
explain the algorithm in short: it creates an artificial node, the authors call it
the ”artificial sink”. It then connects this artificial node to every other node,
with the weight «. It then computes a minimum cut tree of the new
augmented graph. The artificial node is then deleted again as well as all its
adjacent edges, decomposing the graph into independent sub graphs. The
value o has an important role in the algorithm. The authors state that if «
increases the number of clusters is non-decreasing. The best value can
according to the authors be computed e.g. by a binary search. The central
point is the computation of the minimum cut tree. Turau [21] gives a
suggestion for the implementation of calculating minimum cuts. It is,
unfortunately, in German. However, people interested in this suggestion for
future work can contact the author of this thesis if they would like to get an
"english version” of Turau’s algorithm.

5.5. Several software tasks

The suggestions of this section might be of interest for people related to
software engineering. An outline of the main points is given below. The
suggestions include writing plug-ins to provide new functionality as well as
making changes to the framework itself, because there is still room for
improvement.

e Display modification: Right now, the display method is that the
framework collects all the displays for the element on which the user
clicks in the browser view. Each panel the displays provide is shown on
a different tab page. This has two main disadvantages. Firstly, the user
might want to see the same display type (e.g. a similarity matrix) of two
different similarity sets at the same time, and then arrange them side by
side to compare them. With the tab page solution, this is not possible.
The second disadvantage is that all possible displays are always loaded,
no matter if the user is interested in only a few. To load all of them also
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takes time if the data set is large. The suggestion is that when the user
right-clicks on a data set, the framework then collects all the relevant
displays and shows their names in a context menu. The display itself is
then opened in a sub window, so the tab panel should be replaced by a
window container.

e Registries: At the moment the plug-ins have to register their new
functionality at the framework’s corresponding registries. Sometimes
this cannot be avoided (e.g. for the storage managers, since there must
be a unique storage manager for one set), but in many cases it is
possible by searching the plug-in assembly for the desired interface
implementation. Then the registration is not necessary anymore. The
developer just implements the interface and loads the plug-in in the
application. The rest is done by the framework.

e Raw sets and algorithms for computing similarities: Since the
raw data was not the focus of this work, the framework does not contain
any implementation for modelling several raw sets, e.g. sets with
sequences. Therefore, it also does not provide any algorithms which can
compute similarity sets out of raw sets yet. Modellings of raw sets and
algorithms can be implemented as plug-ins to be integrated by the
framework.

5.6. The vision of the software

One of the main tasks of this thesis was writing a software including the novel
hybrid clustering approach. As mentioned in section 1.3.2 there are numerous
common software applications, and some of them are text based and lack a
graphical user interface. It would be good to also have a graphical user
interface for them. A clustering can be performed from the "raw” data of the
objects itself (where objects are for instance interpreted as a vector), but also
from pre-computed similarities also based on the raw data. Even if the raw
data itself is not necessary for the hybrid approach which was implemented
here, the raw data is still connected somehow to the pairwise similarities and
the clustering itself.

Some features of biological data do in fact allow a vector representation (e.g.
gene expression under certain time points) so that the raw data may also be
used for the hybrid approach in the future. In any case it would be much
better if all the data, the raw data, similarity sets of the raw data, and
clusterings of the raw data are handled through the same application. It may
be less confusing to use one single application to compute the pairwise
similarities of a set of raw data, and then cluster according to these
similarities, instead of using program A to compute pairwise similarities,
export them, and then import them into program B to compute the
clustering. Furthermore the outputs from different programs are sometimes in
a different format, which makes it hard to compare the results of two different
clustering programs.
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The goal of the development process was not only to write a software with a
clustering algorithm, including a graphical user interface. Instead of this, the
software comes along as a framework for computing similarities and
clusterings of objects. The hybrid clustering algorithm is a plug-in set
extending the framework, as well as different visualisations of the clustering
results and tools to manipulate, measure and print them out.

In the future it is desired that many approaches are integrated in this
framework. For command-line based clustering programs which lack a
graphical user interface, the framework can just be extended with a simple
wrapper window taking the configuring the command-line parameters and
parsing them to the command-line based program. The result computed by
this command-line based program is then automatically loaded into the
clustering software by an importer. All the available tools and visualisations
which the framework provides can then be used with this imported clustering
created by the foreign program, e.g. visualise them as a cluster tree, cut the
tree, compute several measures of the clustering and so on.

The advantage for the user is obvious. Instead of using a various number of
programs, he would use one single application. All the visualisations of raw
data, similarity data and clusterings are then consistent, and the same tools
and measures can be applied to all of them. The comparison of the vision
depicted by figure 5.1, with the current state described in section 1.3.2 and
illustrated by figure 1.11, emphasises the benefit for the user.
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Figure 5.1.: The vision. The user can still use the old applications but does

not recognise it. The framework either communicates with ex-

ternal applications (through wrappers), or uses internal function-
ality, and provides a consist displaying of the results. Several

tools for analysing, as for instance measures, are also used via the
framework.
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In this thesis a new clustering approach was implemented and evaluated with
biological data. The application was implemented as a software framework.
From the software engineering view, it can be said that the language of choice
C# provides many useful techniques like static classes, which were helpful
during the implementation. The framework is now extendable with respect to
various aspects, including the model, the graphical user interface and the
algorithms. As pointed out in chapter 5 there are several possibilities how the
software can be improved. While evaluating the clustering approach two
interesting observations were made, on two groups of members within the
AP2/EREBP family. One of these groups, namely the CBF1-3 group, is
well-studied, but a detailed comparative analysis of AT3G11020 and
AT5G05410 could be interesting. As mentioned in section 4.5.1 the two
groups show a behaviour which differs from the behaviour of the other
members within the AP2/EREBP family of transcription factors. There is
plenty of information available about the AP2/EFREBP family. Kizis et

al. [17] studied their role in gene regulation during abiotic stress. They come
to the conclusion that ”Our knowledge of the molecular mechanisms
underlying the responses of plants to environmental stresses such as drought is
still rather limited, but an increasing number of genes have been identified in
recent years that mediate those responses.”. Gilmour et al. [10] state that the
three members CBF'1-3 of the AP2/EREBP family have redundant functional
activity. It was highlighted during the evaluation that they show in fact a
noticeable behaviour. They are rather similar in sequence similarity, gene
expression and motif occurences. As mentioned by the Chiang et al. [3]
multiple factors are involved in transcriptional regulation and especially
motifs strongly depend on the conditions of the experiments. A careful
selection of the motifs and the use of the GMEP suggested in [3] could lead to
a further improvement.

The hybrid approach and the technique of cutting the tree and displaying the
result in a matrix view was helpful to identify significant behaviour quickly. It
would be interesting to build the hybrid clustering approach with other
underlying clustering algorithms, to compare the quality between two hybrid
clustering approaches with different underlying base clustering approaches.
One interesting candidate was suggested by Flake et al. [8]. This algorithm is
also a graph clustering as well as the underlying algorithm used in this thesis.
Turau [21] gives suggestions for the implementation of the underlying
minimum-cut tree computation. The algorithm described in [8] is a more
recent one. Furthermore there are plenty of other, well-established algorithms,
like k-means clustering. Some of them work directly on raw data, like the
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algorithms used in HCFE for instance. In contrast the current version of the
hybrid approach uses pre-computed similarity sets. Thus the quality of the
clustering depends on the quality of the underlying similarity set (its
computation). However, the ideas of the hybrid clustering do not exclude the
use of underlying clustering approaches which make direct use of the raw
data. It was shown in section 2.1 that also hierarchical clusterings might be
used as underlying algorithms of the hybrid approach.

From the viewpoint of software engineering, a new framework was developed
providing basic functionality related to the process of clustering and analysing
data. People interested in technical questions about the framework can refer
to the technical documentation in the appendix or contact the author. It was
shown that the MVC architectural pattern as well as the Observer design
pattern assist the process of framework development. The two framework
concepts Fclipse and Lucene gave ideas how to implement a framework which
is on the one hand easy to extend (Lucene) but on the other hand still flexible
enough to satisfy the various requirements coming up when extending a large
end-user application (Eclipse).

After evaluating the data from Indica and measuring the clustering, it came
out that the chosen measures have to be interpreted cautiously under the
special conditions of this kind of clustering (it is rather different from common
clustering approaches). In future, other approaches might come up focusing
also on various aspects of the data and are therefore better to compare.
Furthermore, as more such algorithms are developed there also might come
new measures designed especially for comparing clustering algorithms focusing
on different aspects of the data. However, comparisons between clusterings
can and should be made, based on the results they deliver. As stated in
section 5, the authors of the information fusion approach described in [14]
describe precisely the data they used for the experiments. Comparing the two
algorithms under the use of the same data could lead either to an ”agreement”
with the results and the conclusions or not. In each case, the insights obtained
by such a comparison could help for designing new and better algorithms.

As emphasised in section 4.5, new insights could be obtained under the use of
the hybrid clustering. Observations were made which seem to confirm some of
the conclusions made in related work, cf. the observations Gilmour et al. [10]
made concerning CBF1-3 with the results of the hybrid clustering. It may be
possible to improve the similarity values regarding motif occurrences, the
GMEP introduced by Chiang et al. [3] could be helpful. Another approach
also focusing on multiple aspects of the data is the information fusion
approach from Kasturi et al. [14]. Since the amount of information available
not only in biology but in many fields of research is growing and growing,
approaches which focus on all or at least many of the features the information
provides attract more and more attention. Due to this there might be plenty
of new algorithms coming up in future, designed especially for focusing on
multiple features of the data. A comparison between the hybrid approach
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6. Conclusions

introduced in this thesis and other related algorithms like the information
fusion algorithm described in [14] could give new insights into algorithm
development as well as into data analysis.
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A. Glossary

Artificial neural network
A mathematical model that is based on biological neural networks. It is
usually an adaptive system, i.e. it changes its structure due to external
or internal information that flows through it.

AP2/EREBP
A family of transcription factors which have a central role for
Arabidopsis and rice. They have an important role in resistance to
abiotic stress, according to [17] and [10]

AP2/ERF
This refers to the same family as AP2/EREBP

Arabidopsis
A family of small flowering plants related to cabbage and mustard. The
AP2/EREBP Transcription factors which are related to this family, were
used for the evaluation. More information can be found at
http://www.arabidopsis.org

AtGenExpress
In this experiment, gene expression under cold stress within Arabidopsis
is studied. More information about the experiment from D’Angelo et al.
can be found at [4].

Blast
A collection of programs for analysing biological data. It is used for
matching DNA or protein sequences to a data base, aligning sequences
etc. The web site is http://www.ncbi.nlm.nih.gov/blast/Blast.cgi.

Clustal
Clustal is a program for computing multiple sequence alignments. To
achieve this, Clustal computes pairwise similarities and a clustering.
There are command-line based versions of Clustal as well as versions
including a graphical user interface. Downloads of the program can be
accessed at http://www.clustal.org/.

E value FEzxpected value
This is a value which Blast delivers when comparing sequences. Roughly
said, if the value s measures the similarity between two sequences, then
the E value is the expected number of sequences which score an equal or
better similarity value with one of those two sequences, when performing
a database search by chance. Therefore, the lower the value, the more
significant the score is.
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A. Glossary

Eclipse
An open source software framework. Eclipse is mainly used for
developing software in Java, but not necessarily, as shown e.g. in the
ISTP project (see
http://wagner.st.informatik.tu-darmstadt.de/se2006/eos20ft/,
where Eclipse was used for assisting software support.

GeneSpring
This is a visualization and analysis tool designed for use with gene
expression data from Agilent Technologies
(http://www.chem.agilent.com).

HCE
Hierarchical Clustering Explorer. A program for computing hierarchical
clusterings with various measures, e.g. average linkage and single
linkage, euclidean distance and Pearson correlation. The resulting tree
can be cut to retrieve a non-hierarchical clustering, which can be printed
to a plain text file. The web site is http://www.cs.umd.edu/hcil/hce/.

Indica Oryza sativa cv Indica
A cultivar of rice. A large data set from this family was used for the
evaluation of the application.

Lucene
An open source software framework for indexing data and searching
within indexed data.

Microarray
This is a large-scale technology for measuring gene expression.

Neighbor-Joining algorithm
A bottom-up hierarchical clustering approach. In this algorithm, the
two closest cluster (the clusters with the best similarity score) are fused
together to one new cluster. After that, the distance from the new
cluster to all other clusters is re-computed. The algorithm is similar to
the UPGMA method, but Neighbor-Joining doesn’t calculate the new
distances under the assumption of the molecular clock (i.e. that all taxa
evolve with the same, constant change rate)

Pearson correlation
A correlation coefficient which indicates the strength and direction of a
linear relationship between two variables. It is often used to measure the
similarity between gene expressions. There, the empirical correlation
coefficient can be used, which is

Y- D -9)
VE@i - 22/ i - 0)?

Txy

PLACE
A database, similar to PlantCare, which contains Cis-acting regulatory

elements. The web site is http://www.dna.affrc.go.jp/PLACE/.
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A. Glossary

PlantCare
A database for plant promoters and their cis-acting regulating elements.
Cis-acting elements are, in the context of transcription regulation, DNA
sequences which regulate the expression of genes on the same strand.
The web site is
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/

SOM Self-organizing map
An artificial neural network that is trained using unsupervised learning.

SVM Support Vector Machines
Support Vector Machines are methods for supervised learning and used
for classification. There is plenty of information on the web available, for
instance the online article at wikipedia.org [23].

Unsupervised learning
Unsupervised learning belongs to the field of machine learning. In
contrast to supervised learning, there is no ”teacher” showing how to
perform a task by giving a set of labeled examples. P. Dayan gives an
introduction to it in [6].

UPGMA
Another bottom-up hierarchical clustering approach. It works like
Neighbor-Joining, but after fusing the two closest clusters to a new one,
the distance from the new cluster to the other clusters is computed in a
different way than in the Neighbor-Joining approach.

WRKY
Another family of transcription factors in Arabidopsis and rice. A small
subset from this family was taken during the evaluation, but mainly for
testing the application. More information about this family can for
instance be found in [24].
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B. AP2/EREBP members used for the
evaluation

Figure B.1 shows the members of the AP2/FREBP transcription factors,
which were used for the evaluation of the software. This is a raw set with gene
expression data. Out of this data, the Pearson correlations where computed,
leading to a similarity matrix which was used as an input parameter for the
clustering.

0 0.5 1 2 3 4 6 8 12 24

AT2G23340 0.99 0.89 0.88 1.03 1.18 5.53 1424 2593 493 12.05
AT4G17490 0.96 1.21 3.19 10.11 17.03 14.55 9.59 6.74 1.05 0.27
AT4G17500 0.97 0.23 0.53 0.46 0.39 0.29 0.11 0.09 0.07 0.07

AT4G36920 1 0.69 1.02 0.92 0.82 1.13 1.75 3.02 5.55 2.46
AT4G36900 1 1.29 1.01 1.01 1 1.2 1.61 2.28 3.61 3.25
AT5G25190 0.98 0.97 1.56 1.54 1.52 1.15 0.4 0.29 0.06 0.03
AT5G53290 1 1.06 1.09 2.94 4.79 1057 2212 19.88  15.39 2.95
AT5G51990 1 1.05 1.25 20.62 40 31.51 1454 1012 1.27 3.44
AT5G51190 1 1.05 153 1.78 2.03 1.41 0.17 0.14 0.08 0.07

AT5G47220 0.98 0.78 1.8 2.87 3.94 3.45 2.47 2.23 1.73 0.23
AT5G47230 0.95 0.93 1.81 2.54 3.27 2.99 2.43 3.28 4.99 1.45

AT5G44210 1 0.86 1.01 1.02 1.04 1.56 2.6 3.8 6.19 2.4
AT5G11590 0.99 1.01 1.13 1.28 1.43 1.93 2.94 4.42 7.38 2.29
AT5G07580 1 0.88 0.84 0.67 0.5 0.38 0.15 0.13 0.1 0.08

AT5G05410 0.99 0.5 0.69 1418 2768 37.08 5587 4736 3035 2325
AT3G50260 0.97 0.73 1.21 8.64 16.07 5528 133.7 15837 207.7 36.25
AT4G32800 0.97 0.85 0.79 335 5.92 9.16 15.66 13.03 7.78 235

AT4G28140 1 1.55 1.19 1.4 1.6 1023 2749 3461 48.84 7.44
AT4G25480 1 1.39 4038 416.04 7917 801.8 822 676.83 386.5  48.07
AT4G25490 0.96 133 4286 41138 7799 63937 3583 25036 3448 5022
AT4G25470 1 5.56 1139 60195 1090 1020.57 881.7 680.03 276.7 89.15
AT4G23750 0.99 2.49 4.46 5.94 7.42 8.58 10.91 1211 14.51 237
AT1G22190 1 0.6 0.85 0.69 0.53 0.37 0.05 0.04 0.03 0.13
AT3G11020 0.98 1.77 1.41 6.92 1242 1937 3328 3284 3197 11.31
AT3G15210 1 0.73 1.33 3.29 5.25 6 7.5 7.03 6.1 7.75
AT1G64380 0.99 1.22 1.92 2.6 3.28 5.52 10.02 8.27 4.76 2.39
AT1G68550 1 1.01 1.61 1.64 1.67 1.86 2.25 3.26 5.28 9.28
AT1G28370 0.96 0.57 1.8 9.12 1645 13.41 7.34 5.37 1.42 1.59
AT2G40350 1 1.24 1.24 1.17 1.1 3.96 9.66 2218  47.21 1043
AT2G28550 1 1.19 1.31 1.55 1.79 2.63 4.31 5.13 6.77 3.32
AT2G35700 0.96 2 2 235 2.7 5.05 9.73 1443  23.81 33

AT2G46310 1 1.83 2.61 2.83 3.04 25 1.42 1.13 0.54 1.14
AT2G44940 1 0.86 4 8.06 12.11 14.27 18.58 17.31 14.78 5.92
AT2G39250 1 1.54 132 1.58 1.84 2.18 2.87 3.01 33 3.83

Figure B.1.: AP2/EREBP members used for the evaluation, including the gene
expression.
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C. Technical documentation

C.1. Technical solutions to the requirements

This part gives further information about the structure of the software, with
the purpose of showing how the framework can be extended to satisfy the
different user requirements. In contrast, section C.3 showed the ideas for the
solutions, but not from the technical view point. The identifiers for the user
requirements (UR) are the same as in C.3, where the reader can look up the
explanation of the user requirement and the ideas for the solution.
Furthermore, there are specific framework requirements (FR) which are not a
direct result from the user requirements but indirect results from the
extendable nature of the framework. The technical solutions for these
requirements is also shown here.

UR1:

The Project class contains three instances of the generic class
SetsContainer<N>. The class parameter N takes the values AbstractRawSet,
AbstractSimilaritySet and AbstractClusterSet, which are abstract classes
subclassing the basic class AbstractSet for the data. For providing e.g. raw
data which models DNA sequences, the plug-in should contain a class which
extends AbstractRawSet.

UR2:

The framework defines an interface IDisplayProvider. This set has two
relevant methods. The first method Accept(Object o) returns true if the
display can handle the object. Usually, the parsed object is a subclass of
AbstractSet, so therefore a raw set, a similarity set or a cluster set. The second
method CreateDisplayPanel(Object o) creates and returns a display panel,
according to the data the parsed object contains. This can for example be a
panel which displays a cluster tree if the parsed object was a cluster set. If the
user selects a set in the browser, the framework collects all the classes from the
plug-ins which implement the IDisplayProvider interface. For every provider
which delivers true by calling its Accept method, the framework adds the
panel which they create on a tab page. To provide new displays, the plug-in
should contain a class which implements the interface IDisplayProvider.

UR3:

The framework provides an interface ISetImporter with a method
Accepts(String) which returns true if the file to which the parsed string points
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C. Technical documentation

can be imported by this class. After the user selected the desired file to
import, the framework collects all the classes from the plug-ins which
implement the ISetImporter interface. When the correct importer is
identified, the framework calls its Import(String) method, which imports the
set from the desired file. To provide new importers, the plug-in should contain
a class which implements the ISetImporter interface.

UR4 and URS:

These requirements are subsumed since an export functionality is not
explicitely integrated in the framework. It can be treated and implemented
like a tool. The exporting functionality and tools can be provided either via a
display or by a new context menu item. In the case of providing it on a
display, it only depends of its implementation and is up to the developer (for
providing new displays, see UR3). For providing new context menu items, see
FRS.

URG6:

The framework completely handles the workspace organisation, so there is no
need for providing a new functionality here. The plug-ins can neither see nor
use the relevant classes of the framework, which are responsible for this part.

URT:

This is done by one of the plug-ins. However, the classes of this plug-in can be
used by another plug-in. A possibility could be to write a subclass of
StandardHybridGraphClusterAlgorithm which is contained in the plug-in set
PleiadesHybridClusterPlugins, to provide a new hybrid clustering algorithm
which uses another underlying base clustering algorithm, e.g. the algorithm
which is described by Flake et al. in [8]. How to provide new algorithms is
shown in FR4.

URS:

There are four interfaces, two for wizards for the similarity algorithms and
two for wizards for the clustering algorithms. The interface
ICluster Wizard Page Provider describes two methods.
Accepts(IClusterAlgorithmProvider) returns true if the wizard page which is
created by the provider can configure the given clustering algorithm (to be
precisely, the given provider which creates the algorithm). The method

Create WizardPage(Project, IClusterAlgorithmProvider) parses the given
parent project and the provider of the clustering algorithm to the wizard page
and returns the wizard page.

The interface ICluster WizardPage describes the methods
CheckConfiguration(), which returns true if the configuration is completed
and ConfigureAndReturnAlgorithm(), which returns the configured algorithm.
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C. Technical documentation

If CheckConfiguration() returns true, the framework retrieves the configured
algorithm by calling the Configure AndReturnAlgorithm() method and
launches it.

To provide new clustering wizards, the interfaces ICluster WizardPageProvider
and ICluster WizardPage should be implemented. To provide new similarity
wizards the interfaces ISimilarity WizardPageProvider and

1Similarity WizardPageProvider should be implemented analogously.

URO:

The framework handles the representation in the browser view, so there is no
need for providing new functionality here. The relevant classes of the
framework are neither visible nor usable for plug-ins.

UR10:

To provide new tutorial pages, the plug-in should create instances of the class
HelpPageProvider. The only constructor is HelpPageProvider(String, Uri).
The given string represents the topic name of the help page. This topic name
will be shown in the list on the left of the help browser. When the user selects
the desired topic from the list, the document is shown to which the
corresponding URI of the HelpPageProvider points. This can be HTML
pages, PDF files, images etc.

FR1:

The kinds of data sets should be extended (e.g. integrating new
kinds of raw data).

Solution: The framework defines three abstract classes, AbstractRawSet,
AbstractSimilaritySet and AbstractClusterSet. They subclass AbstractSet.
This class has only two public methods, GetName() and GetParent().
GetName() provides an identifier for the set, which has to be unique within
the project folder. E.g. a project cannot contain two raw data sets called
"AP2EREPB”. But to have a raw set called ”AP2EREPB” and a cluster set
"AP2EREPB” in the same project is of course not a problem. The method
GetParent() returns the parent project which contains the set.

Every plug-in which wants to provide new kinds of sets must extend the
correct abstract class. For instance if a plug-in provides a class of raw sets
which contain protein sequences, it can have a class called SequenceRawSet
which contains a set of sequences. It has therefore to subclass AbstractRawSet,
or an already existing class which subclasses AbstractRawSet. If it subclasses
an already existing subclass of AbstractRawSet, all the displays which can
handle AbstractRawSet instances will also be able to display instances of the
new class. If this kind of raw set is totally new (in the example of sequences,
there is no class which models sequences yet and therefore no display classes
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which can visualise the sequences), it is up to the developer to also provide
new display classes which can handle this raw data.

FR2:

Because of FR1, abstract also the process of storing and loading
data sets, dependent on the data.

Solution: The framework defines an interface ISetStorageManager, which has
two methods, Store(AbstractSet, StreamWriter) and Load(StreamReader).
The store method gets as input the set to handle and writes the data to a file
via the stream writer. Set and stream writer are parsed by the framework.
The load method gets the stream reader as parameter. The stream reader has
already the matching file stream opened. The method reads the stream with
the stream reader, creates the data set and returns it.

The plug-ins have to register the storage managers in the framework’s static
class SetStorageManagerRegistry. They have to register a pair consisting of
the unique type identifier for set class, and the storage manager which can
handle this set. When storing a set, the framework looks in the registry for
the storage manager which corresponds to the set’s type identifier. It then
creates a file with a stream writer. The name of the file corresponds to the
set’s name. Subsequently, the framework writes the header line of the file
which is just the type identifier. Then it launches the Store method from the
storage manager which completes the file and closes the stream.

When loading a file, the framework opens the file with a stream reader and
reads the header line, which contains a type identifier. Then it fetches the
storage manager corresponding to this identifier (i.e. the storage manager
which can handle the type of set which the type identifier represents) from the
registry and calls the manager’s Load method.

FR3:

Provide a possibility to add new kinds of views and tools.

Solution: As mentioned in UR2, the views are handled by the interface
IDisplayProvider. Plug-ins can implement this interface to provide new views.
These views can of course also include some tools. There is one plug-in which
provides a view with an integrated tool. It shows the clustering as a tree, and
can cut this tree. The result can then be printed to a file.

But there is another way to provide new tools. If the user right-clicks on a set
in the browser view, a context menu appears. This context menu is not fix; it
is extendable, so plug-ins can provide new entries. For that, the framework
defines an interface IContextMenultemProvider which has two methods. The
Accept(Object) method returns true if the context menu item should appear
by right-clicking on the parsed object, e.g. true if the user right-clicked on a
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specific cluster set. The Createltem() method returns the context menu item
which should be added to the context menu. When a user right-clicks on a set
in the browser, the framework collects all the classes from the plug-ins which
implement the interface and return true when calling their Accept method.
For those classes, it adds the context menu item the Createltem() method
returns. It is then up to the developer what should happen by clicking on this
item, e.g. a file browser can appear with which the user can print the set to a
file.

FR4:

Make it possible to add new kinds of algorithms.

Solution: The framework defines two interfaces, IClusterAlgorithmProvider
and ISimilarityAlgorithmProvider. The IClusterAlgorithmProvider interface
defines two methods. Accepts(AbstractSet) should return true if the algorithm
accepts this kind of set (e.g. a similarity set with gene expression similarities)
as input. The CreateClusterAlgorithm() method returns then a clustering
algorithm, for instance the hybrid clustering algorithm.

When the user then wants to compute a new clustering, the framework collects
all the classes which implement the interface and shows them in a list. When
the user selects one, the framework shows all the wizards which can configure
the algorithm. After configuring via the wizard page, the framework invokes
the CreateClusterSet() method from the configured algorithm, which performs
the computation. For the interface ISimilarityAlgorithmProvider, which
provides an algorithm for similarity computation, the system is analogue.

FR5:

Since different algorithms need different configurations, also
provide an extension point for new configuration wizards.

Solution: The extension points where already described in URS. The
framework displays all the available clustering algorithms (it checks all the
plug-ins for classes which implement the IClusterAlgorithm interface) in a list,
and the user selects the desired one. The framework shows then all the
wizards which can configure the selected algorithm. When the user choses
one, the framework calls the Create WizardPage() method, also defined by the
ICluster Wizard PageProvider interface, which returns a configuration panel.
For the ISimilarity WizardPageProvider, it works analogue. It provides a
wizard page which can configure an algorithm for computing similarity sets
(e.g. compute sequence similarities from a set of DNA sequences).

C.2. MVC architecture of the framework

e core: This part contains core classes which are totally independent from
the concrete application itself. They could be used in any other
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application which has nothing to do with this one. It lies outside the
structure of the MVC' pattern.

e model: This is the most important part of the framework. It models
the abstraction of projects, raw sets, similarity sets and cluster sets,
without any relation to their visualisation or their physical
representation on the file system. According to the MVC pattern, this is
the model, which is independent from the view.

e wui: This part contains all the graphical elements through which the user
interacts with the application, including their controllers. It is therefore
both the view and the controller part. However, the separation of them
is kept under the use of the technique of partial classes.

e algorithms: The algorithms for computing clusterings and similaritiy
sets. This part lies outside the structure of the MVC pattern.

o filesystem: Everything that manages the communication with the file
system, storing sets, loading a project etc. belongs to this part. It also
lies outside the structure of the MVC pattern.

Some parts of the application are outside the UI and the model. Every GUI
element which is contained in the ui part, consists of (at least) two partial
classes. If the class name is for instance ClassI, then there exists one file
”(Classl.cs” containing the partial class for the controller logic, according to
the MVC pattern. The file ”Classl.Designer.cs” then contains the view. In
some classes, the controller logic is divided into more partial classes depend on
the aspect. There also may be a partial class in the file ” Classl.observer.cs”.
It contains the controller logic which is related to its Observer functionality.
According to the Observer pattern (an important design pattern of the
framework), every change of the model results in notifying the observers
which listen on this model part. The observer then performs an actualise
process, e.g. it actualises the view. This assures that the model is
independent from the view. Thus all control functionality related to the
actualise aspect of the Observer pattern, is situated in the corresponding
partial class (in the example, ”Classl.observer.cs”). Figure C.1 gives an
overview of the parts of the framework, including the extension points.
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Extension point: Context menus E Extension point: Set importers E
IContextMenultemProvider (:‘_. ISetimporter (:‘_.
ContextMenultemReqgistry SetimporterRegistry

Extension point: Algorithms E Extension point: Storage managersg E

ICIlusterAlgorithmProvider (:‘_. ISetStorageManager (:‘_.

ICIusterAlgorithm (:‘_. StorageManagerRegistry

ISimilarilyAIgurithmPruuiderc.

Extension point: Sets E
ISimilarityAlgorithm (:‘_. AbstractRawSet
AlgorithmRegistry AbstractSimilaritySet

AbstractClusterSet

Extension point: Displays E

IDisplayProvider [ ]

Extension point: Wizards E

DisplayRegistry ICIusterWizardPageProvider ()

|
—

ICIlusterWizardPage [ ]

Extension point: Preference pages E

IPreferencePageProvider () ClusterwizardPageReqgistry

PreferencePageRegistry ISimilarityWizardPageProvider

ISimilarityWizardPage [ ]

Extension point: Help pages E

HelpPageProvider SimilarmyWizardPageRegistry

HelpPageReqgistry

Figure C.1.: The extension points of the framework, including the relevant in-
terfaces and classes.
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C.3. Design patterns

This section shows the architecture of the framework from the view point of
the leading design pattern, the so-called Observer pattern. There is a second
pattern with a minor role, namely the Singleton pattern which is described in
the second part.

C.3.1. Major design pattern: Observer

The observer pattern defines two main parts, the publisher and the observer.
The framework contains therefore two interfaces, IPublisher and IObserver.
The interfacess are described in figure C.2.

public interface IObserver

{
}

public interface [Publisher

{

void Actualize(IPublisher p);

void AddObserver(IObserver o);
void RemoveObserver(IObserver o);
void NotifyObservers();
IEnumerable<Delta> Changelnfo

{
}

get;

Figure C.2.: Interfaces for the Observer pattern.

The classes belonging to the "model” part implement the IPublisher interface,
and the classes containing representations of the model (it doesn’t matter if it
is a graphical representation with which the user interacts or a physical
representation which maps the model e.g. to the file system) implement the
10bserver interface. An observer providing some representation of the model
is then registered in this model by adding it via the AddObserver(Observer)
method. When the model changes, it notifies all the registered observers by
calling their Actualize(IPublisher) method. It parses itself as the parameter.
Furthermore, the publisher provides a list of changes describing the changes in
an abstract way (e.g. a String "SET_ADDED”) and providing additional
information (for instance the cluster set which was added).

The observer can then check the publisher, i.e. the model, by inspecting the
list of changes and the provided additional data. According to that it
actualises the representation of the model (e.g. it creates a new file for this
cluster set and stores the information there, or it creates a new node for the
set in the browser view). The following classes of the framework implement
the IObserver interface:
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e WorkspaceManager: The main class which handles the mapping of
the model to the file system. All the logic which is related to the
observer aspect is contained in the partial class in the file
”WorkspaceManager.observer.cs”.

e MainMenu: The main menu of the application contains a browser view
on the left. This is the graphical representation of the model, on which
the user works (the projects including their raw-, similarity-, and cluster
sets).

The classes implementing the IPublisher interface are:

e Model: The main model which contains all the data the user is working
on, the projects including their data. It notifies the observers when
changes to the projects occur, such as adding or deleting a project.

e SetsContainer<IN>: A generic class which contains a certain kind of
sets, e.g. similarity sets (in this case, the instance would be of the class
SetsContainer< AbstractSimilaritySet>. It is part of the Project class.
The graphical representation of instances of this class is a folder item in
the browser view of the main menu, which therefore is therefore
registered as an observer. Whenever sets are added or deleted, this
model part then notifies the observers which update the view or perform
the changes on the file system.

C.3.2. Minor design pattern: Singleton

There is a minor pattern called Singleton, which is also used in the
implementation of the software. It is minor importance compared to the
Observer pattern and hence not discussed in detail. The pattern is mainly
used if there is only one single existing instance of a class desired. This is
important when a system works with a database for instance. Then there
must not be two or more connections to the database existing at the same
time because this will cause errors.

If there is just one instance of a class needed which should also contain some
fields but the class is never assigned to a variable as for instance by the
statement

SingletonClass a = SingletonClass.singletonInstance();

but only by call statements such as

SingletonClass.singletonInstance().methodA();

then the language of choice, C'#, provides technique called static classes,
making the singleton pattern unnecessary. The technique was used within the
applications for a lot of registries through which plug-ins can add their new
functionality to the framework.
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Nevertheless the Singleton pattern was necessary for two classes because the
singleton instance of these classes was referenced to a variable pointing to it.
This is not possible with static classes. The two classes are the MainMenu
and the WorkspaceManager class. It is obvious that there exists only one
instance of them: Only one main menu and only one class handling the
mapping of the model to the file system.

The classes implement the Observer pattern an thus the singleton instances of
them are registered at the publisher site, i.e. the model, by calling the
AddObserver(10bserver) method and passing them as parameter. If they were
static classes the method call would not be possible as static classes cannot be
assigned to a variable and thus the Singleton pattern was used.

C.4. Coding conventions

The following sections list the several conventions followed while writing the
software. A developer who wants extend or modify it should follow these
conventions as well, to assure a consistent appearance of the program code.

Name spaces

The namespaces should be all lowercase letters. The should start with a
non-digit and must not contain any special characters, only standard
lowercase letters (a-z) and digits are permitted. The namespace has to start
with ”se.his.bioin.pleiades”. Normally the name of the folder in which the
concerned class is located is concatenated to this prefix, but if there are
reasonable rules this can be handled differently.

Folder naming

Folder names always consist of standard lowercase non-digit letters (a-z).

Class naming

The name of a class should always be the same name as the file prefix in
which it is contained. E.g. the class in the file ”Util.cs” should always be
named ”Util”. Class names always start with a uppercase letter and only
consist of standard non-digit letters (a-z, A-Z). The name should contain one
lowercase letter at least.

Method naming

e Public non-static methods always start with an uppercase letter,
followed by standard letters (a-z, A-Z) or digits (0-9). The name should
contain one lowercase letter at least.

e Other non-static methods start with a lowercase letter, followed by
standard letters (a-z, A-Z) or digits (0-9).
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e Static methods start with an uppercase letter and consist only of
uppercase letters (A-Z) and digits (0-9). The only special character

9

permitted is the underscore ”_

Property naming

Same as for public non-static methods.

Variable naming

e Non-static variables are named in the same way as other non-static
methods.

e Static variables are named in the same way as static methods.

Constant naming

Constants are named in the same way as static variables.

C.5. Concrete implementation of the hybrid clustering

The real code of the application was written in the language C#, which has
many things in common with Java (especially the syntax), as well as C++
(e.g. virtual classes).

C.5.1. Main clustering method

As illustrated by figure C.3 the clustering method CreateClusterSet() is
defined as wirtual. This is important with respect to inheritance. When a class
extends the class which contains the hybrid clustering algorithm it can
override this method. But in this case, the correct method is always called.
This is very important regarding dynamic binding, as depicted by the
following example:

Assume the class containing the hybrid clustering algorithm was called
HybridClusteringAlgorithm and the clustering method CreateClusterSet() was
not defined as virtual. Assume also another class
AnotherHybridClusteringAlgorithm would extend the class
HybridClusteringAlgorithm and override the method CreateClusterSet(). This
seems to be correct so far. The problem arises once the main routine
instantiates the new class with the statement

HybridClusteringAlgorithm algorithm = new
Another HybridClusteringAlgorithm();

This will not lead to a compiler error, since the class

AnotherHybridClusteringAlgorithm subclasses HybridClusteringAlgorithm.
But when it calls the method CreateClusterSet() it will call the method from
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the class HybridClusteringAlgorithm and not the correct method provided by
the class AnotherHybridClusteringAlgorithm.

virtual public AbstractClusterSet CreateClusterSet()

{

StandardCluster root = new StandardCluster(””);
foreach (String s in this.elements)

{
}

clusterDeep(root, 0);

StandardClusterSet set = new StandardClusterSet/();
set.RootCluster = root;

return set;

root.AddLeaf(s);

}

Figure C.3.: The implementation of the main routine of the hybrid clustering.

The return of the algorithm is a class called StandardCluserSet, which
subclasses AbstractClusterSet. This is due to of the structure of the
application. The clustering algorithm is not a part of the main application
but rather a part of a plug-in bundle for the framework. The framework only
defines the class AbstractClusterSet and it is up to the plug-in how a cluster
set looks like in detail. In this case, a standard cluster set is used consisting of
a set of sub clusters (standard cluster sets again), or, if it is at the lowest level
of the tree, a set of leaf objects which refer by their name to the raw data.

Whenever a cluster set is of the class StandardClusterSet or a subclass of it,
all the displays which accept this class (and thus also its subclasses) can
display it. It is up to the developer to write new classes of cluster sets (e.g. a
special cluster set class for phylogenetic trees), he only has to subclass
AbstractClusterSet.

The field this.elements contains a collection of strings. Each of these strings
identifies the identifier for an object, e.g. a gene or protein. This is therefore
the set which is to be clusterd. The method calls then the hybrid clustering
method, which delivers the clustering. It has to be noticed that this is the
public clustering method, which implements the method from the interface
IClusteringAlgorithm of the framework. It does not say anything about the
character of the clustering algorithm, it only has to return an instance of the
class AbstractClusterSet.

It is also possible to write plug-ins for the framework providing another
clustering algorithm, e.g. a standard non-hierarchical algorithm like k-means
clustering. In this case the concrete return class may not be of the class
StandardClusterSet, the developer can define a new class modelling a
non-hierarchical clustering. This can also have different representations, for
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instance representing a 2d-projection of the clusterings including their
centroids. It is again up to the developer to write different visualisations
which can display those kind of clusterings.

C.5.2. Hybrid clustering method

The hybrid clustering algorithm gets the parent cluster which contains the set
of elements which should be clustered. It calls the clustering algorithm and
parses the correct similarity matrix to it, depending on which feature the
current round focuses. The result will be a set of clusters. It deletes the leaf
nodes of the parent cluster and adds all the clusters from the computation as
new sub clusters to the parent cluster. Each of these sub clusters is then
clustered again, by iterating the depth (according to the next feature) and
calling itself recursively. Figure C.4 shows the implementation of the hybrid
clustering.

private void clusterDeep(StandardCluster parentCluster, int depth)

{

if (depth < this.rounds)
{

StandardCluster temp = clusterOneRound(
parentCluster.Leafs,
this.similaritySet[depth],
this.threshold[depth],
this.smalllsSimilar[depth]);

parentCluster.ClearLeafs();

foreach (StandardCluster cluster in temp.SubClusters)

{

parentCluster. AddSubCluster(cluster);
clusterDeep(cluster, depth + 1);

Figure C.4.: The implementation of the hybrid clustering part.

C.5.3. Underlying graph clustering algorithm

In contrast to the pseudo code version it has to be noticed that similarity sets
can have a different character. In similarity sets computed with Blast low
values indicate high similarity while for similarity scores reflecting other
features may indicate high similarity when the value is high (for instance
Pearson correlation). The algorithm hence calls a method which is named
similarityOK (double, double, bool). The first parameter contains the similarity
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score, the second parameter contains the threshold and the third parameter
indicates whether small values or high values indicate high similarity.

Furthermore a default value is used which plays an important role. When
computing similarity sets some applications cut off values which violate a
threshold value, meaning that the score is so bad that it is discarded. This is
done for space efficiency reasons. For instance if a set of n = 1000 sequences is
compared by Blast, this leads to w = 499500 pairs respectively
similarities, but many of them are irrelevant. The scores which are worse
(meaning higher for E values) than a certain threshold, for instance

e — 1 =0.1, are discarded (meaning they will not appear in the Blast output).
Consequently, the application has no similarity values for some pairs at hand.
This is solved by the default Value, which is either set to infinity or 0. If there
is no similarity for a pair at hand, the value is then set to infinity if small
values indicate a high similarity, otherwise to 0. The implementation of the
algorithm is shown in figure C.5

The algorithm uses a hashtable visited<String, bool> which is an instance of
the generic class Dictionary<N, M> for keeping track of the nodes which have
already been visited. The keys are objects of the String class and the values
are of the type bool. The key refers to the identifier of the element which is
represented by a node for the DFS graph search. The value indicates whether
the node has already been visited (meaning that it is or was on the stack) or
not. The algorithm starts a depth-first-search from each node (element) which
has not already been visited. It adds all the nodes (elements) it could reach
from this initial node to a cluster. After finishing, it adds the cluster as a sub
cluster to the root cluster. Then it re-starts the search from a node which has
not already been visited, until all the nodes are visited and assigned to a
cluster.
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private StandardCluster clusterOneRound(
IEnumerable<String> clusterElements, StandardSimilaritySet set,
double threshold, bool smalllsSimilar)

Dictionary<String, bool> visited = new Dictionary<String, bool>();

foreach (String element in clusterElements) {
visited.Add(element, false);
}

Stack<String> dfsStack = new Stack<String>();
StandardCluster rootCluster = new StandardCluster(””);
StandardCluster subCluster;

double defaultValue;

if (smalllsSimilar) defaultValue = double.Positivelnfinity;
else defaultValue = 0;

foreach (String element in clusterElements) {
if (lvisited[element]) {
subCluster = new StandardCluster(””);
dfsStack.Clear();
dfsStack.Push(element);
visited[element] = true;

while (dfsStack.Count >0) {
String current = dfsStack.Pop();
subCluster.AddLeaf(current);
foreach (String element2 in clusterElements) {

if ((!visited]element2])
&& (lelement2.Equals(current))
&& similarity OK(
set.GetSimilarity(current, element2, defaultValue),
threshold,
smalllsSimilar))
{
dfsStack.Push(element2);
visited[element2| = true;

}
}
}
rootCluster.AddSubCluster(subCluster);

}
}

return rootCluster;

Figure C.5.: The implementation of graph clustering algorithm.
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