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Abstract

The chess endgames are a perfect test domain for Machine Learning algorithms.

Reciprocally, Machine Learning o�ers e�cient methods to analyse and compress

chess tablebases. Such databases consist of informations at a low level of descrip-

tion and are often huge, what makes them unpractical. Our goal is to reduce the

size of the King and Rook against King (KRK) database without information loss

with the help of knowledge-based compression. Some studies already tried in the

case of the KRK endgame to use speci�c patterns in order to build a knowledge

with a higher level of description. Grouping such patterns together, we transform

the primary tablebase in a more compact form containing only values of these

attributes. The representation of this new database as a decision tree simpli-

�es its description, enabling a better compression rate than standard mechanical

methods.





Chapter 1

Introduction

The game of chess is one of the oldest and most complex game in the history of

humanity. With a simple board, thirty two pieces and a few rules it achieves a

complexity level that the current computers cannot master.. The huge amount of

possibilities in the game make it a perfect test domain for Arti�cial Intelligence,

and especially for Machine learning: if we are able to invent a computer program

that can learn to play such a di�cult game, then we can also create similar ones

that can solve a large part of real life problems which usually have a much smaller

complexity. Reciprocally, Machine Learning algorithms can be testet very well on

chess problems. Actually, the chess endgame domain is already complex enough

to be a standard test place for Machine Learning algorithms. In particular, the

compression of data using knowledge-based methods coming from the Arti�cial

Intelligence domain can be perfectly studied on chess endgames tablebases, which

provide large amounts of information at a very low level of description.

Our work is precisely engaged in that subject: Having a database which lists

all existing positions of a 3 �gures endgame, is it possible to compress it with

knowledge extraction methods? Could another form of the database expressed by

concept attributes from the chess domain be smaller than the primary one? This is

the topic we study in the present report, in the case of the King and Rook against

King endgame. After explaining in the �rst chapter some basis concepts of the

domain and our precise procedure, we summarize the literature our work is based

on. We then look in detail at the new knowledge which we build to transform

the database and obtain new ones, whose properties we analyse afterwards in the

fourth chapter, before transforming the databases again to obtain the optimally

compressed form presented in the �fth chapter.
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1.1 Chess Programming

1.1.1 Complexity in Chess Programming

The main problem of chess programming is the very large number of continuations

involved. In an average position there are about 40 legal moves. If you consider

every reply to each move you have 40∗40 = 1600 positions. This means that after

two ply (half-moves), which is considered a single move in chess, 1600 di�erent

positions can arise. After two moves there are 2.5 million positions, after three

moves 4.1 billion. The average game lasts 40 moves. The number of potential

positions is to the order of 10128, which is vastly larger that the number of atoms

in the known universe (about 1080). The exhaustive listing of all possible chess

games is therefore impossible. Nevertheless this process is possible if only few

pieces stay on the chess board at the end of a game, i.e. in chess endgames.

1.1.2 Common Endgames

The simplest endgames contain 3 pieces. A two pieces endgame has no interest,

because the two pieces are the two kings and one king alone cannot take ad-

vantage over the other, so the game is drawn. The number of positions in an

endgame database is to the order of 60N , where N is is the number of pieces. The

combinatorial explosion makes an enumeration impossible for endgames of more

than a few pieces. The complexity of common endgames is listed in the table 1.1.

No. of pieces Complexity

3 262 144

4 1 677 216

5 1 073 741 824

6 68 719 476 736

Table 1.1: Amount of positions in chess endgames

Endgame databases were originally constructed by Thompson ([Tho86]). They

exist for all 3, 4 and 5 pieces endgames. Some have already been generated for

6-pieces endgames, but they are very complex. This complexity can be reduced

with basic rules: Two pieces cannot stand on the same square; or basic chess

knowledge: The two kings cannot be on adjacent squares (because a king cannot

put itself in chess). With these rules, some theoretical possible positions are illegal
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and so they don't have to appear in the database. Furthermore, depending on

the nature of the pieces that exist in the endgame, some symmetries can also

reduce the complexity. Particularly, endgames without pawns have no concept of

direction (since the pawn is the only piece in chess that goes forward, all the other

pieces can move the same in any direction). That's why pawnless endgames have

a smaller complexity, as more symmetries can be applied to reduce the number

of interesting possible positions.

Common 3-pieces endgames are King and Pawn vs King (KpK), King and Queen

vs King (KQK), King and Rook vs King (KRK, which we will consider here) or

King and Knight vs King (KNK). In the 4-pieces category there are for exam-

ple King, Knight and Bishop vs King (KNBK), King and Queen vs King and

Rook (KQKR) or King, Knight and Pawn vs King (KNpK). As a 5-pieces chess

endgame we can cite King and two Knights vs King and Pawn (KNNKp). The

basic endgames are �nished by the end of the game: By check mate (if a side

has its king in check and cannot do anything to avoid it), or draw (ie stalemate,

if a side has no legal move to do but its king is not in check, or if checkmate

is impossible, i.e. for example if only the two kings remain on the board). Some

more complex endgames can be considered as ended by getting into a simpler

endgame, like KQKR ends as KQK if the black rook is taken. Such endgames are

then also called converted.

1.1.3 Endgame Databases

Di�erent types of databases

Often also called tablebase, a chess endgame database is an ordered list of all

positions in the endgame with interesting calculated values. There are di�erent

types of endgame databases. They usually list black-to-move positions, as the

strongest side is often the white side, so the black side is mated in the sim-

plest positions in the database, but they can also list white-to-move positions.

All types of databases know whether a given position in the endgame is a win,

loss or draw. If that is all the database contains, it is called a WLD-database

(Win/Lose/Draw). If the database contains information on how long it will take

until the game is over, it is called a distance-to-mate (DTM) database. This depth

of win is calculated in case of an optimal play. If it contains only the information

on how long it will take until a conversion takes place, it is called a distance-to-

conversion (DTC) database. A conversion is either a pawn promotion or a piece

being captured or checkmate. If a piece is being captured or a pawn promoted,
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we come either to a draw if only the kings remain, or we have to look in another

database with the new pieces set. These databases do not take into account the

�fty moves rule1. To overcome that de�ciency, Distance to zeroing (DTZ) and

the superior Distance to rule (DTR) databases have been created, but only in

theory.

The WLD database is smaller, but it has the problem that even though a program

may be in a winning position, it might not be able to actually win the game. All

the database tells is that it has a win, and it also tells which moves conserve

the win. But some win-conserving moves may increase the distance to mate, and

the program cannot easily decide which of these win-conserving moves to make.

DTM databases are obviously better in this respect, since you just make the win-

conserving move with the lowest DTM associated. DTC databases also solve the

problem of winning a won position, however the program might take longer than

necessary to do so. The main advantage of the WLD database is its size: storing

WLD information only needs little space, therefore larger parts of the database

can be kept in memory, if the database size is larger than the amount of memory

of the computer (which is typically the case). Accessing the database when it is

not loaded in the main memory is not really an option, as the speed is very slow

compared to memory.

The best known databases are the ones of Ken Thompson ([Tho86]), Steven

J. Edwards ([Edw95]) and Eugene Nalimov ([NWH99]). They are tablebases of

type DTC, DTM and compressed DTM respectively. Most commonly used are

those from Nalimov since they are free and more e�cient. Nalimov tablebases are

nearly �perfect" since they take into account en Passant2. However, they don't

take Castling3 into account, but it is usually ignored in a tablebase, because

games in practice rarely reach the endgame without a king or rook moving, so

castling almost never make sense here.

1The �fty move rule in chess states that a player can claim a draw if no capture has been

made and no pawn has been moved in the last �fty consecutive moves.
2En passant is a maneuver in the board game of chess. The en passant rule applies when a

player moves a pawn two squares forward from its starting position, and an opposing pawn could

have captured it if it had only moved one square forward. The rule states that the opposing

pawn may then capture the pawn as if it had only moved one square forward.
3 Castling is a special move in the game of chess involving the king and one of his original

rooks. It consists of moving the king two squares towards a rook, and moving the rook onto the

square over which the king crossed.
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Generation of chess databases

Endgame chess databases are generated via induction. The generation is easy if

you have a good algorithm, but it can require huge amount of time and computer

memory depending on the complexity of the databases which are generated. The

generation consists in the following steps:

1. All possible positions are examined, and positions where one side is mated

are marked. These are called mated in 0 positions.

2. Once this is done, all positions are examined again, except those which are

already marked, and if any of them can reach a �mated in 0� position, it

is marked as mate in 1. The concept possible position here depends on the

side which has the move: a position in which the black king is in check is

not a legal white-to-move position.

3. Now we look at everything again, and the possible positions from which all

possible moves lead to a �mate in 1� position are marked as mate in 2. It

could seem weird to call these positions mate in 2, because mate appears

after only 2 plies, but it is due to the fact that the loosing side has the

move.

4. Now we look at all the possible positions again, and we try to reach �mate

in 2�: The found positions are also marked �mate in 2�.

5. The next step is a bit di�erent: We look for cases where it is impossible to

avoid �mate in 2� and �mate in 1� positions. These are marked mate in 3.

6. And so on, until no progress is made. The rest of the positions are proven

to be draws.

The last step can be di�cult to evaluate, because the concept �no progress is

made� depends on possible conversion. For instance in the endgames with pawns,

if a pawn converts, you can end in several di�erent other endgames, what brings

up new possibilities. For example, there might be a mate in 105 moves in KBP vs

KN, but there might not be a mate in 95. This is because the mate in 105 moves

might involve immediate conversion to a KBN vs KN.
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1.2 Database Size Reduction

The utilisation of chess endgame databases require them to be loaded in the main

memory of a computer. Since most of these databases are too big for the memory,

they have to be reduced. As the database has to be accessed as fast as possible,

the general data compression methods or any method that slows down the access

time cannot be applied. The aim is to �nd a more compact representation of the

database without information loss.

1.2.1 Reduction Through Symmetries

The �rst and simplest reduction of the complexity is achieved through properties

particular to the chess game. The board is the same in every direction, and most

of the pieces move the same way forward and backward (in fact all pieces except

pawns). That is why the interesting part of the database can be reduce thanks to

various symmetries, which are more numerous if there is no pawn in the endgame.

To do that, we build position equivalence classes. Each class is represented by a

canonical position. All the positions that can be retrieved by rotating or re�ecting

a canonical position belong to the same class. Only the canonical positions are

stored in the database. The exact symmetries and rotations which can be used

to determine the canonical positions depend on the pieces of the endgame. We

will explain more precisely for the KRK ending.

The KRK endgame is quite simple and its pieces o�er good symmetric properties,

since the only three �gures in the endgame are the white king, the white rook and

the black king, and they all move symmetricaly in all direction. These symmetries

are resumed in the �gure 1.1.

All the starting positions can be limited to those having the white king in a ten

squares octant (a1, a2, a3, a4, b2, b3, b4, c3, c4 and d4). To obtain that, the

following rules are applied (in that order):

1. WK horizontal re�ection: All the positions in which the white king is

on the right part of the board (�le e or greater) are re�ected through the

central vertical axis so that it stands then on the left part of the board.

2. WK vertical re�ection: All the positions in which the white king is on

the upper part of the board (rank 5 or greater) are re�ected through the

central horizontal axis so that it stands then on the lower part of the board.
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Figure 1.1: Symmetries used to reduce the KRK database

3. WK diagonal re�ection: All the positions in which the white king is

above the diagonal a1 to h8 are re�ected through the diagonal axis so that

it stands then below the diagonal.

4. BK re�ection: All the positions in which the white king is on the diagonal

a1-h8 and the black king is above this diagonal are re�ected through the

diagonal axis so that the black king stands then below the diagonal.

5. WR re�ection: All the positions in which the two kings are on the diagonal

a1-h8 and the rook is above this diagonal are re�ected through the diagonal

axis so that the rook stands then below the diagonal.

As summarised in the table 1.2, these symmetry operations reduced the database

to 28056 positions. Compared to the rough KRK database, they make it almost

8 times smaller.

Rough 3 Figures database: 262 144 positions (64*64*64)

Rough KRK database: 223 944 positions (only legal positions)

KRK database: 28 056 positions (with symmetry reductions)

Table 1.2: Amount of positions in the di�erent forms of the KRK database
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1.2.2 Knowledge-based Reduction

The research of higher level knowledge can help reducing the size of the database.

For example, a rule that summarises many lines of the database takes less memory

to be stored than all the corresponding lines, even if some exceptions also have

to be stored. Depending on the size of a line and the number of exceptions, the

induced rule is more or less e�cient to compress the database. In our case of the

KRK endgame for example, every position where the white rook can be taken is

a draw. So, a rule characterising this fact can replace a lot of positions, and help

reducing the database.

Some systems that perform Data Mining Compression exist already. For exam-

ple, Spartan ([BGR01]) is such a system that exploits attribute semantics and

data-mining models to e�ectively compress massive data tables. It takes advan-

tage of predictive correlations between the table attributes and the speci�ed error

tolerances to construct concise and accurate Classi�cation and Regression Tree

(CaRT) models for entire columns of the table. The key is to achieve a good com-

pression while staying at a tolerable computation time. To restrict the huge search

space of possible CaRTs, Spartan explicitely identi�es strong dependencies in

the data by constructing a Bayesian network model on the given attributes, which

is then used to guide the selection of promising CaRT models. The CaRT-building

component also employs integrated pruning strategies that take advantage of the

prescribed error tolerances to minimise the computational e�ort involved.

Our method is similar to the one of Spartan, but best adapted for our case.

We used attributes which were partly automatically detected by existing systems

(described in chapter 2). They are generally invented by systems which are helped

by chess masters: the system is fed with chess positions, and depending on what

it already learnt, it either saves a new pattern or learns a new rule. All these

operation are based on Logic Programming (ILP) methods and Data Mining

algorithms.

1.3 Data Mining

Data Mining, also known as Knowledge-Discovery in Databases (KDD), is the

process of automatically searching large volumes of data for patterns. It is a

fairly recent and contemporary topic in computing. However, Data Mining ap-

plies many older computational techniques from statistics, machine learning and

pattern recognition. It can be de�ned as �The nontrivial extraction of implicit,
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previously unknown, and potentially useful information from data�[FPSM92] and

�The science of extracting useful information from large data sets or databases�

[HMS01]. Although it is usually used in relation to analysis of data, data mining

is an umbrella term and is used with varied meaning in a wide range of contexts.

It is usually associated with a business or other organisation's need to identify

trends.

Once we have built our new database with patterns which may help signi�cantly

in the prediction of the distance of win, we need tools to analyse the database

and test which dependencies exist between the pattern values and the distance

of win. The Data Mining should provide us with some tools to achieve this goal.

We especially use Decision Trees to predict the depth of win of a position as

e�ciently as possible.

In machine learning, a decision tree is a predictive model, that is, a mapping of

observations about an item to conclusions about the item's target value. The ma-

chine learning technique for inducing a decision tree from data is called decision

tree learning. It is commonly based on the concept of Top Down Induction of

Decision Tree (TDIDT, see [Qui86]). Here, a decision tree describes a tree struc-

ture wherein leaves represent classi�cations and branches represent conjunctions

of features that lead to these classi�cations. A decision tree can be learned by

splitting the source set into subsets based on an attribute value test. This pro-

cess is repeated on each derived subset in a recursive manner. The recursion is

completed when splitting is either non-feasible, or a singular classi�cation can be

applied to each element of the derived subset.

Amongst other data mining methods, decision trees is a method that has several

advantages: Decision trees are simple to understand and interpret. People are able

to understand decision tree models after a brief explanation. They require little

data preparation. Other techniques often require data normalisation, dummy

variables need to be created and blank values to be removed. They can handle

both nominal and categorical data. Other techniques are usually specialised in

analysing datasets that have only one type of variable. For example, relation

rules can be used only with nominal variables while neural networks can be used

only with numerical variables. They make it possible to validate a model using

statistical tests. That makes it possible to account for the reliability of the model.

They are robust, perform well with large data in a short time. Large amounts of

data can be analysed using personal computers in a time short enough to enable

stakeholders to take decisions based on its analysis.
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The open source Data Mining software WEKA4[WF05] allows to apply lots of

algorithms on data, like decision trees. That is the software we used in our work

to analyse our database. In particular, we used the c4.5 algorithm.

c4.5 is a software extension of the basic decision tree generating algorithm ID3.

ID3 (short for Iterative Dichotomiser 3) is a basic algorithm from Ross Quinlan

to build decision trees. The ID3 algorithm can be summarised in three steps: It

�rst takes all unused attributes and counts their entropy concerning test samples.

Then it chooses one of the attribute with the smallest entropy, and eventually

makes a node containing that attribute. The c4.5 algorithm contains several im-

provements, especially needed for software implementation. The improvements

contain the possibility to choose an appropriate attribute selection measure, a

way of handling training data with missing attribute values. They also allow the

handling of attributes with di�ering costs and continuous attributes. A decision

tree can also be pruned or not. Pruning a decision tree means simplifying it by

removing some parts. Another important property of a decision tree is the mini-

mum number of instance per leaf (short minNumObj). This parameter de�nes the

level of detail of the tree. See [Qui93] and [Mit97] for more details.

1.4 Our Approach

The aim of this work is the compression of the KRK endgame database with

the help of attributes. We worked on the standard KRK database with 28056

positions distributed as shown in table 1.3. The attributes should represent a

knowledge of higher level than pure position description. They can be combined

in rules, that are automatically build by a Data Mining Program named WEKA

to optimise e�ciency.

The �rst step was to �nd attributes and to implement them in a script. The

script was implemented in ruby5 and designed to execute the transformations of

the attributes practically and e�ciently. The source code is available in Appendix

B. The attributes are grouped together to form theoretically a consistent set, so

that the attributes in the set represent the initial KRK database as good as

possible. In fact we have used several sets and then compared the results. Each

set of attributes is of the form:

S = (A1,A2, . . . ,An)

4http://www.cs.waikato.ac.nz/ml/weka/
5http://www.ruby-lang.org/
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Depth Positions Depth Positions

draw 2796 8 1433

0 27 9 1712

1 78 10 1985

2 246 11 2854

3 81 12 3597

4 198 13 4194

5 471 14 4553

6 592 15 2166

7 683 16 390

Table 1.3: Distribution of the depths of win in the KRK database

Each attribute A is in fact a transformation that returns a value v from a position

vector P :

P = (wkf,wkr,wrf,wrr, bkf, bkr, dow)6

v = A(P )

The distance to win is in fact not used to calculate the attributes' values, but it

is written in the original database besides the positions.

Figure 1.2: General approach: step 2

The second step was to build a new database for each set of attributes, and

to check its properties. The new databases are composed of combinations of

6white king �le, white king rank, white rook �le, . . . , depth of win
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attributes' values, with a distance to win. Let D be the original database with the

positions P of the pieces on the board: P ∈ D For a set of attributes S, the vector

P is transformed into a vector V so that:

∀i ∈ [1, n], vi = Ai(P )

V = (v1, v2, . . . , vn) = (A1(P ),A2(P ), . . . ,An(P )) = S(P )

As the depth of win should appear at last in the new database, we have

An

(
(wkf,wkr,wrf,wrr, bkf, bkr, dow)

)
= dow

The new database ES is then the list of all the combinations V :

ES = {S(P ), P ∈ D}

So we de�ne a transformation TS from D to ES, like drawn in �gure 1.2.

TS

D −→ ES

Depending on the attributes' set, it can be that 2 di�erent positions P1 and P2

with a depth of win dow1 and dow2 have the same image through all the attributes

of the set except the last one (that encodes the depth of win):

∀i ∈ [1, n− 1],Ai(P1) = Ai(P2)

If the depths of win are the same (An(P1) = An(P2)), which should be the case

if the attributes perfectly describe the board, the 2 positions are summarised by

one image:

dow1 = dow2 =⇒ S(P1) = S(P2)

But if they are di�erent (An(P1) 6= An(P2)), we have the following problem: 2

di�erent positions with distinct depths of win are described by the same combina-

tion of attributes' values. This may be solved with the help of exception handling.

Since we need to be able to retrieve perfectly the initial database, we have to store

separately the exceptions, so that the transformation is a bijection. To achieve

that, we extract from the initial database all the positions which would lead to an

exception and store them in a separated �le Derr. The original database without

these positions is called ~D, and the transformation TS|~D from
~D to ~ES = TS(~D) is a

bijection.
TS

~D −→ ~ES
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So the new database is then composed of two �les: The error �le containing all

the ambiguous positions, and the real new database with the attribute values,

which will then be compressed with data mining algorithms. Our aim is of course

to have an error �le as small as possible, since it cannot be compressed e�ciently

(only standard compression like zip). In the perfect case, all the positions have a

unambiguous image, so there are no errors.

Figure 1.3: General approach: step 3

The third step consisted in trying data mining algorithms to compress the

databases. It is illustrated on �gure 1.3. We worked with decision trees, in which

the depth of win of the pattern value combinations in the new database is anal-

ysed. As the tree can generalise and regroup some attribute combinations to-

gether, it needs less disc space when saved in a �le than the database. Moreover

the properties of the tree can be adjusted to have the best results. But it can

happen that some instances are incorrectly classi�ed in the tree, depending on

its properties. Therefore we need to store beside the tree a list of the incorrectly

classi�ed combinations.





Chapter 2

Review of related work

The KRK endgame was already the subject of a lot of studies, especially in

Machine Learning. Some of these studies particularly deal with patterns, which

are supposed to represent some chess knowledge, what is exactly our subject. Our

study is based on three papers and on the description of a chess playing machine.

These four sources contain interesting elements for our work, therefore I will give

an overview of their content. Please refer to the original papers for more details.

2.1 Generalising Closed-World Specialisation: A

Chess End Game Application, by M. Bain

([BMS95])

In his paper Bain describes his experiments with a system based on an algorithm

named Closed-World Specialisation (CWS). He tested his system on the KRK

chess endgame. His aim was to develop an agent that, given access to the complete

list of pre-classi�ed positions, can learn rules to correctly classify each position by

the optimal number of moves to checkmate, or as drawn. This system is based on

a few simple patterns, and creates new ones to build recognisers for each depth

of win.

2.1.1 Introduction

Theory discovery is a branch of symbolic learning that has a good application in

chess endgames: An agent has to learn from a chess database a set of rules to
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classify each position of the endgame. The rules are expected to be more compact

than the database and have to be transparent to a human. The example of KRK

typically o�ers a large amount of data at a low level of description, from which

a simple set of comprehensible rules with good predictive accuracy has to be

learned

In many real-world problems the size of the database grows continuously even

after the start of the learning phase of the algorithms. That leads to possibly

too big databases for batch learning. Therefore a sampling approach is needed as

well as the possibility for the learned theory to change continuously. Thus Bain

and Muggleton were interested in incremental learning systems, with methods of

correcting theories in a framework of minimal specialisation. It was shown that

minimal correcting specialisations are not always obtainable within classical logic.

Consequently they presented an algorithm carrying out a specialisation scheme

based on a non-monotonic logic formalism used in logic programming: Closed-

World Specialisation. After having implemented and tested it in chess endgame

domains and on real-world data, its specialisation scheme showed some issues,

what leaded them to combine it to a generalisation method, what produces a

system called Generalising Closed-World Specialisation(GCWS).

A key feature of CWS is its ability to augment the hypothesis language by pred-

icate invention. GCWS is designed to learn general rules which may have one

or more levels of exceptions, what is suited for chess. In addition, incremental

learning coupling with theory-guided sampling allows to deal with large data

sets, since the system operates at any given time with only a subset of the total

problem domain.

2.1.2 Closed World Specialisation

Minimal specialisation, i.e. most general correct specialisation, can lead to theo-

ries which are not �nitely axiomatisable. To avoid this problem, Bain and Mug-

gleton used the �negation as failure� rule in the context of normal logic programs.

Following [Llo87] they develop their method of CWS with the help of semantic

de�nitions.

Closed-World Specialisation algorithm and incremental learning

The CWS transforms a normal logic program given a single negative example. In

practice, a set of negative examples has to be respected. This is often the case
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within an incremental learning process which includes alternate training and test-

ing phases. Such testing may also detect uncovered positive examples in addition

to covered negative examples. So CWS is incorporated in an incremental learning

system with the implementation of learning from batches of examples. The batch

transformations return from a possibly incorrect and incomplete program another

program which will be correct and complete with respect to the examples of the

test set. In practical systems, these batch transformations are not used. Other

transformations for generalisation and specialisation are used in GCWS. These

are implemented using a number of ILP algorithms: The generalisation method

uses versions of Golem ([MF92]), and the specialisation method uses di�erent

�test-then-specialise� versions of CWS.

To avoid over-specialisation, the incremental learning of programs where the tar-

get predicate is invoked by some other predicate is not considered here.

The examples used by GCWS in the incremental learning process are selected

through theory-guided sampling: Only examples found to be exceptions towards

the current program are used in subsequent learning. So much larger example

sets can be handled than by a �one-shot� learning system.

Discussion of Closed-World Specialisation and Generalising Closed-

World Specialisation

Two recent approaches (about machine learning and logic programming) related

to the CWS algorithm are discussed here.

[Wro93] proposed the use of criteria other than minimal specialisation for theory

revision. Unfortunately this framework depends on a classical logic representation,

in the belief of which sets are closed theories, and thus minimal specialisations

may not be �nitely axiomatisable.

In Logic Programming the specialisation problem may be expressed in terms of

updating logic databases. For instance, [GL90] and [GL91] have presented results

for provably correct updates on normalised logic programs. Deletion and insertion

are carried out by update procedures which return a set of database transactions.

The specialisation operation is then the deletion of an atom from the program.

This method though does not guarantee minimal specialisation.

Future work should investigate in more detail the relationship between belief

revision in AGM logic and other frameworks and the method of closed-world

specialisation. Perhaps in practice minimal specialisation is too conservative for

machine learning applications where the main focus is on theory construction.



28 2 Review of related work

And it may be more suited for applications where the task is to �nd small ad-

justments to a substantial theory, which is already largely correct.

2.1.3 A classi�er of KRK by optimal depth of win

As mentioned before, chess endgames have highlighted knowledge representation

issues for learning systems. A well studied case is the KRK endgame, with the

target predicate �White-to-move position is illegal�. An incremental ILP algorithm

already enabled the induction of a complete and correct solution for the KRK

illegality problem ([Bai91]). A harder problem is to know if a machine could learn

to play the game optimally from samples of the database and simple facts about

the board geometry.

KRK BTM database

Chess endgames are complex enumerable domains, what enables the construction

of databases: tables of legal positions with the number of moves until a side wins

assuming minimax-optimal play. Such databases provide positive and negative

examples and also an oracle ([Roy86]) for testing induced rules. These databases

are generated using a single iterative process using Shannon's standard backup

algorithm. They can be used to play the endgame optimally using only a legal

move generator and a database look-up program. As the order of an endgame

database is 64N (with N the number of pieces) without removal of redundancies,

the exhaustive enumeration is impossible for endgames with more than a few

pieces. Various symmetries can be used to reduce the size of the databases, so

that only the canonical positions appear. Only information on Black-to-move

(BTM) positions was extracted from the database, what is su�cient to play

optimally with a 2-ply (i.e. 1 move) legal move generator. In the KRK database,

the symmetries enable to reduce the size of the database from potentially 262144

to 28056.

Structure of an optimal classi�er

The framework of this work, called classi�er, handles Black-to-moves KRK legal,

canonical positions and returns an integer from 0 to 16 included or a symbol

denoting draw. Its structure is shown in �gure 2.1. Each separate recogniser

should be induced by the GCWS algorithm, and should detect if the given position

is of its depth of win. By this process of elimination a position is classi�ed by
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the minimum number of moves necessary for White to win, assuming minimax-

optimal play.

Figure 2.1: [BMS95]: Sequentially-ordered KRK BTM position recognisers from

a single global classi�er.

The ordering of the recognisers constraints the example sets from which each

recogniser is induced and determines which exceptions have to be excluded, since

the negative examples at depth D comprise only positions won at depth > D

plus draw. Therefore when the completeness and correctness of a recogniser is

described in this paper, this is to be understood only in reference to the whole

classi�er structure. The classi�er is implemented by employing the representation
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mechanism of Quintus Prolog predicates. The predicate krk/7 with the depth of

win N as �rst argument and the �le and rank positions of the White King, the

White Rook and the Black King respectively as other arguments mean that the

given position can be won optimally in N moves. As Prolog indexes the clauses of a

predicate in order of the �rst argument, this representation implements the order-

ing of recognisers as in �gure 2.1, as long as draw positions are assigned to an in-

teger greater than 16. The background knowledge of the algorithm was restricted

to contain only one speci�cally chess-oriented geometrical relation, namely the

symmetric di�erence between �les and between ranks: abs(V1 − V2) (V1 and V2

being the two �les or the two ranks). Other background predicates available were

num/1, specifying the ranks 1-8 and �les a-h, and edge/1, specifying the edges

of the board along rank and �le1. These background predicates were selected as

basic building blocks for the expression of piece relations in terms of geometry

of the chess board. They facilitate the expression of higher-level chess concepts

such as capture, safety, check, etc. Thus they supply some of the raw material for

relevant predicate invention in chess domains.

Induction of complete recognisers not guaranteed correct

The learning tasks for the recognisers were created with Golem ([MF92]). For

each depth of win D, the positive examples set are the positions with depth of

win D, and the negative set is chosen randomly amongst the positions of depth

of win > D. A generaliser is expected to compress, i.e. the hypothesis should be

of less complexity than the original examples. Any gain in compression may be at

the expense of introducing some incorrectness into the hypothesis. The method

produces generalised recognisers for each depth of win, which were tested over the

whole database. For large example sets (like for depth of win 14), Golem may fail

to �nd a generalisation, what increases the complexity of the theory. The draw

positions are classi�ed by default: they are the positions which were not classi�ed

by any recogniser.

The system was tested as a compound classi�er regrouping the sequentially-

ordered recognisers. For each depth of win D, the tests were de�ned by using

as a set of positive examples all the positions won at depth D and as a set of

negative examples all the positions won at depth > D. The results are shown in

�gure 2.1.3. The depth 14 is perfectly classi�ed, but very complex. The depths

16 and draw have no position, because they were classi�ed before by another

recogniser.

1Some other simple predicates are used to detect valid positions.
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Depth Correctly

Predicted

Incorrectly

Predicted

Description

Complex-

ity

0 27 99 2

1 78 433 3

2 178 178 5

3 48 418 4

4 63 1098 8

5 181 2022 9

6 67 2793 9

7 90 3427 11

8 76 1118 23

9 183 4441 23

10 221 2276 25

11 143 634 53

12 359 2517 77

13 473 1693 109

14 1153 0 4553

15 1146 410 22

16 0 0 12

draw 0 0 -

Total 4496 23560 7774

Table 2.1: [BMS95]: Sequentially-ordered BTM recognisers by depth of win.

The total lack of cases for Depth=16 and draw is the result of their having erroneously

been claimed by recognisers earlier in the sequence.

Induction of complete and correct recognisers

To develop complete recognisers which are also correct, a radical extension of

Golem was built according to GCWS. The generalisation step is based on Golem

and is called not(Golem) due to his ability to perform Closed-World Specialisa-

tion. The specialisation step was implemented in two variants. In the Strategy 1

specialisation, CWS modi�es the current hypothesis with respect to the excep-

tion. In the Strategy 2 specialisation, the faulty clause is deleted and rebuilt with
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Theory No. of No. of Size of

clauses invented encoding

predicates in bits

Depth 0 (Strategy 1) 9 5 3491(+88935=92426)

Depth 0 (Strategy 2) 6 3 3174(+77524=80698)

Depth 0 (All Examples) 6 3 3177(+77524=80701)

Examples 278893

Depth 1 (Strategy 1) 16 7 4310(+112116=116426)

Depth 1 (Strategy 2) 11 4 3633(+96964=100597)

Depth 1 (All Examples) 12 4 3588(+100482=104070)

Examples 278608

Depth 2 (Strategy 1) 31 7 4931(+138474=143405)

Depth 2 (Strategy 2) 23 7 4381(+126438=130819)

Depth 2 (All Examples) 20 6 4329(+120802=125131)

Examples 277833

Depth 3 (Strategy 1) 61 17 7322(+164311=171633)

Depth 3 (Strategy 2) 44 12 5784(+151253=157037)

Examples 275388

Depth 4 (Strategy 1) 116 38 12608(+189444=202052)

Depth 4 (Strategy 2) 89 22 9035(+178885=187920)

Examples 274583

Depth 5 (Strategy 1) 338 88 30974(+230402=261376)

Depth 5 (Strategy 2) 185 40 15445(+20655=222000)

Examples 272614

Table 2.2: [BMS95]: Comparison of specialisation strategies.
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respect to the exceptions. Each depth of win D was treated as a separate learn-

ing problem, with all the positions won at D as positive examples and randomly

chosen position won at > D as negative examples.

The GCWS incremental algorithm was run to induce six separate complete and

correct recognisers for depths of win 0 to 5 moves with both strategies. The

induced theories begin to pass the human horizon of of comprehension by depth

2. The results for both strategies are shown in �gure 2.1.3. For depth 0 to 2,

the results for both strategies are compared with the results of a batch learning

of not(Golem) of all examples. The complexity is �rst measured in number of

Prolog's clauses and the number of the invented predicates, and second in the

encoding size of the recognisers. The encoding size is calculated as encoding size of

the hypothesis plus the encoding size of the proof (a speci�cation of the derivation

of the examples from the hypothesis). It can be compared to the size of all the

learning examples.

Some common concepts that are present in di�erent recognisers cannot be de-

tected with this method. So a test was made to combine the recognisers for depth

0 and 1, to see if the idea could bring better results. A common depth 0 and 1

recogniser was build and contains 13 clauses. No more tests were made to deepen

this method.

Discussion

The depth 0 and depth 1 recognisers are similar to those of an earlier study

([Bai94]) and were validated as meaningful by a chess expert. At depth 2, the

recogniser has 2 clauses which cover two thirds of the total positions. Moreover

at this depth, exceptions to exceptions appear, what was not seen before.

As seen in �gure 2.1.3, the recognisers are more compact than the examples set.

But the compression is small for depth 5, and the complexity trend suggests that

this approach would be bad for depth 6 and more. Strategy 2 is more compressive

and produces less complex theories, so it is here more suitable than Strategy 1.

The test for a common concept in di�erent depths could be an interesting idea

to push on, because the depth 0 and 1 recogniser contains 13 clauses, compared

to 17 clauses for the 2 recognisers for depth 0 and depth 1.
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2.1.4 Concluding Remarks

The KRK problem is a good example of a large-scale and unstructured data

problem, particularly with the aim of transparent theories. The results of the

current work surpass our best previous solution, what shows the applicability of

our method of incremental learning in a non-monotonic representation. However

our method may fail for depth bigger than 5 in the KRK problem. It seems that

further progress will depend on approaching the learning task in a di�erent way.

The decline in compression for recognisers as depth of win increases suggest that

more various predicates should be used, either with user-supplied background

or with other predicates invention methods. A tree could replace the sequential

organisation of the recognisers, in which the depth of a position is framed more

precisely at each node. The optimal criteria could be also adapted, to another

metric for example.

2.1.5 Bene�t for our Work

The system GCWS explained in the paper and Golem are based on several chess

patterns used to describe the board and to test some properties of the position

(like if the position is valid or not), as recalled in the paper of J. Fürnkranz:

[Fue93]. These patterns are general chess patterns or simple description patterns,

and they are exactly the types of attributes we need, since we aim to describe the

board within the KRK ending using chess knowledge. The considered patterns

are listed in the table 2.3. Other patterns were found by the system, but they are

too complex to be simply used.

distance(X, Y) returns the symmetric di�erence between the

�les or the ranks of 2 �gures

adjacent(X, Y) determines if the �les or the ranks of 2 �gures

are side by side or the same

between(X, Y) determines if the �le (or the rank) of a �gure

is between the �les (or the ranks) of 2 others

Table 2.3: Useful Attributes on which Bain's paper ([BMS95]) is based.
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2.2 On Learning How To Play, by E. Morales

([Mor97])

In his paper, Morales describes Pal-2, an extension of the Pal ([Mor92]) learning

algorithm. The both systems Pal and Pal-2 learn chess patterns from traces

of games. Pal-2 also learns strategy rules de�ned with the help of the learned

patterns. Morales has tested Pal-2 on the KRK endgame, and the results include

some learned patterns, what we are in interest in.

2.2.1 Pal-2

Perception and recognition of patterns seems to be a good way to play chess

e�ciently. The key is to detect good patterns and to learn how to combine them in

rules to build a valid game strategy. Pal-2 can both acquire patterns from board

positions like Pal and build a playing mechanism based on learned condition-

action rules using the detected patterns.

Learning rules

Pal-2 follows traces of games, and for each move made by the winning side, it

tests all its known patterns before and after the move and constructs playing

rules. A rule is a list of conditions before the move (in form of detected patterns),

a move to do, and a list of conditions after the move. Patterns that do not change

as a consequence of the move are eliminated from the conditions of the rule after

the move. The positions of the pieces are replaced by variables in constructed

rules. The coincidences in the values have to be eliminated later by more general

rules.

For each move of the winning side, Pal-2 compares the move made in the trace

with the moves suggested by his applicable rules. If a rule suggests the good

move, this rule becomes the �rst one in the rules' list. If no rule is applicable or

suggests the good move, a new rule has to be learned and Pal-2 asks the user for

a new pattern.

The rules are ordered in the list as following: the more speci�c �rst and the more

general last. Every new rule is compared with the other rules for subsumption.

When the new rule is recognised as a more general form of another one, the older

and speci�c one is deleted. If the new rule is a more speci�c form of an older rule,
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it is deleted and the older one comes at the beginning. So the rules are ordered

and the coincidences are removed.

Learning Patterns

At the beginning, Pal-2 has only general purpose chess knowledge, it contains no

playing rule and knows the only pattern �being in check�. The main problem of

learning a new rule is to know if a rule or a pattern is lacking. Pal-2 cannot �nd

it out alone, that is why the user has to choose if Pal-2 needs a new pattern.

Patterns are learned with Pal . Pal is an inductive logic programming (ILP) sys-

tem, which uses a restricted least general generalisation algorithm to guide its

learning strategy. It has to be provided with a set of board positions containing

the new pattern, and applies a new constraint which identi�es the role of the

pieces in the di�erent examples to reduce the complexity of the generalisation

algorithm.

primary name our designation description

ThreatkR Adjacent WR-BK The opposite king threatens our

rook

Rook_divs WR Between WK-BK Rook divides both Kings either

vertically or horizontally.

Alm_oppos Kings almost in opp. King is �almost� in opposition

with the opposite King.

L_patt L Pattern The 3 pieces form a L shaped pat-

tern with the opposite King in

check by the rook.

rkK WK Between WR-BK The rank / �le of Rook is < / >

rank / �le of King which is < / >

rank / �le of opponent's King.

Table 2.4: [Mor97]: Patterns from Pal-2

2.2.2 Results

In the experiments, the user followed a very simple strategy where the opponent's

king was always moving away from the other king, the rook was dividing both

kings eather vertically or horizontally and the opponent's king was not allowed
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to move more than one �le or rank away from the rook. The patterns learned by

Pal-2 are listed in table 2.4.

2.2.3 Bene�t for our Work

The system described in this paper has found some patterns (listed in table 2.4)

which it has learned while playing the KRK ending. It used these patterns to

describe the board and �nd when it should apply some particular rules. Maybe

the patterns it found while playing its particurlar strategy can help us describe

the chess board in a more general context.

2.3 Learning Long-Term Chess Strategies From

Databases, by A. Sadikov ([Sad06])

In his paper Sadikov investigates the learning of long-term strategies from com-

puter-generated databases. The method consists in splitting the whole game in

stages, and to achieve local goals in each stage. In the last stage, the goal is to

mate the black king. To identify the stages, a list of known attributes was used,

and a big change of their values de�nes the border between two stages. Sadikov

experimented his approach in the KRK endgames and in the more di�cult KQKR

endgame.

2.3.1 Method

The work is based on chess endgames for which a complete database exists. The

basic idea is to break down the endgame into stages to build a strategy with

subgoals to play the endgame. In each stage, certain features are important and

others are not. The stages have to be automatically extracted from the database

given a set of position attributes speci�c for the endgame.

To detect borders between the stages, the changes of the values of the attributes

are measured during the play. Sadikov assumed that large changes indicate bor-

ders between stages. So the computing of the stages starts with the calculation of

the values ai,j of the attributes for a depth of play i, for all i in the database (ie

i ∈ [0, 16] for the KRK endgame) and for all attributes j. Then the information

gain ratio of these values between the levels i and i+1: g(i, j) are calculated,

and regrouped in a vector G(i) = (g(i,1), g(i,2), . . . ). The assumption is that the
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behaviour of G(i), when level i changes, is indicative for the stage of play: If G(i)

stays about the same, then both levels belong to the same stage, otherwise they

are in di�erent stages. To test the evolution of G(i), a function Corr(i) is used:

Corr(i) = Corr(G(i), G(i + 1)) =
E(G(i) � G(i + 1))− E(G(i)) � E(G(i + 1))√

V ar(G(i)) � V ar(G(i + 1))

Here, E(X) is the average value of the values in vector X and Var(X) the variance

of values in X.

kdist the distance between the two kings

rsafety rook safety: de�ned as the distance between

the rook and the enemy king

oppL true if the kings are in opposition

edist black king's distance to the closest edge

fspace the space the black king has, as limited by

the rook

rdiv true if the rook divides the two kings

srdiv true if the rook divides the two kings in di-

rection towards the closest edge

grook true if the rook holds the black king towards

the closest edge

soppL true if the kings are in opposition that forces

the black king towards the closest edge

squeeze true if both `grook' and `srdiv' hold

cdist the distance of the black king from the closest

edge

wkcdist the distance of the white king from the cen-

tral cross

Table 2.5: [Sad06]: Attributes from Sadikov

To segment the database, �rst all the G(i) are calculated from the database.

Second Corr(i) is calculated from G(i). And third: Corr(i) is plotted versus i,

and the local minima are candidate points for borders between stages of the play.

When the database is broken down in stages, a classi�er can be build, that returns

the stage of play for a given position. The intention is that such classi�ers for

each stage of play are comprehensible, so that they can characterise the stage such

that human players can follow the long-term strategy for playing this endgame.
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To play the endgame, there are two possible ways: On the one hand the classi�ers

can be used to de�ne subgoals for each stage (i.e. the conditions to attain the next

stage). On the other hand, the classi�ers can return an estimation of the distance-

to-win. This estimation can be used as a heuristic evaluation function for minimax

search up to a chosen depth. The move to play is decided by this minimax search.

More precisely, from a given position, the classi�er returns the stage of play the

position was estimated to be in. Each stage of play has a particular regression

function that returns for any position in this stage an estimation of the distance-

to-win.

2.3.2 Application to KRK

For the KRK endgame the attributes listed in the table 2.5 were used. These

attributes are based on a set used in some previous studies, for example in [Bra01].
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Figure 2.2: [Sad06]: Phase Separation for KRK Endgame

From this list, the value vectors can be calculated and thus the adjacent gain

vectors. The �gure 2.2 shows the correlation plot measuring the similarity between

these vectors. There are two disctinct local minima: between levels 7 and 8 and

between levels 11 and 12, so the KRK endgame was divided into three phases:

Phase Close (levels 0 to 7), phase Medium (levels 8 to 11) and phase Far
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(levels 12 to 16). The levels 0 to 2 don't appear on the plot because they are less

numerous in the database, being so a kind of exception.

Figure 2.3: [Sad06]: Decision tree for classi�cation into KRK phases

The induced decision tree for classi�cation of positions into the three phases is

shown in �gure 2.3. It uses only three attributes and is simple to understand. The

di�erences between the neighbored phases give the local targets to achieve next

phase. Phase Far consists mostly of positions where the black king is not on the

edge of the board. The objective in this phase is thus to put the black king to an

edge. Phase Medium consists of positions where the black king is on the edge of

the board, but the white king is far from it. The objective here is hence to bring

the white king near the black one. Phase Close regroups the other positions.

Given these stages, di�erent types of evaluation functions were built: Some global

functions, based on all the positions of the endgame and varying on the number

of attributes they use; some local functions, based only on the positions of a par-

ticular stage and varying on the way they are built together to return a global

function; and the same local functions used globally on any position. All the ob-

tained regression functions are represented as coe�cients for each used attribute.
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Regression function Success Rate Suboptimality

level (in plies)

global with full set of attributes 58.43% +59.42

global w/o boolean attributes 100% +13.64

global w/o boolean attributes and

w/o `wkcdist'

100% +7.64

local with tree classi�er 100% +8.44

local with perfect classi�er

(�cheat�)

100% +12.96

local learned on tree classi�ed

data with tree classi�er

100% +16.78

Close local used globally 100% +8.52

Medium local used globally 100% +7.42

Far local used globally 100% +8.58

Table 2.6: [Sad06]: The performance of KRK evaluation functions

The calculated regression functions are used to play the endgame. The results

are shown in table 2.6. The success rate tells the proportion of the positions

in which a 6-ply minimax search using a given function was able to win. The

suboptimality level tells how many more plies above optimal the player needs in

average. The expectation was that local regression functions are better than global

functions and than local functions used globally. This is surprisingly not true.

The local functions used globally are the best and the global function without

boolean attributes and without `wkcdist' is also better than expected. These

results indicate that the endgame decomposition into stages did not contribute

to the success of play implemented as minimax with distance predictor. Until

better ways of using it are found, the decomposition into stages only provided

general hints about the endgame to a human player. A better comprehension of

the proceeding details can be achieved by the observation of examples of plays of

the player compared to the ideal player (which uses the whole database).

2.3.3 Experiments in the KQKR Endgame

Sadikov has also tested his methods on the King & Queen vs King & Rook

(KQKR) endgame. As the results he obtained there are not related to our study,

we will not detail them any further.
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2.3.4 Bene�t for our Work

The attributes Sadikov used are good patterns for the KRK endgame which

are often used. They should allow us to distinguish the di�erent depths of win,

since Sadikov used them to separate the game in di�erent phases. In table 2.7

we renamed the list shown in table 2.5 so that the names correspond to our

designation.

Primary name Our designation Description

kdist Distance WK-BK the distance between the two kings

rsafety Distance WR-BK rook safety: de�ned as the distance

between the rook and the enemy

king

oppL Kings in opposition true if the kings are in opposition

edist Dist. BK-Closest Edge black king's distance to the closest

edge

fspace BK's free space the space the black king has as lim-

ited by the rook

rdiv WR Between WK-BK true if the rook divides the two

kings

srdiv WR divides K. tow. CE true if the rook divides the two

kings in direction towards the clos-

est edge

grook WR holds BK tow. CE true if the rook holds the black king

towards the closest edge

soppL Kings in opp. tow. CE true if the kings are in opposition

that forces the black king towards

the closest edge

squeeze WR squeeze BK true if both `grook' and `srdiv' hold

cdist Dist. BK-Closest Corner the distance of the black king from

the closest corner

wkcdist Dist. WK-Central Cross the distance of the white king from

the central cross

Table 2.7: [Sad06]: Attributes from Sadikov, renamed
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2.4 Leonardo Torrès y Quevedo's KRK Machine

The description of a chess machine was described �rst in French in [LaN14], and

then in English in [Lev88]. Mr. Torrès y Quevedo, a Spanish engineer, built around

1910 a chess-playing machine that could play without help the KRK endgame

against a human player. The operating mode of this machine is very interesting

to investigate.

2.4.1 Operating Mode

The machine can not start from any starting position. A certain order in the

positions of the pieces has to be veri�ed at the start: A vertical direction has to

be de�ned, and the black king should be beneath the white king and the rook.

The white rook has to be either on the a-�le or on the h-�le.

in_zone_ac/1 tests if the rook and the black king are both

in 'a', 'b' or 'c'

in_zone_fh/1 tests if the rook and the black king are both

in 'f', 'g' or 'h'

vertical_distance/3 returns the vertical distance between two �g-

ures (WR and BK or WK and BK)

horizontal_distance/3 returns the horizontal distance between two

�gures (WK and BK)

odd/1 tests if a number is odd

even/1 tests if a number is even

zero/1 tests if a number is equal to zero

reduce_distance_by_one/3 substracts a distance by one

>/2 tests if a number is larger than another

Table 2.8: List of the attributes used by Leonardo Torrès y Quevedo's machine

If the opponent plays an illegal move, the machine detects it and refuses to play,

and a light gets on. Once three such illegal moves have been made, the robot

ceases to play alltogether. If on the contrary the defence plays correctly, the robot

will carry out one of 6 operations, depending upon the position of the black king

compared to the positions of the white king and the rook. The possible moves

executed by the machine are: The rook moves to the a-�le; the rook moves to

the h-�le; the rook moves one square down; the king moves one square down; the

king moves one square to the left; the king moves one square to the right. One of



44 2 Review of related work

these moves is chosen by the machine with the help of a rules system, depending

on the position of the black king. The 6 rules used by the machine are listed here:

If the black king is in the same zone as the rook, then the rook moves away

horizontally. Otherwise look at the vertical distance between the black king and

the rook. If it is more than one square, the rook moves down one square, but

if it is just one square, look at the vertical distance between the two kings. If

it is more than two squares, the king moves down one square, and if it is only

two squares, look at the number of squares representing their horizontal distance

apart. If it is zero the rook moves down one square; if it is even but not zero,

the white king moves one square towards the black king; if it is odd, the rook

moves one square horizontally. The predicates used to to apply these rules are

summarised in table 2.8.

2.4.2 Bene�t for our Work

From the patterns used by the chess machine, we extract some attributes which

could help us to describe the chess board. They are listed in table 2.9.

Same Zone WR-BK

Vertical Distance WR-BK

Vertical Distance WK-BK

Horizontal Distance WK-BK

Table 2.9: List of the attributes originated from Leonardo Torrès y Quevedo's

machine

Since these attributes allow the machine to play the endgame automatically, they

may help us to build our chess knowledge. As they are direction dependent, we

will have to �nd a way to adapt them for all directions so that they can give us a

good information for all positions. This adaptation will be the key of our success

in using the attributes, and will be described in the next chapter.



Chapter 3

Knowledge

This chapter contains the descriptions of the attributes we used to build di�erent

new databases. Our idea is that a good combination of these attributes could

de�ne an interesting knowledge that can help to compress the database without

losing much information.

3.1 Preliminaries

3.1.1 Attributes Classi�cation

The attributes come mainly from the four sources we described in chapter 2, but

some other were added since they seemed important to us. They are all listed

with the set they belong to in the table 3.1. The �rst four sets, named Bain,

Morales, Sadikov and Torres in reference of the main author of the papers they

come from, represent also the origin of the attributes, in contrary to the �fth

set, called My Selection, which regroups new attributes that we found interesting

and a selection of some attributes from the source papers. These �ve sets and a

sixth one containing all attributes will be used in the next chapters to build new

databases.

To keep a clear overview, we classi�ed the patterns in 7 categories depending on

their nature: Some attributes just refer to �gures distances, some other on the po-

sition on the board. . . All the attributes from each category will be explained with

examples. Their properties will be detailed as well as the reasons why they are

interesting and in which situation. Moreover the implementation of the attributes

in the script will be also described.
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Name Bain Morales Sadikov Torres My Selection

Figure Distance Patterns

1. Distance WK-BK × ×
2. Distance WR-BK × × ×
3. Distance WK-WR ×

Figure File and Rank Distance Patterns

4. File distance WR-BK ×
5. Rank distance WR-BK ×
6. File distance WK-WR ×
7. Rank distance WK-WR ×
8. File distance WK-BK ×
9. Rank distance WK-BK ×
10. Alignment dist. WR BK ×

Adjacent Figure Patterns

11. Adjacent WK-WR ×
12. Adjacent WK-BK ×
13. Adjacent WR-BK × ×

Between Figure Patterns

14. WR Between WK & BK × × ×
15. WK Between WR & BK × ×
16. BK Between WK & WR ×

Board Distance Patterns

17. Dist. BK-Closest Edge ×
18. Dist. BK-Closest Corner × ×
19. Dist. WK-Central Cross × ×
20. Dist. WK-Closest Corner ×

Orientation-based Patterns

21. Vertical distance WR-BK ×
22. Vertical distance WK-BK ×
23. Horizontal dist. WK-BK ×
24. Same Zone WR-BK ×

Figure Relation Patterns

25. Kings in opposition ×
26. Kings almost in opp. × ×
27. L pattern ×

Figure Relation Patterns Associated with the Board

28. WR divides K tow. CE ×
29. WR holds BK tow. CE ×
30. Kings in opp. tow. CE × ×
31. WR squeeze BK ×
32. BK's free space × ×
33. BK's available squares ×

Table 3.1: Attributes with their category and the set their belong to
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3.1.2 Basis Concepts

Figures Distance

The notion of distance that is used here is particular for the chess board: the

distance between two �gures is the maximal value of the di�erence between the

�les of both �gures and of the di�erence of their ranks. In other words, it is the

smallest number of moves a king would need to go from the place of the �rst �gure

to the place of the other �gure on a free board (i.e. without any interference with

other �gures). For example on the �gure 3.1, the white king is in a2 and the black

king in c5 so their distance is 3.

80Z0Z0Z0Z
7Z0Z0Z0Z0
60Z0Z0Z0Z
5Z0j0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
2KZ0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

Figure 3.1: Distance example on the chess board: distance = 3

Closest Edge

Some attributes are based on the relation between a �gure and the border of the

board. In this case we speak of the closest edge or the closest corner of the �gure.

In some cases there may be a problem to de�ne which edge is the closest. The

de�nition is done with a simple method: The distance from the �gure to each

edge is calculated (the edges are simply the 2 �les a and h and the two ranks

1 and 8). Then we compare these distances with each other. If one distance is

strictly smaller than the 3 other, like on �gure 3.2 �rst board, then the closest

edge is the coresponding one. If there are 2 distances which are the smallest,

like on �gure 3.2 second board, there are two closest edges, i.e. each one of the

two corresponding edges can be taken as the closest edge. We then have to pay

attention while implementing the attributes using this feature to determine which

one of the two closest edges should be used. Except the attribute Distance to the

closest edge, for which the value is the same even if there are two closest edges,
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only boolean attributes use this feature. For such kind of attributes, if there are

2 closest edges, the returned value is true if the test is true for at least one of

the two edges.

Some attributes use similarly the concept of closest corner. Such a corner is

determined with the same method, but there can be only one closest corner.

80Z0Z0Z0Z
7Z0Z0Z0Z0
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20Z0Z0J0Z
1Z0Z0Z0Z0

a b c d e f g h

80Z0Z0Z0Z
7Z0Z0Z0Z0
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0J0Z0Z0
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

Closest Edge: `1' `a' and `1'

Distance to CE: 1 2

Closest Corner: `h1' `a1'

Distance to CO: 2 2

Distance to CR: 2 1

Figure 3.2: Examples for the concepts Closest Edge (CE), Closest Corner

(CO) and Central Cross (CR)

Notations

In this chapter, we use the standard notation WK for the white king, BK for the

black king and WR for the white rook. Some other shortcuts may also appear,

like CE for Closest Edge, CO for Closest Corner or CR for Central Cross.

3.2 Figure Distance Patterns

3.2.1 Distance WK BK

How far from each other are the two kings?

This attribute characterises the distance between the two kings. It can have any

integer value between 2 and 7 (because the positions in the database are all legal,

so a distance of 1 is not possible). For the winning side, a small value for this

attribute is preferable, so that the enemy king is prevented to move as it wants
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0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0ZKZ
Z0Z0Z0Z0
0S0Z0ZkZ
Z0Z0Z0Z0

0ZKZ0Z0Z
Z0Z0Z0Z0
0Z0Z0ZkZ
Z0Z0Z0Z0
0Z0ZRZ0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0

0Z0Z0Z0Z
Z0Z0Z0Zk
0Z0ZKZ0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
S0Z0Z0Z0

two four three

Figure 3.3: Examples for the Attribute �Distance WK BK�

to. For example on the �rst board of the �gure 3.3, the attribute is equal to 2 and

the black king is forced to move one square down to the edge. In this case, this

is also due to other reasons, but in general a large king distance (larger than 5

typically) means a long game (a distance to win of 6 or more, except the draws).

But a small king distance does not imply anything on the depth of win.

3.2.2 Distance WR BK

How far is the white rook from the black king?

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0J0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0ZkZ0
0Z0Z0ZRZ
Z0Z0Z0Z0

kZ0Z0Z0Z
Z0Z0Z0ZR
0J0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0j0Z0Z
Z0Z0ZKZ0
0Z0Z0ZRZ
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0

one seven three

Figure 3.4: Examples for the Attribute �Distance WR BK�

This attribute contains the distance on the board between the black king and

the white rook. Its possible values are all the integers between 1 and 7. A value

of 1 means that the attribute Adjacent WR BK is true. A small value here is

dangerous for the white side, because the rook may be taken by the black king,

and the game is then a draw. To avoid it, the white side has to react and to

modify his strategy. Since the distance on the board makes no di�erence between

�le distance and rook distance, this attributes give no indication if the rook is on
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a good position to hold the black king toward an edge or a corner. For example

on �gure 3.4, on the board in the middle, the white rook is far from the black

king but is in a good position: The black side can be mated in 1 move.

3.2.3 Distance WK WR

How far are the white king and the rook from each other?

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
ZKZ0Z0Z0
RZ0Z0Z0Z
ZkZ0Z0Z0

kZ0Z0Z0Z
Z0J0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0S0Z0Z0Z
Z0Z0Z0Z0

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
ZKZ0Z0Z0
0ZRZ0Z0Z
ZkZ0Z0Z0

one five one

Figure 3.5: Examples for the Attribute �Distance WK WR�

This attribute contains the distance on the board between the white king and

the rook. So it can be called the protection distance. Its possible values are all

the integers between 1 and 7. A small value here can be good for the white side,

because then the rook may be protected by the king. But in the standard strategy

this attribute is not particularly small at the end, because the rook can act from

the other end of the �le or the rank. As the two kings are often near from each

other, the rook should better be far from both. This attribute was not used in the

source papers, but it seemed interesting to me to test it because of his similarity

to the two others of this subsection: Distance WK BK and Distance WR BK.

On �gure 3.5, the value of the attribute is one for the �rst and the third board,

but the distance to win is 7 moves in the �rst case and only 1 in the second case.

And for the board in the middle the distance WK - WR is �ve and the distance

to win is one as well. So this attribute alone does not tell anything about the

advancement of the game.

3.3 Figure File and Rank Distance Patterns

In this section, the �le and rank distances between the �gures are explained. The

�le distance between two �gures is calculated by doing a simply di�erence between
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the �le of the �rst �gure and the �le of the second one. It is the same for the

ranks. So the third �gure is not taken into account for the calculation. Because

of the symmetries of the board and the �gures' moves, the rank and �le distances

have the same meaning taken separately, so only the �le distance attributes will

be explained, knowing that the rank distances have the same properties. The

possible values for these seven attributes are the integers between 0 and 7.

3.3.1 File Distance WR - BK

How far from each other are the �le of the white rook and the �le of the black

king?

80Z0Z0Z0Z
7Z0Z0Z0Z0
60ZKZ0Z0Z
5Z0Z0Z0ZR
40Z0Z0Z0Z
3Z0Z0Z0Z0
20Z0Z0Z0j
1Z0Z0Z0Z0

a b c d e f g h

80Z0Z0Z0Z
7Z0Z0Z0Z0
60Z0J0Z0Z
5Z0Z0Z0ZR
40Z0Z0Z0Z
3Z0Z0Z0j0
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

80Z0Z0Z0Z
7Z0Z0Z0Z0
60j0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0J0Z
3Z0Z0Z0Z0
20Z0Z0Z0Z
1Z0Z0Z0ZR

a b c d e f g h

d = 0 d = 1 d = 6

Figure 3.6: Examples for the Attribute �File Distance WR - BK�

This attribute calculates the distance between the �le of the white rook and the

�le of the black king. A value of zero means that the black king is in check, like on

the �rst board of �gure 3.6. If the value is 1, then the rook stands next to the black

king, limiting thus its move possibilities. The other values are less interesting, they

just tell how many place is left for the black king in the corresponding direction.

3.3.2 File Distance WK - WR

How far from each other are the �le of the white king and the one of the rook?

This attribute gives the distance between the �le of the white king and the �le

of the rook. If its value is 0, then the white king and the rook are on the same

�le, what can limit the move possibilities of the rook, like on the �rst board of

�gure 3.7 where the distance to win is 7 although the black king is near a corner

and in opposition with the white king. A value of 1 can be good if the distance

between the kings is not too large, like on the second board.
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0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
kZKZ0Z0Z
Z0S0Z0Z0

0S0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
kZKZ0Z0Z
Z0Z0Z0Z0

0Z0Z0Z0Z
Z0ZKZ0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
RZ0Z0Z0Z
Z0Z0ZkZ0
0Z0Z0Z0Z
Z0Z0Z0Z0

d = 0 d = 1 d = 2

Figure 3.7: Examples for the Attribute �File Distance WK - WR�

3.3.3 File Distance WK - BK

How far from each other are the �le of the white king and the �le of the black

king?

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0ZKZ0Z0Z
Z0Z0Z0Z0
RZkZ0Z0Z
Z0Z0Z0Z0

0Z0Z0Z0Z
Z0Z0Z0Z0
0ZKZkZ0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0ZRZ0Z0

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0j0Z
Z0Z0Z0Z0
0Z0Z0J0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0S0Z0

d = 0 d = 2 d = 0

Figure 3.8: Examples for the Attribute �File Distance WK - BK�

This attribute tells us if the two kings are on nearby �les or not. It is not as

meaningful as the two previous attributes, because none of the kings can move

far on a �le in contrary to a rook. So the attribute Distance WK - BK is more

important, but this one was added for completeness.

3.3.4 Alignment Distance WR BK

This attribute is di�erent from the other of the section. It also deals with �le and

rank distance, but here the smaller one of the �le and rank distance between the

black king and the rook is calculated. It corresponds to the closest distance of

the rook's line to the black king. It is more interesting than the other attributes,

because it gives an information which does not depend on the direction we look
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d = 0 d = 1 d = 6

Figure 3.9: Examples for the Attribute �Alignment Distance BK WR�

from. The possible values still are integers between 0 and 7. A value of 0 still

means that the black king is in check. But a value of 1 is quite interesting, as it

means that the black king is hold on one side by the rook, while being at least one

square far from the rook in the other direction. As a matter of fact, this attribute

selects what seems to be the most interesting direction between the �les and the

ranks and returns the distance along the chosen direction. Since the rook can

act from far away (almost the other side of the board), this attribute gives more

information than the Distance WR - BK.

3.4 Adjacent Figure Patterns

The attributes of this section test if two of the three �gures are on adjacent

squares. The possible values are true and false. This property is important,

because the kings can move one square in any direction. When such an attribute

is true, it means that the two �gures are able to interact (because two of the

three �gures of the endgame are kings). The importance and the consequences

of the interaction depend on the nature of the two �gures (mainly if they are on

the same side or not). The values of these attributes are computed by testing if

the distance between the two �gures is one.

3.4.1 Adjacent WK WR

Are the rook and the white king on adjacent squares?

This attribute tests if the rook is protected by the white king or not. If true, the

black king cannot take the rook, even if it stands next to it. In �gure 3.10, the

white king protects the rook on the �rst board, although it is not threatened. On
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Figure 3.10: Examples for the Attribute �Adjacent WK WR�

the second board the attribute is false, and the rook is threatened, so it can be

taken by the black king, and the game will thus be draw. On the third board,

the rook is threatened but the attribute is true, so it cannot be taken.

3.4.2 Adjacent WK BK

Are the two kings on adjacent squares?

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
RZ0Z0Z0Z
jKZ0Z0Z0

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
ZRZKZ0Z0
0Z0Z0Z0Z
ZkZ0Z0Z0

0Z0ZRZ0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0ZKZ0Z0
0Z0ZkZ0Z
Z0Z0Z0Z0

true false true

Figure 3.11: Examples for the Attribute �Adjacent WK BK�

This attribute tests if the distance between the two kings is one or more. If it is

true, then the position is illegal. In fact, this attribute was used in [BMS95] to

de�ne and detect illegal positions. In our case, this attribute is not of any use if

the database is built correctly, what was the case in the database we used. We

only included this attribute for completeness.

3.4.3 Adjacent WR BK

Are the rook and the black king on adjacent squares?
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Figure 3.12: Examples for the Attribute �Adjacent WR BK�

This attribute tests if the distance between the white rook and the black king is

one, or more. If the value is true, then it means that the black king threatens the

rook. It is an important attribute, because then the white rook may be taken by

the black king, if black has the move, what was the case in the database we used,

unless the white king is protecting the rook. And if the rook is taken, then only

the two kings stay on the board and the game is draw! This is the case in �gure

3.12 �rst board. On the second board, the attribute is false so the rook cannot be

taken. In order to know the gravity of the value, i.e. to know if the game will be

drawn or not, we have to take care simultaneously of the value of the attribute

Adjacent WK WR. On the third board, the white king protects the rook so that

it cannot be taken although the attribute is true.

3.5 Between Figure Patterns

In this section we have grouped three attributes of the same kind: WR between

WK and BK, WK between WR and BK and BK between WK and WR. These

three attributes test if one of the three �gures can be considered as standing

between the two others on the board. The sense of �between� here is either con-

cerning the ranks or the �les. That is to say that a �gure is between two others if

its rank is between the ranks of the others or if its �le is between the �les of the

others. This de�nition is compatible with the symmetries and rotations of the

board and the �gures possible moves. These attributes can take the values true

or false. They are all implemented the same way: The four following possibilities

are tested (the middle �gure is the one which should be between the two others).

Is the �le of the middle �gure larger than the �le of the �rst other and smaller

than the �le of the second other �gure. Is the rank of the middle �gure larger

than the rank of the �rst other and smaller than the rank of the second other.
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Is the �le of the middle �gure smaller than the �le of the �rst other and larger

than the �le of the second other. Is the rank of the middle �gure smaller than

the rank of the �rst other and larger than the rank of the second other. If one of

the possibilities is true, then the attribute is true, otherwise false.

3.5.1 WR Between WK and BK

Does the rook divide the two kings?

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0ZKZ
Z0S0Z0Z0
0Z0Z0Z0j
Z0Z0Z0Z0

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0S0Z0ZK
0Z0Z0Z0Z
Z0Z0Z0j0

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
ZkZ0Z0Z0
0Z0Z0Z0Z
Z0ZRZ0Z0
0Z0Z0Z0Z
J0Z0Z0Z0

true false true

Figure 3.13: Examples for the Attribute �WR Between WK and BK�

This attribute tells if the rook is between the two kings. In the standard endgame

strategy, it has to be true before the two kings get in opposition, like on the �rst

board of �gure 3.13 where the depth of win is 5. Then the rook can go �down�

one square to force the black king to go towards an edge (or to mate if the black

king is already in an edge). On the second board the position is slightly di�erent

and the attribute is no more true, thus the depth of win is 11. But taken alone

in a general position on the board, this attribute does not give very signi�cant

information, like on the third board, where the attribute is true but the distance

to mate is 13.

3.5.2 WK Between WR and BK

Is the white king between the rook and the black king?

This attribute tests if the white king separates the rook from the black king. In

the standard strategy, it should happen to be true when the rook divides the

two kings so that the black king cannot approach the rook without getting in

opposition with the white king, in which case the rook can move �down� to force

the king to the edge, like on the �rst board of �gure 3.14: If the black king goes
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Figure 3.14: Examples for the Attribute �WK Between WR and BK�

nearer to the white rook, it gets in opposition with the white king and can be

mated. On the second board the position is almost the same, but the attribute

is false. The black king can then threaten the white rook without getting in

opposition to the white king, so to avoid this the rook has to move. Like the

previous attribute and as we can see on the third board, this attribute does not

mean much taken alone in a general position.

3.5.3 BK Between WK and WR

Is the black king between the white king and the rook?

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0J0
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0J0Z0Z0Z
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true false true

Figure 3.15: Examples for the Attribute �BK Between WK and WR�

This attribute tests if the black king stands between the white king and the rook.

Such a pattern is not a target pattern in the standard strategy, but it can show

that the white side is not in a optimal position, because the white �gures do not

force the black king to an edge. On the �rst board of �gure 3.15, the position is

like the one of the second board of the �gure 3.14, so in this case this attribute

can be taken as the contrary ofWK Between WR and BK. But in general, looking

at this attribute isolated does not give us any useful information.
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3.6 Board Distance Patterns

3.6.1 Distance BK - Closest Edge

How far is the black king from the closest edge?

kZ0Z0Z0Z
Z0J0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0S0Z0Z0Z
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0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Zk
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
S0J0Z0Z0

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0ZkZ0Z0
0Z0ZRZ0Z
Z0ZKZ0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0

d = 0, DoW = 1 d = 0, DoW = 14 d = 3, DoW = 10

Figure 3.16: Examples for the Attribute �Distance BK Closest Edge� with

the Depth of Win (DoW )

This attribute tells us if the black king is near an edge or not. Its possible values

are the integers 0, 1, 2 and 3. It is important since it can give an idea of the

number of moves left until the end of the game. If the black king is far away from

the edge, it cannot be mated quickly: All the positions for which the attribute

has a value of three have their distance to win larger than or equal to ten (except

the draws). But the black king may be near an edge without having the game

near its end. For example on the �rst board of the �gure 3.16, the attribute has

a value of zero and the distance to win is one: We have a typical case of small

attribute value and small distance to win; but on the second board, the value of

the attribute is also zero and the distance to win fourteen! On the third board,

the attribute has a value of three with the smallest depth of win possible, i.e.

ten. The value is computed like that: The distance between the king and each

edge is calculated, and the the smallest value is returned. If the black king is on

a diagonal, there are two closest edges.

3.6.2 Distance BK - Closest Corner

How far is the black king from the closest corner?

This attribute evaluates the distance from the black king to the closest corner.

It is useful because it is simplier to mate when the black king is in a corner. The

possible values of the attribute are all the integers between 0 and 3. Nevertheless
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Figure 3.17: Examples for the Attribute �Distance BK - Closest Corner�

this attribute alone tells us less about the advancement of the game than the

previous one (Distance BK - Closest Edge), since the black king can be mated

in the middle of an edge, i.e. without being near to a corner (like on the second

board of �gure 3.17). And as well the game may still last long even if the black

king is near a corner (like on the third board of �gure 3.17 where the distance

to win is twelve). The value of the attribute is computed that way: The distance

from the black king to each corner is calculated and the smallest value is chosen.

3.6.3 Distance WK - Central Cross

How far is the white king from the middle of the board?

0Z0Z0Z0Z
Z0j0Z0Z0
0Z0Z0Z0S
Z0ZKZ0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
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zero two zero

Figure 3.18: Examples for the Attribute �Distance WK - Central Cross�

This attribute cares about the position of the white king. It tells us how far

is the white king from the closest of the four �elds d4, d5, e4, e5. Any integer

between 0 and 3 is valid value. This attribute is the opposite of the distance to

an edge: The sum of the value of this attribute and of the distance between the

white king and the closest edge is always three. It does not give a direct hint on
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the distance to win, since the position of the black king can be anything, but

rather an indication on the state of the endgame: When the white king is in the

middle of the board (i.e. when the attribute has a value of zero), it is in a good

position to start forcing the black king to an edge. For example on the �rst board

of �gure 3.18, the white king is on the central cross with the smallest distance

to win possible three (except the draws). On the second board, it is also on the

central cross but with the largest distance to win possible, twelve. In contrary,

when the white king is far from the central cross, the attribute does not give us

any information about the state of the endgame.

3.6.4 Distance WK - Closest Corner

How far is the white king from the closest corner?

0Z0Z0Z0Z
Z0Z0Z0Zk
0Z0Z0J0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
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0Z0Z0Z0Z
Z0Z0ZRZ0
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Z0Z0Z0Zk
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two three one

Figure 3.19: Examples for the Attribute �Distance WK - Closest Corner�

In completion to the previous one, this attribute also deals with the position

of the white king on the board. It tells us how far the white king is from the

closest corner. Any integer between 0 and 3 is a valid value. Since it is easier to

mate the black king in a corner, this attribute is pertinent because it brings more

information than the distance to the central cross (or to the closest edge).

3.7 Orientation-based Patterns

3.7.1 Vertical Distance WR - BK

How far from each other are the white rook and the black king in the �vertical�

direction?
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Figure 3.20: Examples for the Attribute �Vertical Distance WR - BK�

This attribute tells us how much liberty the black king has, as let free by the

rook. Its possible values are more_than_one_square and one_square. If it equals

one_square, then the rook is just �above� the black king and this one cannot

goes upwards. We are therefore in the same situation as in the simple strategy

of Morales with the black king been held against the bottom edge. The problem

here is to de�ne the vertical direction so that the attribute has a reliable value.

This attribute makes no sense if the vertical direction is de�ned so that the rook

is on the same grade as the black king. The best de�nition of the verticality is

for us: The black king should be as low as possible, i.e. the edge representing

the bottom is the edge closest to the black king. If it is not enough to de�ne

one direction, then the white king has to be as high as possible, i.e. the edge

representing the bottom is the one furthest from the white king. And if there still

exist two possibilities, then one of the two can be chosen randomly.

This attribute was used by the machine of Leonardo Torrès y Quevedo: If its

value is more_than_one_square, then the machine moved the rook one square

towards the black king.

3.7.2 Vertical Distance WK - BK

How far from each other are the white king and the black king in the �vertical�

direction?

This attribute tells us how much liberty the white king let to the black king. Its

possible values are more_than_two_squares and two_squares. The aim of this

algorithm is to detect if the white king is as near as it should be to the black

king and to bring it nearer if not. The role of the white king is to block the

black king in a direction (the here so called upper direction). As for the attribute

Vertical distance WR - BK, the problem is to de�ne what is vertical, but with
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Figure 3.21: Examples for the Attribute �Vertical distance WK - BK�

the de�nition given for the last attribute it is well de�ned.

This attribute was used by the machine of Leonardo Torrès y Quevedo. If the

value is more than two square, the machine moved the white king one square

down.

3.7.3 Horizontal Distance WK - BK

How far from each other are the white king and the black king in the �horizontal�

direction?
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Figure 3.22: Examples for the Attribute �Horizontal Distance WK - BK�

This attribute compares the position of the white king with the position of the

black king. Its possible values are odd, even and zero. It should help detecting

the right move to do to bring the two kings in opposition so that the black king

has to go �down� one square.

This attribute was used by the machine of Leonardo Torrès y Quevedo. If the

value was odd, the machine moved the rook one square horizontally. If the value



3.7 Orientation-based Patterns 63

was even, the machine moved the white king one square horizontally towards the

black king. If the value was zero, the machine moved the rook down one square.

3.7.4 Same Zone WR BK

Are the white rook and the black king in the same zone?

80ZRZ0Z0Z
7Z0Z0Z0Z0
60j0J0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
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true false true

Figure 3.23: Examples for the Attribute �Same Zone WR - BK�

This attribute was used by the machine of Leonardo Torrès y Quevedo to check if

the white rook could come near the black king if it moves down on the board. The

possible values are true and false. You need to have de�ned the vertical and

horizontal directions to use this attribute. Its value is computed by testing if the

rook and the black king are in neighbour columns (where columns are vertical).

It is true if the both �gures are in the three �rst columns, or if they both are

between the third and the sixth column, or in the three last columns.

You can see three examples of this attribute in �gure 3.23. On the �rst board,

the nearest edge from the black king is on the left, so the vertical areas are in

fact horizontal. As the rook is on rank 8 and the black king on rank 6, they are

in the same area: The attribute is true.

In the second example, the nearest edge is on the bottom of the board. The �les

e and g of the black king and the rook respectively are not in the same area: The

attribute is thus false.

In the third example, the nearest edge is the upper one (because the black king

is as far from the upper one as from the right one, but the white king is further

from the upper one), so the vertical zones are the �les. That is why the rook and

the black king are considered in the same area: The attribute is here true.
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3.8 Figure Relation Patterns

3.8.1 Kings in Opposition

Are the both kings in opposition?

0Z0Z0Z0Z
Z0Z0Z0Z0
0S0Z0Z0Z
Z0ZKZ0Z0
0Z0Z0Z0Z
Z0ZkZ0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0ZKZ0Z
Z0Z0Z0Z0
RZ0Z0Z0Z
Z0Z0j0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0

0Z0S0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0J0j0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0

true false true

Figure 3.24: Examples for the Attribute �Kings in opposition�

This attribute detects if the both kings are in a position on the board such that

the next king that moves has to move away from the other one. That happens

when the two kings are on the same �le or the same rank and are separated by

just one free �eld. The attribute can take the values true or false. It is true in

one of the following two cases: The two kings are on the same �le and their rank

distance is two, or the two kings are on the same rank and their �le distance is

two. In the standard strategy to play the endgame, this attribute tells when you

can move the rook to put the black king in check so that it has to move away

from the white king.

Some example positions with the values of this attribute are exposed in �gure

3.24.

3.8.2 Kings Almost in Opposition

Are the both kings almost in opposition?

This attribute is related to the previous one. If the both kings are not in opposition

but only �almost� in opposition, they are on the right way to get in opposition.

They are called almost in opposition if they are just one move away from being

in opposition without being on the same �le or on the same rank. The possible

values of this attribute are true or false. It is true if the �le distance between

the both king is one and the rank distance is two, or if the �le distance is two and
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0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0ZKZ0
RZ0Z0Z0Z
Z0Z0Z0j0
0Z0Z0Z0Z
Z0Z0Z0Z0

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0ZKZ0Z0
0Z0Z0Z0Z
S0Z0Z0Z0
0ZkZ0Z0Z
Z0Z0Z0Z0

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0S0j0Z0
0Z0Z0ZKZ
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0

true false true

Figure 3.25: Examples for the Attribute �Kings almost in opposition�

the rank distance one. It can be summarised by: The product of the �le and the

rank distance is two. To obtain that the kings are in opposition, this attribute

has to be �rst ful�lled.

Some example positions with the values of this attribute are exposed in �gure

3.25.

3.8.3 L Pattern

Do the three �gures on the board form a L shaped pattern with the black king in

check by the rook?

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0J0Z
Z0Z0Z0Z0
RZ0Z0j0Z
Z0Z0Z0Z0

0Z0Z0Z0Z
Z0Z0Z0Z0
0J0Z0j0Z
Z0Z0Z0Z0
0Z0Z0S0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
J0Z0Z0Z0
0Z0Z0Z0Z
jRZ0Z0Z0

true false true

Figure 3.26: Examples for the Attribute �L Pattern�

This attribute characterises the next step after having the two kings in opposition

in the standard strategy. The rook goes �down� (i.e. in the direction of the black

king) to check the black king, and as the white king blocks a whole side of the

possible moves of the black king, this one also has to move �down�. The possible

values of this attribute are true or false. It is true in one of the following cases:

The two kings are on the same �le with a rank distance of two and the rook is
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on the same rank as the black king, or the two kings are on the same rank with

a �le distance of two and the rook is on the same �le as the black king.

3.9 Figure Relation Patterns Associated with the

Board

3.9.1 WR Divides Kings towards the Closest Edge

Does the white rook divide the two kings in direction towards the closest edge?

80Z0Z0Z0Z
7Z0Z0Z0Z0
60Z0J0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3S0Z0Z0Z0
20ZkZ0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

80Z0Z0Z0Z
7Z0Z0Z0Z0
60Z0Z0Z0Z
5Z0Z0Z0J0
40S0Z0Z0Z
3Z0Z0Z0j0
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

80Z0ZRZ0Z
7Z0Z0Z0Z0
60ZkZ0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0ZKZ0
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

true false true

Figure 3.27: Examples for the Attribute �WR divides Kings towards the clos-

est edge�

This attribute tells us if the white rook separates the two kings in a judicious

manner. The possible values are true or false. The value is true if the rook is

between the two kings, so that the black king is on the side of its closest edge. If

there are two closest edge, any of the two can do.

In the �rst example of �gure 3.27, the closest edge is the lower one. The rook on

rank 3 is then between the white king on rank 6 and the black one on rank 1, so

that the black king is on the side of the edge closest to him: The attribute value is

true. In the second example, the rook separates the two kings, but not towards

the closest edge, because the closest edge here is the right one: The attribute

value is thus false. In the third example, we cannot determine the closest edge

(because the two kings are on the diagonal a8 - h1). As the rook divides the two

kings towards the left edge and the left edge is one of the closest edge, then the

attribute value is true.
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3.9.2 WR Holds BK towards the Closest Edge

Does the white rook prevent the black king from going away from the closest edge?

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0ZKZ0
0Z0Z0Z0Z
S0Z0Z0Z0
0Z0Z0ZkZ
Z0Z0Z0Z0

0Z0Z0Z0Z
Z0Z0Z0Z0
0J0Z0Z0Z
S0Z0Z0Z0
0Z0Z0j0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0

0Z0Z0Z0Z
Z0j0Z0Z0
0ZRZ0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
J0Z0Z0Z0

true false true

Figure 3.28: Examples for the Attribute �WR Holds BK towards the closest

edge�

This attribute characterises the position of the rook compared to the position of

the black king. It has to be just a �eld beyond the black king as seen from the

BK's closest edge to be classi�ed as good by this attribute. The possible values

are true or false. To compute the value, the BK's closest edge is detected. If

the rook's distance to this edge is just one point larger than the BK's distance,

then the attribute is true. If there are 2 closest edges, the rook has to ful�l the

condition for only one of the two edges.

3.9.3 Kings in Opposition towards the Closest Edge

Are the both kings in opposition, so that the black king is hold towards the closest

edge?

This attribute is based on the one called Kings in Opposition, with an additional

condition: the black king has to stand near the closest edge. The possible values

of this attribute are true or false. It is true if the two kings are in opposition

(same �le and two ranks away or same rank and two �les away from each other)

and if the edge behind the black king when he �looks� at the white king is a or

the closest edge.

Some example positions with the values of this attribute are exposed in �gure

3.29. In the �rst example, we are in the standard strategy: The black king is

threaten by the rook and cannot go upwards because it is in opposition with the

white king, so it has to go to the bottom edge. In the second example, the kings

are in opposition but not towards the closest edge, which is the upper one. In
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0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0ZKZ0Z0Z
Z0Z0Z0Z0
RZkZ0Z0Z
Z0Z0Z0Z0

0Z0Z0Z0Z
Z0Z0Z0Z0
0ZKZkZ0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0ZRZ0Z0

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0j0Z
Z0Z0Z0Z0
0Z0Z0J0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0S0Z0

true false true

Figure 3.29: Examples for the Attribute �Kings in Opposition towards the

closest edge�

the third example, the closest edge is also the upper one, so the attribute value

is true.

3.9.4 WR Squeeze BK

Does the white rook �squeeze� the black king against the closest edge?

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0J0Z
ZRZ0Z0Z0
0Z0Z0ZkZ
Z0Z0Z0Z0

0Z0ZKZkZ
Z0Z0ZRZ0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0

0Z0Z0S0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0ZkZ
ZKZ0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0

true false true

Figure 3.30: Examples for the Attribute �WR Squeeze BK�

This attribute combines the two following patterns:WR divides Kings towards the

Closest Edge and WR holds BK towards the Closest Edge. If these two attributes

are true, then this one is true as well. The possible values are true or false.

The value is computed as a simple logical AND between the two attributes. It

means that this attribute is true if the rook divides the two kings in the direction

towards the closest edge, so that the black king is held towards that edge. On

the �rst board of the �gure 3.30, we have a typical position from the standard

strategy where the attribute is true because the whites are going to force the

black king the lower edge. On the second board, it is false because the closest
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edge is the upper one, and not the one on the right. In the third example, it is

true although the white king is quite far from the black king.

3.9.5 BK's Free Space

How many �elds on the board are left free to the black king by the white rook?

0Z0Z0Z0Z
Z0Z0Z0Z0
0ZKZ0Z0Z
Z0ZRZ0Z0
0Z0Z0Z0Z
ZkZ0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0

0Z0Z0Z0Z
Z0Z0Z0Zk
0Z0Z0ZRZ
Z0Z0Z0Z0
0S0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0

0Z0Z0Z0Z
Z0Z0j0J0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0ZRZ0Z
Z0Z0Z0Z0

12 2 24

Figure 3.31: Examples for the Attribute �BK Free Space�

This attribute characterises the number of free squares on the board where the

black king can go without being in check by the rook. The position of the white

king plays no role here: Only the rook's and the black king's position are taken

into account. This attribute can take some integer values (but not all) between 1

and 49. Theoretically the value could be zero, if the black king is mate, but the

rook alone cannot achieve that. If the black king is on the same �le or rank as

the rook, the side with the biggest free space is used to calculate the attribute.

Another interesting related attribute would be the black king's free space in

general, i.e. its free space computed by taking the rook's and the white king's

position into account, like the attribute Black King's Available Squares.

In �gure 3.31, the attribute has a value of 12 in the �rst example because the

black king has a free space of 3 squares per 4 squares. In the second example, the

value is 2, and it does not matter if the rook can be taken or not. In the third

example, as the rook and the black king are on the same �le, the biggest side (i.e.

the left one) is chosen for the calculation, which yields 24 free squares.

3.9.6 BK's Available Squares

How many squares are available to the black king for the next move?

This attribute counts the number of �elds where the black king is free to go in

the next move. If its value is 0, then the game is over because the black king has
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kZKZ0Z0Z
Z0Z0Z0ZR
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
j0Z0Z0Z0
0Z0Z0ZKZ
Z0Z0Z0Z0
0Z0Z0Z0Z
ZRZ0Z0Z0

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0J0Z0
RZ0Z0Z0Z
Z0Z0ZkZ0
0Z0Z0Z0Z
Z0Z0Z0Z0

n = 0, draw n = 2 n = 5

Figure 3.32: Examples for the Attribute �BK's Available Squares�

the move but has no �eld where he can go. It is then a draw or a lose for the

black, like on the �rst board of �gure 3.32. Otherwise and in general, the less free

squares the black king has available, the better it is for the winning side. There

may though be an exception, as a value of zero may mean a draw, which is a

bad result for the white side. The value of the attribute is computed like in the

following: From the maximal value of eight free squares around the black king, we

substract the number of squares which are either not on the board (if the black

king is on an edge or in a corner), or too near too the white king (if the black

king is only 2 squares away from the white king), or threatened by the rook (i.e.

on the same �le or the same rank as the rook). All the remaining squares are free

squares for the black king.



Chapter 4

Knowledge Pertinence

Once we have de�ned the attributes, grouped them into 6 sets and calculated

their values for all the positions of the endgame, we have to look at the 6 new

formed databases to see how useful they are.

4.1 Purpose

The goal of the new database is to represent the same informations of the original

database in a di�erent way.

To achieve that, we use the higher level knowledge de�ned in the last chapter.

Instead of storing the position of the pieces on the board with the corresponding

distance to win, we store the values of chosen attributes, which need less storage

place, hoping that we will be able to recover from them the original distance to

win. Our hope is to �nd a combination of attributes that gives us a new database

as small as possible that can then be compressed as good as possible, in which

the depth of win is as well-de�ned as in the original one.

1. a,3,b,1,a,1,draw

2. c,2,a,2,a,1,draw

3. c,2,b,3,a,2,one

−→„
Adjacent WK-WR,

Adjacent WR-BK

« 1. false, true, draw

2. true, true, one

Figure 4.1: Attributes Transformation Reduction Example

The transformation of the position data in attribute values brings a reduction of

the number of lines in the database, because several positions can be described

by the same attributes values. An example is shown on �gure 4.1 and explained

on �gure 4.2: We consider a simple set with only the 2 attributes Adjacent WK
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- WR and Adjacent WR - BK. The position of the �gures on the �rst board is

then represented by (false, true), as well as on the second board, and they both

are drawn. The position on the third board is represented by (true, true) and is

mate in one move. If we consider only these 3 positions, we can conclude that

all positions with the values (false, true) are drawn, and all positions with the

values (true, true) are mate in one. In other words, such a 3-line primary database

would be transformed with the attribute set (Adjacent WK - WR, Adjacent WR

- BK ) to a new database containing only two lines. Therefore we have reduced

the number of lines from 3 to 2 while transforming the database.

80Z0Z0Z0Z
7Z0Z0Z0Z0
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3J0Z0Z0Z0
20Z0Z0Z0Z
1jRZ0Z0Z0

a b c d e f g h

80Z0Z0Z0Z
7Z0Z0Z0Z0
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
2RZKZ0Z0Z
1j0Z0Z0Z0

a b c d e f g h

80Z0Z0Z0Z
7Z0Z0Z0Z0
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3ZRZ0Z0Z0
2kZKZ0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

Adjacent WK-WR: false false true

Adjacent WR-BK: true true true

Distance to win: draw draw one

Attributes values: (false,true,draw) (false,true,draw) (true, true,one)

Figure 4.2: Attributes Transformation Reduction Example in details

Since we do not want to lose information from the database, we cannot let am-

biguous combinations appear. Ambiguous positions, as explained in section 1.4,

are positions for which the same attribute values correspond to di�erent distances

to win. We illustrate that in �gure 4.3 with the same attribute set as in the pre-

vious example. As you can see, the two shown positions have the same attribute

values but a di�erent depth of win. Thus the combination (true,true) cannot be

classi�ed as �draw� or as �mate in one� without misclassifying a position, therefore

we say that the positions are ambiguous for the used attribute set. Thus we have

to store in a special �le all the positions which can lead to ambiguous combina-

tions. This �le should be as small as possible, because it cannot be compressed

in the same way as the new database. So it represents a gap in our compression

process, unless it is empty or almost empty, what is the case when the attributes

distinguish the depth of win e�ciently. Nevertheless, it is interesting to look at

the structure of this error �le, to see which depths of win raise problems for a

given attribute combination. If the �le is empty (perfect case), the attributes are

well chosen, then we have not lost information by changing the database and all
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the positions have an image in the new database.

In this chapter, we will look at the database generated of each attribute set, and

compare the properties of each of them. For the ones which are interesting, we

will then look at the repartition of the errors on the depth of win, to see which

depths of win present a problem.

80Z0Z0Z0Z
7Z0Z0Z0Z0
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20S0Z0Z0Z
1j0J0Z0Z0

a b c d e f g h

80Z0Z0Z0Z
7Z0Z0Z0Z0
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3ZRZ0Z0Z0
2kZKZ0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

Adjacent WK-WR: true true

Adjacent WR-BK: true true

Distance to win: draw one

Attributes values: (true,true,draw) (true, true,one)

Figure 4.3: Ambiguous Positions Example

4.2 General Statistics

Six di�erent databases were created from the initial database. To know the accu-

racy of the attribute sets used to generate them, we look �rst at general proper-

ties., which we describe in the following: First the size of the database, measured

as the number of lines in the new database; this amount is smaller than or equal

to the number of lines in the primary database, because the attribute transfor-

mation reduces the number of lines, as explained in the previous section. We

measure the size of the database with the number of lines it contains, because

the size of a line is not important: This is indeed about proportional to the num-

ber of attributes, and some attributes may be left aside by the next step of the

compression, which relies on knowledge based analysis. Second the number of er-

rors, which tells how many positions from the initial database are transformed in

a combination of attributes values with an ambiguous depth of win (as explained

in the previous section, particularly on �gure 4.3); the smaller this number is,

the better the set describes the di�erent positions. Third the correctness, which

is the proportion of positions in the primary database which will not be ambigu-

ous after the transformation; this number is almost the inverse of the number of
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errors. Fourth the compression, which tells how many times smaller is the new

database; this number takes into account the number of errors; since the errors

are not compressed, the compression can just come from the transformed part of

the database. Please keep in mind that the compression here does not directly

imply anything on the disc space which will be needed to store the new database,

since we only consider the number of lines of each �le, and not the size of each

line. These properties for all databases are summarised in the table 4.1.

Attr. set DB size Errors Correctness Compression

Bain 1864 23 585 15.94 % 0.91

Morales 3 26 736 4.70 % 0.95

Sadikov 5 567 17 442 37.83 % 0.82

Torres 0 28 056 0 % 1

My Selection 22 531 2 272 91.90 % 0.88

All Attributes 28 056 0 100 % 1

Table 4.1: Properties of the six new databases

The results shown are various. For the �rst set, i.e. the attributes from [BMS95],

the new database is small, what could be good if it would be caused by a high

compression, but the correctness is quite low. So there are a lot of ambiguous

positions, but despite that the compression is not totally bad. We will have a look

on the repartition of the errors in the next section. For the second set, [Mor97],

only three combinations are unambiguous! That is very few, and they are in fact

only for draw positions. That may be because the system which discovered the

attributes was trained with a simple non-optimal strategy. And the small number

of attributes makes it also complicated. The third set, [Sad06], is much better.

The correctness is still smaller than 50 %, but the compression is the best one.

Here also, it is interesting to analyse the repartition of the errors. The fourth set,

with the attributes from the chess machine, gives very bad results. No position

at all can be clearly recognised. This result is surely because the machine does

not take care of the exact position of the �gures, but just tests if their distances

respect some criteria. Moreover the machine cannot play from any start position,

and our adaptation of the attributes so that every position can be computed may

introduce ambiguities. The �fth set, with special attributes selected to distinguish

the small depth of win, is quite e�cient. The number of errors is small, what leads

to a big database. The compression is smaller than the one of the set of Sadikov,

but since the errors are fewer, we will be able to compress better in the next

step. The last set, which regroups all the attributes, goes further in the same
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Figure 4.4: Part of ambiguous positions for each depth of win for Bain's attributes

direction: There is no ambiguous position (zero error) but also no compression:

Each position of the initial database is represented by one particular combination.

In the next section, we will analyse the error repartition for the databases for

which it may be interesting, i.e. for Bain, Sadikov, and my selection. Since all the

attributes together do not generate any error, there is nothing to analyse there.

4.3 Di�erentiation Power of the Attributes Com-

binations

The graphs shown in this section are built that way: In the building process of each

database, if a combination of attributes values happens to appear more than one

time for di�erent depth of win, all the positions that pointed to this combination

are marked as ambiguous and stored in the error �le. Then we counted simply

the number of position for each depth of win, and the division by the number of

positions for this distance to win in the original database gives us the proportions

that are shown on the graphs.



76 4 Knowledge Pertinence

 0

 20

 40

 60

 80

 100

sixteen

fifteen

fourteen

thirteen

twelve

eleven

ten
nine

eight
seven

sixfive
four

three
two

one
zero

draw

D.o.W.

% of ambiguous positions

Figure 4.5: Part of ambiguous positions for each depth of win for Sadikov's at-

tributes

4.3.1 Bain

As we can see on the �gure 4.4, the attributes from Bain can perfectly distinguish

the draw positions: No error appears. But for the other positions, the attributes

are quite bad: more than 80% of the not draw positions are ambiguous. Some

depth of win are even totally unclear (100 % ambiguous). We can conclude from

this result that the attributes of this set are only able to identify surely positions

facts (like illegal positions, mate positions, pat positions, rook takeable . . . ) but

cannot distinguish well more subtile patterns which could give informations about

the depth of win, if it is not draw. With such a proportion of errors, this set is

not interesting for proceeding further analysis with WEKA.

4.3.2 Sadikov

Sadikov's attributes compose the best set from the four littereture sources. As

seen in �gure 4.5, the draw positions are almost all distinct after the transforma-

tion. For larger distances to win, the part of univocal positions decreases slowly,

what is logic, since it is more di�cult to take two positions of a large distance to

win apart. Until a distance to win of seven, the proportion stays under 50%, which

is good. But then the error proportions become larger and since the amount of



4.3 Di�erentiation Power of the Attributes Combinations 77

 0

 20

 40

 60

 80

 100

sixteen

fifteen

fourteen

thirteen

twelve

eleven

ten
nine

eight
seven

sixfive
four

three
two

one
zero

draw

D.o.W.

% of ambiguous positions

Figure 4.6: Part of ambiguous positions for each depth of win for the attributes

of My Selection

positions for high depths of win is also large, the whole correctness of the database

is low (37.83%). Still, it is a good set of attributes, because the compression is

the best one.

4.3.3 My Attributes

The attributes I selected were chosen to detect at best the lower distances to win. I

proceeded this way: starting from a small amount of attributes selected intuitively,

I added some other by looking at the positions that the current selection could

not detect. The results in �gure 4.6 are really good: For every depth of win, less

than 20% of the positions are ambiguous! And as expected, the lower distances

to win (draw to three) are clearly set aside, and four and �ve almost perfectly

detected.
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Knowledge-Based Compression

Now that we have generated three useable databases with higher level knowledge,

we build a decision tree of each of them with variable properties to obtain a

database representation as small as possible. After the analyses of last chapter, we

only consider the new databases from Sadikov, My Selection, and All Attributes.

This last step of the compression relies on knowledge-based algorithms. Such

algorithms allow us to �nd the most important attributes in the database, i.e.

the ones which can best di�erentiate the depth of win. Thus the size of the

compressed database will not depend directly on the number of attributes it

contains, but rather on the quality of its attributes. The number of lines of the

database has on the contrary much impact on the �nal size because it represents

the amount of instances which have to be classi�ed. With a lot of instances, the

knowledge algorithms have less chances to �nd a simple representation of the

database, i.e. in our case, the decision trees which we build would probably be

more complex.

5.1 Perfect Tree

5.1.1 Preliminaries

First we want to build a perfect tree from each database, to compare gener-

ally the complexity of the di�erent databases. To do that, we use the software

WEKA[WF05]. This software implements amongst other algorithms a c4.5 deci-

sion tree classi�er1, which allows us to build a decision tree with adapted options.

1weka.classifiers.trees.J48
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This classi�er accepts two main options: We can set the minimum number of in-

stance per leaf (short minNumObj), and if the tree should be pruned or not. We

chose to build an unpruned tree with a minNumObj of 1, to obtain a classi�cation

as perfect as possible. The pruning of a decision tree reduces its complexity and

the time needed to build it, of course at the price of some information loss. The

minNumObj de�nes the level of detail of the tree.

Beneath the main node �le_distance_WR_BK > 2 there are 18 instances: 2× twelve,

9× thirteen, 6× fourteen and 1× fifteen. Since there are di�erent depths of win

with more than 2 instances, the algorithm has to look further for another division.

Beneath the second node distance_WK_co ≤ 1, there are 6 instances: 5× fourteen and

1× fifteen. For a minNumObj of 1, the algorithm has to look further to distinguish

fourteen from fifteen. But for a minNumObj of 2, the one instance with fifteen

is negligible; in that case, the algorithm does not search further, it classi�es the 6

instances as fourteen, speci�es that one error has occurred and continues then with

the 12 other instances. The same procedure is applied for the rest of the tree: each

time an instance is alone on a leaf, it is neglected if the minNumObj is 2.

Figure 5.1: Decision tree Example for 2 values of minNumObj

In �gure 5.1, you can see on the left side a part of a c4.5 unpruned decision tree

with a minNumObj of 1. On the right side, the corresponding part of the tree with

a minNumObj of 2 is shown. You can notice that each time that a leaf contains

only one object on the left, this part of the tree is cut o� on the right.
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Figure 5.2: Properties of the Decision Trees

5.1.2 Perfect Tree Properties of the New Databases

With the options we chose (unpruned and a minNumObj of 1), WEKA should

generate perfect trees. The general properties of the di�erent generated trees can

be seen in �gure 5.2.

As you can see, the trees are not perfect, but almost. Less than 3% of the instances

are incorrectly classi�ed. To still be able to recover precise information from the

database, we have to save the errors separately. This can be achieved with another

tool from WEKA, the weka unsupervised �lter to remove misclassi�ed instances2.

This is a �lter that extracts or removes instances which are incorrectly classi�ed

by a speci�ed classi�er, the J48 Decision Tree in our case. Thus we store the

incorrectly classi�ed instances in a special �le, and then the decision tree does not

contain any error. The properties of the perfect trees show also that the database

from Sadikov gives a much simpler tree than the other (smaller tree and less

leaves). This is what we expected, since the Sadikov's database is much smaller

than the two others. Another interesting result is that the database containing all

attributes gives a tree which is less complex than the one of the attributes from

my selection, although the database from all attributes is slightly bigger. This

2weka.filters.unsupervised.instances.RemoveMisclassified
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can be explained by the fact that the algorithm from WEKA can select better

attributes amongst all attributes to build the tree than amongst my selection,

because more attributes are available, so that the small size di�erence can be

compensated. But the scale of this phenomena is too small to bring the tree

complexity of all attributes to the level of the one of Sadikov.

Except for Sadikov, you can see that the trees are quite complex. For this reason

we tried to build decision trees with a larger minNumObj (and also more errors),

to see if the space gain due to the tree being less complex brings more than the

loss due to the error �le being larger.

5.2 Variation of the Tree Complexity

We tried di�erent values for the Least Instance Number per leaf, from 1 to 128.

We could have gone further if the graph would have shown no clear tendance.

The evolution of the complexity of the trees is shown in the graph 5.3. You can

�nd in Appendix A the detail of the output returned by WEKA while computing

the decision trees.

Figure 5.3: Complexity of the Decision Trees depending on the minNumObj

The complexity of the tree from Sadikov's attributes set is always simpler than

the other two. But the tree from my selection becomes as simple as the one from

all attributes when minNumObj grows. The reason may be the di�culty to build an

(almost) perfect tree with less attributes, implying a much larger complexity at
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the beginning, which then decreases quickly. To complete this graph, we also have

to look at the accuracy of the tree. The evolution of the proportion of correctly

classi�ed instances is shown in �gure 5.4.

Figure 5.4: Accuracy of the Decision Trees depending on the minNumObj

As seen in the �gures, the classi�cation errors grow linearly while the complexity

of the trees decreases exponentially. There are slightly less errors made by the set

"my selection" in comparison to the set from Sadikov's paper, but the behaviour

of the three lines is the same in general. The analysis of the results shown on the

two graphs lets us expect that a particular value of the minNumObj should give a

good combination of a simpli�ed decision tree with few classi�cation errors. The

complexity of the trees re�ects the size needed to store them, but does not take

into account the space needed to save the errors. Depending on the size of the

misclassi�ed instances, it is better to to keep a complex tree with very few errors

or to simplify the tree by letting instances be misclassi�ed. To know exactly in

which case we are, we have to analyse the space needed to store the whole new

databases.

5.3 Memory Space Needed by the New Databases

What we are interested in is to to load the whole database in the computer

memory, to be able to use it at high speed. The important measure of the quality

of our compression is thus the disc space required to store the new databases.
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Unlike the initial database, the new databases do not consist in only one �le.

They are composed of three �les:

1. The position error �le, which contains the ambiguous positions and was

obtained while calculating the attribute values;

2. The classi�cation error �le, which contains the combinations of attribute

values misclassi�ed by the decision tree, obtained while building the decision

tree with WEKA.

3. The tree �le, which is the most important part of the database, which

consists of a text �le containing a representation of a the tree as it was

shown in the �gure 5.1.

This representation is not space-optimised because lots of characters are used

to build a human understable design, but these character repetitions are com-

pressed very e�ciently by the compression algorithm so that this representation

is really e�ective. The �rst �le does not depend on the properties of the tree,

since the ambiguous positions are already calculated and cannot be in�uenced by

the minNumObj of the tree. On the contrary, the size of the two other �les directly

depend on the tree properties. The second �le should have its size getting larger

as the complexity of the tree decreases, since more errors are made. The third �le

should on the contrary become smaller, as less place is needed to store a simple

tree. Like in the previous section, we let vary the minNumObj because it is a simple

way of controlling the complexity of the tree and also the number of errors made

by the classi�er. The results are shown on �gure 5.5.

The size of the database is measured as follows: The three �les are grouped

together in an archive and compressed with the algorithm bzip2. bzip2 uses the

Burrows-Wheeler transform to convert frequently recurring character sequences

into strings of identical letters. This method allows us to store the decision tree

directly as a graphical output from WEKA in a text �le, since the character

repetitions used to draw the tree can be e�ciently compressed, so that they do

not have much in�uence on the compressed �le size. We used the Unix tar utility3.

The size in bytes of the bzipped tar archive is used to measure the size of the

database.

As you can see, the in�uence of the minNumObj parameter depends on the at-

tributes set. This result could be forseen, because the errors are written as at-

tribute value combinations, therefore the number of attributes directly in�uences

3GNU tar version 1.15.1, with the -bzip2 option, see http://www.gnu.org/software/tar/
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the disc space needed to save each error made while building the tree (lots of

attributes mean more values to store i.e. more disc space needed). We could save

the chess positions corresponding to the misclassi�ed combinations, but it would

not be necessarily smaller, as one combination may represent more than one po-

sition, what implies that the expense to retrieve the corresponding positions is

not worth it.

As we said, the �rst �le does not depend on the number of instances per leaf,

therefore the number of position errors just displace the curves upwards or down-

wards on the graph. Since the set from Sadikov produced the most position errors,

it is not surprising that the corresponding curve is the upper one at the beginning.

It then stays about at the same level: That is due to the small complexity of the

tree, which cannot get much simpler, so there is no big change. The smallest size

is obtained for a minNumObj of 4. For the two other on the contrary the evolution

is quite interesting: The set My Selection has a minimum for a minNumObj of two,

and then goes slowly upwards, so the best condition to store the database with

this set is with a tree with two instances per leaf. The set All Attributes on the

contrary always grows, because of the big space needed to store the errors. But it

starts at the lowest level. The smallest possible size of the new database is thus
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for a minNumObj of one by the set All Attributes, and consists of 22087 Bytes. We

will discuss this value in the next section.

5.4 Compression Results

The results obtained in the previous section should be compared to the size of

the other representations of the database to know their quality. This comparison

is shown in �gure 5.6. For each database, we proceeded identically to measure

the size: we grouped �rst the �les (or just one for the primary database) together

in a tar-archive, and then compressed it with bzip.

Figure 5.6: Size of the di�erent Databases

As you can see, the primary database was 68239 Bytes big, and our best result (for

all attributes and a minNumObj of 1) reduces the database to 22087 Bytes. So the

best compression we achieved with our method is 32%, which means a compres-

sion rate of 3,09. Moreover, you can observe the e�ciency of the knowledge-based

compression for the set All Attributes : From the biggest database after the at-

tributes transformation (due to the high number of attributes, which means a lot

of values to store), it becomes the smallest at the end. In contrary, the database

of the set Sadikov stays about the same; that should be caused by the small size
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of the database and the big size of the position error �le, letting few possibilities

for the decision tree to compress it.

The compression we achieved could be surely enhanced with some methods

adapted to decision trees. For example, some incorrectly classi�ed combinations

could be stored at low space cost if the position in the tree would be stored in-

stead of the whole combination for each error (in case of several errors in the same

area of the tree). Another possibility would be in some case to store the position

of the three �gures on the board for the misclassi�ed combinations instead of

storing directly the combinations of the attributes values. To do that, we would

have to undo the attributes transformation, i.e. to retrieve the chess positions

corresponding to these combinations. Depending on the number of positions for

each combination, the disc space needed could become smaller, because a chess

position has only six values, compared to up to 33 for the set All Attributes. But

that was not the main goal of our work, it can just help to improve the e�ciency

while implementing the methods. We showed that the knowledge-based compres-

sion could help a lot to reduce the size of the database, but that it is in a great

part depending on the quality of the attributes.
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Conclusion

Chess endgame databases allow to play perfectly all endgames with less than 6

�gures, but their large size is a big handicap which cannot be solved with standard

compression method. Knowledge based methods from the Arti�cial Intelligence

domain are promising for this task. In this report, we detailed our e�orts to

obtain a compressed form of the 3 �gures KRK endgame database relying on

chess attributes. Basing our research on interesting works using KRK patterns,

we have developed a knowledge consisting in 33 attributes. Thus we were able

to transform the primary database in a bunch of new ones by using di�erent

attribute sets. Thanks to Data Mining decision trees, we could then save the new

databases very optimally, obtaining in the best case a compression 3 times better

than standard compression methods.

This result shows that it is surely possible to use Arti�cial Intelligence method

to store and then to use chess endgames databases. Saved under this new form,

the tablebases can be easier loaded in the main memory of computers and with

an appropriate algorithm e�ciently used to play perfectly chess endgames. The

compression rate we achieved may be improved by adding other attributes, with

which the database would be better described, although the patterns we used are

known by chess grand masters as the most relevant ones for the KRK endgame.

However it may be more e�cient to rather split the database in subsets and to

specify di�erent attributes sets for each subset, since the attributes have di�erent

weight depending on the state of the endgame (mate in 2 moves or rather mate

in 15 moves for example). The errors may also be stored more optimally, either

with the help of appropriate attributes or, for the database lines misclassi�ed in

the tree, by specifying the branch of the decision tree where the errors happened.

The same compression system should also work for bigger chess endgame
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databases. It requires however that the database had been deeply studied, so

that e�cient attributes are available. Standard attributes like �gures distances,

board distances etc. . . are easy to de�ne, but important �gures relations on key

positions on the board are speci�c for each endgame. Since our method rely on

the quality of the attributes, the results which are to be espected depend also

on the previous studies about the endgame in question and on the quality of the

patterns they found. An e�cient system which can detect which characteristics

are the most important to measure the depth of win and deliver best quality

attributes would enable the use of our method for any other endgame. Unfor-

tunately, such a system does not exist yet, but some endgames have already

been deeply studied. For example, the KQKR endgame database could surely be

e�ciently compressed with our method.

Some other general methods, which do not rely on speci�c chess patterns and use

nonetheless knowledge based compression, may be a good idea to avoid the issue

of �nding adapted attributes. Such systems already exist for big and complex

databases (like Spartan, [BGR01]), and some similar processes, maybe adapted

to chess endgames, should bring good compression possibilities for larger chess

tablebases.



Appendix A

Decision Trees Output

In this appendix, we show the whole output returned by WEKA while computing

the decision trees. For each of the three databases Sadikov, My Selection and All

Atributes, the properties of the trees as well as the confusion matrix are included

for the minNumObj parameter taking the values 1, 2, 4, 8, 16, 32, 64 and 128.

Sadikov

One Object per Leaf

Options: -U -M 1

J48 unpruned tree

------------------

Number of Leaves : 1756

Size of the tree : 3511

Time taken to build model: 11 seconds

Time taken to test model on training data: 0.73 seconds

=== Error on training (and test) data ===

Correctly Classified Instances 5478 98.4013 %

Incorrectly Classified Instances 89 1.5987 %

Kappa statistic 0.9824

Mean absolute error 0.0025

Root mean squared error 0.0355

Relative absolute error 2.49 %

Root relative squared error 15.7808 %

Total Number of Instances 5567
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=== Confusion Matrix ===

a b c d e f g h i j k l m n o p q r <-- classified as

1077 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | a = draw

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | b = zero

0 0 32 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | c = one

0 0 0 137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | d = two

0 0 0 1 59 1 0 0 0 0 0 0 0 0 0 0 0 0 | e = three

0 0 0 0 1 140 0 0 0 0 0 0 0 0 0 0 0 0 | f = four

0 0 0 0 0 0 247 3 5 0 0 0 0 0 0 0 0 0 | g = five

0 0 0 0 0 1 0 280 6 0 2 0 0 0 0 0 0 0 | h = six

0 0 0 0 0 0 2 0 308 2 0 0 0 0 0 0 0 0 | i = seven

0 0 0 0 0 0 0 0 0 500 2 2 3 0 0 0 0 0 | j = eight

0 0 0 0 0 0 1 0 0 2 418 4 0 0 0 0 0 0 | k = nine

0 0 0 0 0 0 3 0 0 1 0 383 3 3 0 0 0 0 | l = ten

0 0 2 0 0 1 0 0 0 0 0 1 468 2 0 0 0 0 | m = eleven

0 0 0 0 0 0 0 0 0 0 2 0 4 476 3 0 0 0 | n = twelve

0 0 0 0 0 0 0 0 0 0 0 0 1 2 391 0 1 0 | o = thirteen

0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 331 0 0 | p = fourteen

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 190 1 | q = fifteen

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 25 | r = sixteen

Two Objects per Leaf

Options: -U -M 2

J48 unpruned tree

------------------

Number of Leaves : 950

Size of the tree : 1899

Time taken to build model: 8.15 seconds

Time taken to test model on training data: 0.86 seconds

=== Error on training (and test) data ===

Correctly Classified Instances 4929 88.5396 %

Incorrectly Classified Instances 638 11.4604 %

Kappa statistic 0.8739

Mean absolute error 0.0178

Root mean squared error 0.0943

Relative absolute error 17.6199 %

Root relative squared error 41.9787 %

Total Number of Instances 5567

=== Confusion Matrix ===

a b c d e f g h i j k l m n o p q r <-- classified as

1076 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 | a = draw

0 13 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | b = zero
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1 0 28 6 0 0 0 1 1 0 0 0 0 0 0 0 0 0 | c = one

1 0 1 134 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | d = two

0 0 0 3 54 2 1 1 0 0 0 0 0 0 0 0 0 0 | e = three

2 0 0 0 2 128 8 1 0 0 0 0 0 0 0 0 0 0 | f = four

1 0 0 0 4 6 222 9 10 2 0 1 0 0 0 0 0 0 | g = five

2 0 1 0 1 3 7 248 12 7 5 1 1 1 0 0 0 0 | h = six

2 0 0 1 0 1 5 11 270 16 2 1 1 1 1 0 0 0 | i = seven

2 0 0 0 0 0 4 8 8 451 15 13 5 0 0 1 0 0 | j = eight

1 0 0 0 0 1 1 4 6 17 372 11 8 2 2 0 0 0 | k = nine

0 0 1 0 0 0 2 6 7 20 15 317 14 10 0 0 1 0 | l = ten

1 0 4 0 0 2 2 0 0 9 11 15 412 14 4 0 0 0 | m = eleven

1 0 0 0 0 3 1 0 2 3 8 8 20 418 16 4 1 0 | n = twelve

1 0 0 0 0 0 0 1 0 1 2 10 5 39 320 14 2 0 | o = thirteen

1 0 0 0 0 0 0 0 0 1 0 4 3 12 29 279 13 0 | p = fourteen

0 0 0 0 0 0 0 0 0 0 0 0 0 1 6 17 170 1 | q = fifteen

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 8 17 | r = sixteen

Four Objects per Leaf

Options: -U -M 4

J48 unpruned tree

------------------

Number of Leaves : 567

Size of the tree : 1133

Time taken to build model: 7.19 seconds

Time taken to test model on training data: 1.29 seconds

=== Error on training (and test) data ===

Correctly Classified Instances 4434 79.6479 %

Incorrectly Classified Instances 1133 20.3521 %

Kappa statistic 0.7761

Mean absolute error 0.0311

Root mean squared error 0.1247

Relative absolute error 30.7596 %

Root relative squared error 55.4648 %

Total Number of Instances 5567

=== Confusion Matrix ===

a b c d e f g h i j k l m n o p q r <-- classified as

1071 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0 2 0 | a = draw

0 11 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | b = zero

1 0 28 6 0 0 0 1 1 0 0 0 0 0 0 0 0 0 | c = one

3 0 1 129 4 0 0 0 0 0 0 0 0 0 0 0 0 0 | d = two

1 0 0 3 51 3 2 0 1 0 0 0 0 0 0 0 0 0 | e = three

2 0 0 1 2 119 13 1 1 0 2 0 0 0 0 0 0 0 | f = four

1 0 0 1 3 13 202 14 14 3 2 1 1 0 0 0 0 0 | g = five

2 0 1 3 2 12 15 200 28 12 9 2 1 1 1 0 0 0 | h = six
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4 0 0 2 0 2 19 19 225 24 7 5 2 2 1 0 0 0 | i = seven

3 0 0 0 0 0 6 16 31 385 35 18 11 1 1 0 0 0 | j = eight

2 0 0 0 0 1 3 10 9 37 320 21 11 9 1 0 1 0 | k = nine

3 0 0 0 0 0 4 7 10 24 30 254 32 25 2 2 0 0 | l = ten

3 0 4 0 0 2 2 2 2 14 21 26 363 29 3 3 0 0 | m = eleven

1 0 0 0 0 3 2 0 2 5 15 14 42 348 38 11 4 0 | n = twelve

5 0 0 0 0 0 1 2 0 1 4 9 16 41 291 23 2 0 | o = thirteen

0 0 0 0 0 0 0 0 0 0 0 4 8 7 33 264 26 0 | p = fourteen

0 0 0 0 0 0 0 0 0 0 0 0 0 1 6 28 158 2 | q = fifteen

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 10 15 | r = sixteen

Eight Objects per Leaf

Options: -U -M 8

J48 unpruned tree

------------------

Number of Leaves : 302

Size of the tree : 603

Time taken to build model: 6.27 seconds

Time taken to test model on training data: 0.72 seconds

=== Error on training (and test) data ===

Correctly Classified Instances 3974 71.3849 %

Incorrectly Classified Instances 1593 28.6151 %

Kappa statistic 0.6851

Mean absolute error 0.0427

Root mean squared error 0.1462

Relative absolute error 42.2893 %

Root relative squared error 65.0342 %

Total Number of Instances 5567

=== Confusion Matrix ===

a b c d e f g h i j k l m n o p q r <-- classified as

1066 0 0 6 0 0 0 0 1 0 0 0 0 2 0 0 2 0 | a = draw

0 13 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | b = zero

0 0 20 11 0 0 0 4 1 0 0 0 0 0 1 0 0 0 | c = one

1 3 0 121 10 0 2 0 0 0 0 0 0 0 0 0 0 0 | d = two

2 0 0 0 51 4 3 0 1 0 0 0 0 0 0 0 0 0 | e = three

2 0 0 0 9 107 14 1 1 0 2 0 5 0 0 0 0 0 | f = four

2 0 2 0 16 20 156 16 23 13 3 0 3 0 1 0 0 0 | g = five

6 0 0 0 4 14 20 188 29 17 3 3 3 1 1 0 0 0 | h = six

6 0 0 1 4 3 14 33 184 41 18 2 1 1 4 0 0 0 | i = seven

3 0 0 0 1 0 10 17 34 356 40 16 21 8 1 0 0 0 | j = eight

2 0 0 0 0 5 3 14 13 45 282 26 15 18 1 0 1 0 | k = nine

3 0 1 0 3 0 1 11 17 44 62 171 43 27 8 2 0 0 | l = ten

5 0 5 0 0 1 0 3 3 21 45 17 303 51 18 2 0 0 | m = eleven

0 0 1 0 0 3 0 1 3 7 33 20 34 306 65 10 2 0 | n = twelve
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5 0 0 0 0 0 0 3 0 3 9 7 17 45 267 36 3 0 | o = thirteen

0 0 0 0 0 0 0 0 0 0 1 2 13 7 50 240 29 0 | p = fourteen

0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 52 135 4 | q = fifteen

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 16 8 | r = sixteen

Sixteen Objects per Leaf

Options: -U -M 16

J48 unpruned tree

------------------

Number of Leaves : 156

Size of the tree : 311

Time taken to build model: 3.92 seconds

Time taken to test model on training data: 0.59 seconds

=== Error on training (and test) data ===

Correctly Classified Instances 3563 64.0022 %

Incorrectly Classified Instances 2004 35.9978 %

Kappa statistic 0.6031

Mean absolute error 0.052

Root mean squared error 0.1613

Relative absolute error 51.5116 %

Root relative squared error 71.776 %

Total Number of Instances 5567

=== Confusion Matrix ===

a b c d e f g h i j k l m n o p q r <-- classified as

1076 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 | a = draw

0 9 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | b = zero

3 0 25 3 0 0 0 4 1 0 1 0 0 0 0 0 0 0 | c = one

6 8 7 110 3 0 2 1 0 0 0 0 0 0 0 0 0 0 | d = two

4 0 0 12 17 3 12 8 5 0 0 0 0 0 0 0 0 0 | e = three

4 0 0 1 5 76 33 9 7 0 0 0 5 1 0 0 0 0 | f = four

5 0 2 2 6 13 156 31 15 11 5 4 4 1 0 0 0 0 | g = five

8 0 1 2 1 12 29 151 48 22 1 2 9 3 0 0 0 0 | h = six

8 0 0 1 3 4 20 41 142 61 15 9 4 2 2 0 0 0 | i = seven

5 0 1 0 0 0 13 21 30 305 36 34 41 14 7 0 0 0 | j = eight

5 0 3 0 4 0 12 7 22 70 196 30 36 26 14 0 0 0 | k = nine

3 0 1 0 0 0 4 7 24 31 66 136 59 40 15 7 0 0 | l = ten

4 0 5 0 0 0 0 0 5 19 26 22 292 64 27 10 0 0 | m = eleven

3 0 1 0 0 0 0 3 7 7 23 12 46 271 74 36 2 0 | n = twelve

3 0 0 0 0 0 0 0 1 1 6 8 26 41 234 73 2 0 | o = thirteen

3 0 0 0 0 0 0 0 0 0 0 1 16 10 48 241 23 0 | p = fourteen

3 0 0 0 0 0 0 0 0 0 0 0 1 3 9 59 113 7 | q = fifteen

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 10 13 | r = sixteen
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Thirty two Objects per Leaf

Options: -U -M 32

J48 unpruned tree

------------------

Number of Leaves : 89

Size of the tree : 177

Time taken to build model: 3.87 seconds

Time taken to test model on training data: 0.59 seconds

=== Error on training (and test) data ===

Correctly Classified Instances 3176 57.0505 %

Incorrectly Classified Instances 2391 42.9495 %

Kappa statistic 0.5261

Mean absolute error 0.0602

Root mean squared error 0.1735

Relative absolute error 59.5527 %

Root relative squared error 77.1752 %

Total Number of Instances 5567

=== Confusion Matrix ===

a b c d e f g h i j k l m n o p q r <-- classified as

1062 0 0 6 0 0 0 0 0 0 0 0 0 0 0 9 0 0 | a = draw

0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | b = zero

1 0 0 25 0 0 0 1 0 3 0 0 7 0 0 0 0 0 | c = one

1 0 0 132 0 0 3 0 0 1 0 0 0 0 0 0 0 0 | d = two

3 0 0 16 0 3 31 0 0 8 0 0 0 0 0 0 0 0 | e = three

4 0 0 4 0 61 36 25 4 1 1 0 5 0 0 0 0 0 | f = four

7 0 0 8 0 13 132 36 15 32 0 0 9 1 2 0 0 0 | g = five

10 0 0 6 0 2 27 140 28 58 5 0 10 1 2 0 0 0 | h = six

11 0 0 6 0 0 48 48 85 66 23 1 18 3 2 1 0 0 | i = seven

6 0 0 0 0 0 8 27 33 261 65 17 49 26 15 0 0 0 | j = eight

7 0 0 0 0 0 25 10 9 68 198 8 68 22 9 1 0 0 | k = nine

6 0 0 0 0 0 5 3 16 45 83 77 96 42 16 0 4 0 | l = ten

8 0 0 0 0 0 0 0 3 22 52 18 278 46 38 9 0 0 | m = eleven

4 0 0 0 0 0 0 0 8 9 42 27 77 178 91 45 4 0 | n = twelve

2 0 0 0 0 0 0 0 1 0 12 6 26 50 227 66 5 0 | o = thirteen

0 0 0 0 0 0 0 0 0 0 2 2 7 8 66 222 35 0 | p = fourteen

0 0 0 0 0 0 0 0 0 0 1 0 0 2 12 57 123 0 | q = fifteen

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 23 0 | r = sixteen

Sixty four Objects per Leaf

Options: -U -M 64

J48 unpruned tree

------------------



A Decision Trees Output 97

Number of Leaves : 45

Size of the tree : 89

Time taken to build model: 3.06 seconds

Time taken to test model on training data: 1.46 seconds

=== Error on training (and test) data ===

Correctly Classified Instances 2744 49.2905 %

Incorrectly Classified Instances 2823 50.7095 %

Kappa statistic 0.4406

Mean absolute error 0.0684

Root mean squared error 0.185

Relative absolute error 67.7427 %

Root relative squared error 82.3111 %

Total Number of Instances 5567

=== Confusion Matrix ===

a b c d e f g h i j k l m n o p q r <-- classified as

1071 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | a = draw

0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | b = zero

1 0 0 6 0 25 0 1 3 0 0 0 1 0 0 0 0 0 | c = one

1 0 0 104 22 10 0 0 0 0 0 0 0 0 0 0 0 0 | d = two

3 0 0 6 23 19 5 0 5 0 0 0 0 0 0 0 0 0 | e = three

4 0 0 4 8 56 31 26 6 5 0 0 0 0 1 0 0 0 | f = four

7 0 0 8 22 41 62 59 33 16 0 1 3 1 2 0 0 0 | g = five

10 0 0 6 5 4 12 138 44 55 2 1 7 1 4 0 0 0 | h = six

12 0 0 6 20 3 6 56 88 80 10 14 9 4 4 0 0 0 | i = seven

6 0 0 0 0 1 2 34 53 243 51 33 43 19 22 0 0 0 | j = eight

8 0 0 0 0 12 3 12 45 85 129 22 76 16 17 0 0 0 | k = nine

6 0 0 0 0 1 5 3 20 82 65 49 62 63 26 11 0 0 | l = ten

9 0 0 0 0 5 12 1 26 37 97 30 146 37 72 2 0 0 | m = eleven

8 0 0 0 0 1 10 0 6 34 30 14 62 168 92 60 0 0 | n = twelve

7 0 0 0 0 0 1 0 1 15 23 9 23 50 187 79 0 0 | o = thirteen

11 0 0 0 0 0 0 0 0 1 15 1 5 12 63 198 36 0 | p = fourteen

8 0 0 0 0 0 0 0 0 0 1 0 0 21 6 77 82 0 | q = fifteen

1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 4 20 0 | r = sixteen

Hundread twenty eight Objects per Leaf

Options: -U -M 128

J48 unpruned tree

------------------

Number of Leaves : 23

Size of the tree : 45

Time taken to build model: 2.09 seconds
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Time taken to test model on training data: 0.67 seconds

=== Error on training (and test) data ===

Correctly Classified Instances 2476 44.4764 %

Incorrectly Classified Instances 3091 55.5236 %

Kappa statistic 0.3867

Mean absolute error 0.073

Root mean squared error 0.191

Relative absolute error 72.2328 %

Root relative squared error 84.9952 %

Total Number of Instances 5567

=== Confusion Matrix ===

a b c d e f g h i j k l m n o p q r <-- classified as

1071 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | a = draw

0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | b = zero

1 0 0 6 0 19 6 0 0 1 3 0 0 0 1 0 0 0 | c = one

1 0 0 104 0 31 1 0 0 0 0 0 0 0 0 0 0 0 | d = two

3 0 0 6 0 29 18 0 0 0 0 0 5 0 0 0 0 0 | e = three

4 0 0 4 0 45 45 30 0 6 5 0 1 0 1 0 0 0 | f = four

7 0 0 8 0 45 46 71 0 37 16 0 21 0 3 1 0 0 | g = five

10 0 0 6 0 7 24 101 0 108 19 0 8 0 5 1 0 0 | h = six

12 0 0 6 0 23 0 42 0 127 61 1 32 0 7 0 1 0 | i = seven

6 0 0 0 0 0 27 17 0 257 121 4 45 4 24 1 1 0 | j = eight

8 0 0 0 0 5 9 16 0 96 165 44 30 22 25 2 3 0 | k = nine

6 0 0 0 0 0 6 0 0 93 80 67 49 39 30 17 6 0 | l = ten

9 0 0 0 0 0 29 2 0 48 118 45 89 62 63 5 4 0 | m = eleven

8 0 0 0 0 0 11 0 0 30 96 44 37 86 103 47 23 0 | n = twelve

7 0 0 0 0 0 1 0 0 15 39 3 29 14 196 58 33 0 | o = thirteen

11 0 0 0 0 0 0 0 0 1 19 0 8 0 100 128 75 0 | p = fourteen

8 0 0 0 0 0 0 0 0 0 1 0 0 0 18 47 121 0 | q = fifteen

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 22 0 | r = sixteen

My Selection

One Object per Leaf

Options: -U -M 1

J48 unpruned tree

------------------

Number of Leaves : 6313

Size of the tree : 12625

Time taken to build model: 18.31 seconds

Time taken to test model on training data: 0.47 seconds

=== Error on training (and test) data ===
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Correctly Classified Instances 22100 98.0871 %

Incorrectly Classified Instances 431 1.9129 %

Kappa statistic 0.9787

Mean absolute error 0.0027

Root mean squared error 0.0368

Relative absolute error 2.719 %

Root relative squared error 16.4899 %

Total Number of Instances 22531

=== Confusion Matrix ===

a b c d e f g h i j k l m n o p q r <-- classified as

1927 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | a = draw

0 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | b = zero

0 0 68 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | c = one

0 0 0 246 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | d = two

0 0 0 0 81 0 0 0 0 0 0 0 0 0 0 0 0 0 | e = three

0 0 0 0 4 180 6 5 0 0 0 0 0 0 0 0 0 0 | f = four

0 0 0 0 0 6 441 4 0 0 0 0 0 0 0 0 0 0 | g = five

0 0 0 0 0 0 21 521 1 5 0 0 0 0 0 0 0 0 | h = six

0 0 1 0 0 0 6 6 578 3 9 0 2 0 0 0 0 0 | i = seven

0 0 0 0 0 0 0 22 0 1177 7 5 3 0 0 0 0 0 | j = eight

0 0 0 0 0 0 0 0 9 6 1331 1 3 1 0 0 0 0 | k = nine

0 0 0 0 0 0 0 0 0 2 19 1577 7 2 2 0 0 0 | l = ten

0 0 0 0 0 0 0 0 3 3 18 24 2184 12 6 0 0 0 | m = eleven

0 0 0 0 0 0 0 0 0 3 2 14 19 2868 15 2 0 0 | n = twelve

0 0 0 0 0 0 0 0 0 0 0 6 8 14 3317 22 2 1 | o = thirteen

0 0 0 0 0 0 0 0 0 0 0 0 0 4 31 3611 16 0 | p = fourteen

0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 12 1672 1 | q = fifteen

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 294 | r = sixteen

Two Objects per Leaf

Options: -U -M 2

J48 unpruned tree

------------------

Number of Leaves : 3567

Size of the tree : 7133

Time taken to build model: 14.32 seconds

Time taken to test model on training data: 0.44 seconds

=== Error on training (and test) data ===

Correctly Classified Instances 20365 90.3866 %

Incorrectly Classified Instances 2166 9.6134 %

Kappa statistic 0.8929

Mean absolute error 0.015

Root mean squared error 0.0867

Relative absolute error 15.0691 %
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Root relative squared error 38.8198 %

Total Number of Instances 22531

=== Confusion Matrix ===

a b c d e f g h i j k l m n o p q r <-- classified as

1927 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | a = draw

0 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | b = zero

0 0 77 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | c = one

0 0 8 234 1 2 0 0 1 0 0 0 0 0 0 0 0 0 | d = two

0 0 0 3 73 3 1 0 1 0 0 0 0 0 0 0 0 0 | e = three

0 0 0 1 2 173 10 7 1 1 0 0 0 0 0 0 0 0 | f = four

0 0 0 1 4 9 414 14 5 0 1 1 1 1 0 0 0 0 | g = five

0 0 0 0 2 5 29 476 20 10 2 2 1 0 0 1 0 0 | h = six

0 0 1 0 0 0 8 19 528 17 20 4 7 1 0 0 0 0 | i = seven

0 0 0 0 0 0 11 35 31 1059 44 17 10 6 1 0 0 0 | j = eight

0 0 0 0 0 0 4 6 11 45 1212 28 21 17 6 1 0 0 | k = nine

0 0 0 0 0 0 2 0 4 23 49 1432 43 27 22 7 0 0 | l = ten

0 0 0 0 0 0 3 2 9 38 41 81 1923 86 47 19 1 0 | m = eleven

0 0 0 0 0 0 1 1 2 13 14 47 89 2588 120 42 6 0 | n = twelve

0 0 0 0 0 0 1 1 1 2 2 23 43 111 3003 155 25 3 | o = thirteen

0 0 0 0 0 0 0 0 0 1 0 7 19 47 118 3383 79 8 | p = fourteen

0 0 0 0 0 0 0 0 0 0 1 0 3 7 30 84 1559 12 | q = fifteen

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 17 277 | r = sixteen

Four Objects per Leaf

Options: -U -M 4

J48 unpruned tree

------------------

Number of Leaves : 2148

Size of the tree : 4295

Time taken to build model: 10.03 seconds

Time taken to test model on training data: 0.43 seconds

=== Error on training (and test) data ===

Correctly Classified Instances 18609 82.5929 %

Incorrectly Classified Instances 3922 17.4071 %

Kappa statistic 0.8062

Mean absolute error 0.0269

Root mean squared error 0.116

Relative absolute error 26.9983 %

Root relative squared error 51.961 %

Total Number of Instances 22531

=== Confusion Matrix ===

a b c d e f g h i j k l m n o p q r <-- classified as
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1927 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | a = draw

2 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | b = zero

0 0 76 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | c = one

1 0 9 226 3 4 1 1 1 0 0 0 0 0 0 0 0 0 | d = two

0 0 0 1 61 8 4 2 5 0 0 0 0 0 0 0 0 0 | e = three

0 0 0 0 5 166 14 7 3 0 0 0 0 0 0 0 0 0 | f = four

0 0 0 0 2 17 378 22 13 5 2 3 7 2 0 0 0 0 | g = five

0 0 1 0 2 8 42 426 22 28 3 5 7 3 0 1 0 0 | h = six

1 0 4 0 0 4 23 36 436 47 24 11 11 8 0 0 0 0 | i = seven

0 0 0 0 0 0 10 30 55 932 90 41 30 22 4 0 0 0 | j = eight

0 0 0 0 0 0 4 7 31 69 1076 67 54 33 8 1 1 0 | k = nine

0 0 0 0 0 0 5 7 20 42 60 1234 109 70 51 11 0 0 | l = ten

0 0 0 0 0 0 4 7 12 40 61 116 1749 148 81 32 0 0 | m = eleven

0 0 0 0 0 0 5 1 4 16 37 73 169 2346 185 80 7 0 | n = twelve

0 0 0 0 0 0 1 0 6 5 9 40 92 234 2692 247 36 8 | o = thirteen

0 0 0 0 0 0 1 0 2 1 2 19 19 81 215 3144 169 9 | p = fourteen

0 0 0 0 0 0 0 0 0 0 0 2 7 22 28 146 1466 25 | q = fifteen

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 8 40 249 | r = sixteen

Eight Objects per Leaf

Options: -U -M 8

J48 unpruned tree

------------------

Number of Leaves : 1207

Size of the tree : 2413

Time taken to build model: 6.72 seconds

Time taken to test model on training data: 0.41 seconds

=== Error on training (and test) data ===

Correctly Classified Instances 16885 74.9412 %

Incorrectly Classified Instances 5646 25.0588 %

Kappa statistic 0.7207

Mean absolute error 0.0381

Root mean squared error 0.1381

Relative absolute error 38.2275 %

Root relative squared error 61.8297 %

Total Number of Instances 22531

=== Confusion Matrix ===

a b c d e f g h i j k l m n o p q r <-- classified as

1927 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | a = draw

2 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | b = zero

1 0 72 2 0 0 0 0 3 0 0 0 0 0 0 0 0 0 | c = one

0 5 8 220 8 2 2 0 1 0 0 0 0 0 0 0 0 0 | d = two

3 0 0 6 58 6 4 0 2 2 0 0 0 0 0 0 0 0 | e = three

0 0 0 0 15 140 25 10 1 0 4 0 0 0 0 0 0 0 | f = four
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1 0 1 0 9 17 339 33 17 5 6 11 5 7 0 0 0 0 | g = five

0 0 0 5 7 11 58 362 46 30 8 9 5 4 0 3 0 0 | h = six

0 0 4 1 4 7 28 33 371 65 36 22 17 14 1 2 0 0 | i = seven

0 0 0 0 1 1 9 40 79 833 114 68 30 31 7 1 0 0 | j = eight

0 0 0 0 1 0 3 6 44 134 911 112 56 67 12 4 1 0 | k = nine

0 0 0 0 0 0 8 10 27 70 85 1036 177 104 65 24 3 0 | l = ten

0 0 0 0 0 0 6 3 12 57 98 150 1527 224 105 63 5 0 | m = eleven

0 0 0 0 0 0 0 3 1 31 44 87 235 2049 322 131 20 0 | n = twelve

0 0 0 0 0 0 0 0 2 7 22 63 120 237 2442 426 47 4 | o = thirteen

0 0 0 0 0 0 0 0 0 2 3 14 18 105 277 2996 238 9 | p = fourteen

0 0 0 0 0 0 0 0 0 0 0 1 3 16 40 238 1350 48 | q = fifteen

0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 11 57 227 | r = sixteen

Sixteen Objects per Leaf

Options: -U -M 16

J48 unpruned tree

------------------

Number of Leaves : 628

Size of the tree : 1255

Time taken to build model: 4.5 seconds

Time taken to test model on training data: 0.39 seconds

=== Error on training (and test) data ===

Correctly Classified Instances 15374 68.2349 %

Incorrectly Classified Instances 7157 31.7651 %

Kappa statistic 0.6459

Mean absolute error 0.0476

Root mean squared error 0.1543

Relative absolute error 47.7554 %

Root relative squared error 69.1067 %

Total Number of Instances 22531

=== Confusion Matrix ===

a b c d e f g h i j k l m n o p q r <-- classified as

1918 0 0 6 0 3 0 0 0 0 0 0 0 0 0 0 0 0 | a = draw

0 10 5 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | b = zero

0 0 61 13 0 1 0 0 3 0 0 0 0 0 0 0 0 0 | c = one

0 10 5 212 15 2 1 0 1 0 0 0 0 0 0 0 0 0 | d = two

0 0 0 2 43 17 12 5 2 0 0 0 0 0 0 0 0 0 | e = three

0 0 0 1 11 137 26 10 6 0 4 0 0 0 0 0 0 0 | f = four

0 0 3 2 5 24 316 39 18 17 5 9 5 8 0 0 0 0 | g = five

0 0 2 5 3 14 63 333 53 40 8 13 4 4 4 2 0 0 | h = six

0 0 4 4 3 1 42 55 295 96 46 19 16 15 5 4 0 0 | i = seven

0 0 1 4 3 0 12 65 68 733 144 66 60 30 25 3 0 0 | j = eight

0 0 0 3 5 0 5 8 31 156 797 109 114 90 23 9 1 0 | k = nine

0 0 0 3 3 1 20 14 24 93 155 825 233 103 103 31 1 0 | l = ten
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0 0 0 0 5 1 5 12 12 54 99 131 1453 259 147 66 6 0 | m = eleven

0 0 0 0 0 0 5 12 3 36 44 127 322 1801 374 163 36 0 | n = twelve

0 0 0 0 0 0 3 4 2 14 15 68 129 327 2262 476 65 5 | o = thirteen

0 0 0 0 0 0 0 3 0 3 0 33 35 112 398 2784 272 22 | p = fourteen

0 0 0 0 0 0 0 0 0 0 0 1 2 16 50 360 1189 78 | q = fifteen

0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 88 205 | r = sixteen

Thirty two Objects per Leaf

Options: -U -M 32

J48 unpruned tree

------------------

Number of Leaves : 348

Size of the tree : 695

Time taken to build model: 3.36 seconds

Time taken to test model on training data: 0.37 seconds

=== Error on training (and test) data ===

Correctly Classified Instances 13964 61.9768 %

Incorrectly Classified Instances 8567 38.0232 %

Kappa statistic 0.5759

Mean absolute error 0.0555

Root mean squared error 0.1665

Relative absolute error 55.5963 %

Root relative squared error 74.5645 %

Total Number of Instances 22531

=== Confusion Matrix ===

a b c d e f g h i j k l m n o p q r <-- classified as

1918 0 3 0 0 0 3 0 3 0 0 0 0 0 0 0 0 0 | a = draw

0 10 7 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | b = zero

0 0 56 8 0 0 1 0 10 0 3 0 0 0 0 0 0 0 | c = one

0 9 19 203 0 2 9 1 3 0 0 0 0 0 0 0 0 0 | d = two

0 0 5 11 17 20 26 0 1 0 0 1 0 0 0 0 0 0 | e = three

0 0 4 9 0 89 58 22 0 4 0 5 0 0 4 0 0 0 | f = four

0 0 7 34 6 23 238 80 4 35 4 8 7 3 2 0 0 0 | g = five

0 0 14 5 7 14 55 326 54 44 10 3 10 3 2 1 0 0 | h = six

0 1 5 0 3 5 60 58 268 65 37 38 21 32 12 0 0 0 | i = seven

0 1 4 0 0 2 27 54 117 604 179 90 79 31 24 2 0 0 | j = eight

0 4 3 1 0 0 13 25 41 180 734 100 124 76 46 4 0 0 | k = nine

0 3 3 0 0 1 26 29 5 112 173 703 251 154 110 36 3 0 | l = ten

0 3 0 0 0 1 9 32 10 56 134 159 1290 254 208 84 10 0 | m = eleven

0 8 0 0 0 0 3 23 8 36 68 129 357 1480 498 263 50 0 | n = twelve

0 1 0 1 0 0 4 5 3 9 23 77 131 305 2108 597 102 4 | o = thirteen

0 0 0 0 0 0 1 3 0 2 2 29 28 86 479 2648 350 34 | p = fourteen

0 0 0 0 0 0 0 0 0 0 0 1 1 3 49 455 1120 67 | q = fifteen

0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 29 113 152 | r = sixteen
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Sixty four Objects per Leaf

Options: -U -M 64

J48 unpruned tree

------------------

Number of Leaves : 185

Size of the tree : 369

Time taken to build model: 2.66 seconds

Time taken to test model on training data: 0.33 seconds

=== Error on training (and test) data ===

Correctly Classified Instances 12551 55.7055 %

Incorrectly Classified Instances 9980 44.2945 %

Kappa statistic 0.5057

Mean absolute error 0.0626

Root mean squared error 0.1769

Relative absolute error 62.7248 %

Root relative squared error 79.2007 %

Total Number of Instances 22531

=== Confusion Matrix ===

a b c d e f g h i j k l m n o p q r <-- classified as

1918 0 0 6 0 0 3 0 0 0 0 0 0 0 0 0 0 0 | a = draw

0 0 0 22 0 0 0 5 0 0 0 0 0 0 0 0 0 0 | b = zero

0 0 24 25 0 0 1 25 0 3 0 0 0 0 0 0 0 0 | c = one

0 0 9 221 0 0 9 7 0 0 0 0 0 0 0 0 0 0 | d = two

0 0 5 19 0 2 23 5 17 4 0 1 5 0 0 0 0 0 | e = three

0 0 4 13 0 26 34 74 4 5 0 5 30 0 0 0 0 0 | f = four

0 0 3 67 0 21 142 116 46 30 3 9 14 0 0 0 0 0 | g = five

0 0 6 11 0 24 85 195 109 67 9 16 15 5 6 0 0 0 | h = six

0 0 3 16 0 2 54 25 223 134 36 41 50 10 10 1 0 0 | i = seven

0 0 4 33 0 0 50 24 108 579 167 120 65 32 28 4 0 0 | j = eight

0 0 3 20 0 0 27 21 37 204 616 111 179 78 47 8 0 0 | k = nine

0 0 3 12 0 0 16 38 4 136 165 550 335 177 133 35 5 0 | l = ten

0 0 0 6 0 0 15 25 6 120 98 214 1101 343 215 99 8 0 | m = eleven

0 0 0 8 0 0 2 32 4 67 72 124 342 1336 586 306 44 0 | n = twelve

0 0 0 2 0 0 3 7 0 6 35 78 157 251 2017 683 125 6 | o = thirteen

0 0 0 0 0 0 1 12 0 0 14 19 54 88 528 2482 435 29 | p = fourteen

0 0 0 0 0 0 0 9 0 0 6 2 3 1 36 569 982 88 | q = fifteen

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 13 145 139 | r = sixteen

Hundread twenty eight Objects per Leaf

Options: -U -M 128

J48 unpruned tree
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------------------

Number of Leaves : 95

Size of the tree : 189

Time taken to build model: 2.35 seconds

Time taken to test model on training data: 0.31 seconds

=== Error on training (and test) data ===

Correctly Classified Instances 11362 50.4283 %

Incorrectly Classified Instances 11169 49.5717 %

Kappa statistic 0.4465

Mean absolute error 0.0681

Root mean squared error 0.1846

Relative absolute error 68.2962 %

Root relative squared error 82.6432 %

Total Number of Instances 22531

=== Confusion Matrix ===

a b c d e f g h i j k l m n o p q r <-- classified as

1918 0 0 6 0 0 0 0 0 0 0 0 0 0 0 3 0 0 | a = draw

0 0 0 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | b = zero

0 0 0 74 0 0 0 0 0 0 0 0 3 0 0 1 0 0 | c = one

0 0 0 207 0 0 36 0 2 0 0 0 0 0 0 1 0 0 | d = two

0 0 0 24 0 0 28 0 20 3 0 0 1 0 0 5 0 0 | e = three

0 0 0 19 0 0 129 0 17 10 0 0 12 0 0 8 0 0 | f = four

0 0 0 36 0 0 281 0 49 39 7 8 13 6 0 12 0 0 | g = five

0 0 0 49 0 0 141 0 74 136 37 53 18 23 3 14 0 0 | h = six

0 0 0 52 0 0 73 0 192 70 83 52 56 7 7 13 0 0 | i = seven

0 0 0 50 0 0 100 0 130 319 231 158 146 39 25 16 0 0 | j = eight

0 0 0 29 0 0 37 0 70 99 567 126 220 134 45 24 0 0 | k = nine

0 0 0 27 0 0 44 0 80 69 206 414 363 127 125 143 11 0 | l = ten

0 0 0 17 0 0 44 0 48 49 236 222 884 424 183 125 18 0 | m = eleven

0 0 0 15 0 0 26 0 7 53 126 129 340 1353 463 356 55 0 | n = twelve

0 0 0 9 0 0 5 0 2 17 20 114 245 335 1709 747 162 5 | o = thirteen

0 0 0 1 0 0 2 0 0 1 0 30 66 208 427 2440 464 23 | p = fourteen

0 0 0 0 0 0 0 0 0 0 0 1 7 28 20 599 963 78 | q = fifteen

0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 10 171 115 | r = sixteen

All Attributes

One Object per Leaf

Options: -U -M 1

J48 unpruned tree

------------------

Number of Leaves : 4372
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Size of the tree : 8675

Time taken to build model: 132.17 seconds

Time taken to test model on training data: 3.26 seconds

=== Error on training (and test) data ===

Correctly Classified Instances 28044 99.9572 %

Incorrectly Classified Instances 12 0.0428 %

Kappa statistic 0.9995

Mean absolute error 0.0001

Root mean squared error 0.0057

Relative absolute error 0.0661 %

Root relative squared error 2.5702 %

Total Number of Instances 28056

=== Confusion Matrix ===

a b c d e f g h i j k l m n o p q r <-- classified as

2796 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | a = draw

0 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | b = zero

0 0 78 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | c = one

0 0 0 246 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | d = two

0 0 0 0 81 0 0 0 0 0 0 0 0 0 0 0 0 0 | e = three

0 0 0 0 0 198 0 0 0 0 0 0 0 0 0 0 0 0 | f = four

0 0 0 0 0 0 471 0 0 0 0 0 0 0 0 0 0 0 | g = five

0 0 0 0 0 0 0 592 0 0 0 0 0 0 0 0 0 0 | h = six

0 0 0 0 0 0 0 0 683 0 0 0 0 0 0 0 0 0 | i = seven

0 0 0 0 0 0 0 0 0 1433 0 0 0 0 0 0 0 0 | j = eight

0 0 0 0 0 0 0 0 0 0 1712 0 0 0 0 0 0 0 | k = nine

0 0 0 0 0 0 0 0 0 0 0 1985 0 0 0 0 0 0 | l = ten

0 0 0 0 0 0 0 0 0 0 0 0 2854 0 0 0 0 0 | m = eleven

0 0 0 0 0 0 0 0 0 0 0 0 6 3589 2 0 0 0 | n = twelve

0 0 0 0 0 0 0 0 0 0 0 0 0 0 4194 0 0 0 | o = thirteen

0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4551 0 0 | p = fourteen

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2164 0 | q = fifteen

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 390 | r = sixteen

Two Objects per Leaf

Options: -U -M 2

J48 unpruned tree

------------------

Number of Leaves : 3060

Size of the tree : 6078

Time taken to build model: 119.06 seconds

Time taken to test model on training data: 3.66 seconds
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=== Error on training (and test) data ===

Correctly Classified Instances 27113 96.6389 %

Incorrectly Classified Instances 943 3.3611 %

Kappa statistic 0.9625

Mean absolute error 0.0056

Root mean squared error 0.0527

Relative absolute error 5.5845 %

Root relative squared error 23.632 %

Total Number of Instances 28056

=== Confusion Matrix ===

a b c d e f g h i j k l m n o p q r <-- classified as

2796 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | a = draw

1 25 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | b = zero

0 0 78 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | c = one

0 0 0 246 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | d = two

0 0 0 2 77 1 1 0 0 0 0 0 0 0 0 0 0 0 | e = three

0 0 0 0 2 193 3 0 0 0 0 0 0 0 0 0 0 0 | f = four

0 0 1 0 3 3 460 1 2 1 0 0 0 0 0 0 0 0 | g = five

0 0 0 0 3 3 13 545 16 5 3 1 2 1 0 0 0 0 | h = six

0 0 2 1 1 0 4 12 637 14 7 4 1 0 0 0 0 0 | i = seven

0 0 0 0 0 0 3 7 19 1373 21 9 1 0 0 0 0 0 | j = eight

0 0 0 0 0 0 1 3 6 30 1635 22 12 2 1 0 0 0 | k = nine

0 0 0 0 0 0 2 0 4 14 38 1885 32 8 2 0 0 0 | l = ten

0 0 0 0 0 0 2 0 4 5 14 34 2717 57 16 4 1 0 | m = eleven

0 0 0 0 0 0 1 0 2 1 4 13 46 3466 54 8 2 0 | n = twelve

0 0 0 0 0 0 0 0 1 1 1 6 18 62 4038 66 1 0 | o = thirteen

0 0 0 0 0 0 0 0 0 0 0 1 1 8 61 4453 29 0 | p = fourteen

0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 45 2110 6 | q = fifteen

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 10 379 | r = sixteen

Four Objects per Leaf

Options: -U -M 4

J48 unpruned tree

------------------

Number of Leaves : 2161

Size of the tree : 4289

Time taken to build model: 107.8 seconds

Time taken to test model on training data: 3.94 seconds

=== Error on training (and test) data ===

Correctly Classified Instances 25818 92.0231 %

Incorrectly Classified Instances 2238 7.9769 %

Kappa statistic 0.9109

Mean absolute error 0.0129

Root mean squared error 0.0802



108 A Decision Trees Output

Relative absolute error 12.9297 %

Root relative squared error 35.9585 %

Total Number of Instances 28056

=== Confusion Matrix ===

a b c d e f g h i j k l m n o p q r <-- classified as

2796 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | a = draw

1 25 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | b = zero

0 0 77 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | c = one

1 0 0 241 2 2 0 0 0 0 0 0 0 0 0 0 0 0 | d = two

0 0 0 2 69 1 4 2 3 0 0 0 0 0 0 0 0 0 | e = three

0 0 0 1 1 181 7 7 1 0 0 0 0 0 0 0 0 0 | f = four

0 0 0 1 4 11 410 32 10 1 1 0 1 0 0 0 0 0 | g = five

0 0 0 1 2 5 28 502 25 18 5 2 4 0 0 0 0 0 | h = six

1 0 1 0 0 4 6 25 584 50 6 3 1 1 1 0 0 0 | i = seven

0 0 0 0 0 1 8 12 41 1291 53 18 6 2 1 0 0 0 | j = eight

0 0 0 0 0 0 2 3 12 66 1511 71 34 7 6 0 0 0 | k = nine

0 0 0 0 0 1 6 2 13 37 57 1752 81 27 8 1 0 0 | l = ten

0 0 0 0 0 1 2 0 8 11 24 81 2567 111 40 6 3 0 | m = eleven

0 0 0 0 0 0 2 2 1 3 13 27 114 3302 110 21 2 0 | n = twelve

0 0 0 0 0 2 2 0 3 2 5 20 25 149 3809 167 10 0 | o = thirteen

0 0 0 0 0 0 1 0 0 0 1 5 1 22 146 4294 83 0 | p = fourteen

0 0 0 0 0 0 0 0 0 0 0 0 0 2 5 101 2042 16 | q = fifteen

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 365 | r = sixteen

Eight Objects per Leaf

Options: -U -M 8

J48 unpruned tree

------------------

Number of Leaves : 1329

Size of the tree : 2640

Time taken to build model: 108.24 seconds

Time taken to test model on training data: 3.32 seconds

=== Error on training (and test) data ===

Correctly Classified Instances 23903 85.1975 %

Incorrectly Classified Instances 4153 14.8025 %

Kappa statistic 0.8347

Mean absolute error 0.0233

Root mean squared error 0.108

Relative absolute error 23.4457 %

Root relative squared error 48.4216 %

Total Number of Instances 28056

=== Confusion Matrix ===
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a b c d e f g h i j k l m n o p q r <-- classified as

2796 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | a = draw

0 25 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 | b = zero

7 0 67 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | c = one

0 0 0 239 2 2 0 0 3 0 0 0 0 0 0 0 0 0 | d = two

3 0 4 5 50 8 6 0 4 0 1 0 0 0 0 0 0 0 | e = three

0 2 1 0 0 165 19 6 2 0 0 0 0 3 0 0 0 0 | f = four

1 0 0 0 10 16 377 31 20 4 6 4 0 2 0 0 0 0 | g = five

0 1 0 2 18 20 27 439 34 21 20 4 1 1 3 1 0 0 | h = six

1 2 1 4 1 3 25 41 477 78 23 10 8 4 5 0 0 0 | i = seven

0 0 0 0 1 1 5 18 55 1160 122 46 15 6 4 0 0 0 | j = eight

0 0 0 1 0 0 0 6 17 112 1364 122 60 18 11 1 0 0 | k = nine

0 0 0 0 3 0 5 11 18 28 144 1525 174 62 9 5 1 0 | l = ten

0 2 1 0 0 0 5 10 5 15 67 152 2341 190 53 10 3 0 | m = eleven

0 3 0 0 0 0 3 0 6 1 23 71 204 3011 228 45 2 0 | n = twelve

0 0 0 0 0 0 0 0 7 3 9 17 66 281 3540 257 14 0 | o = thirteen

0 0 0 0 0 0 0 0 0 0 1 7 10 51 278 4057 147 2 | p = fourteen

0 0 0 0 0 0 0 0 0 0 0 0 1 6 10 198 1923 28 | q = fifteen

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 39 347 | r = sixteen

Sixteen Objects per Leaf

Options: -U -M 16

J48 unpruned tree

------------------

Number of Leaves : 775

Size of the tree : 1539

Time taken to build model: 76.46 seconds

Time taken to test model on training data: 2.87 seconds

=== Error on training (and test) data ===

Correctly Classified Instances 21924 78.1437 %

Incorrectly Classified Instances 6132 21.8563 %

Kappa statistic 0.7558

Mean absolute error 0.0337

Root mean squared error 0.1298

Relative absolute error 33.8614 %

Root relative squared error 58.1916 %

Total Number of Instances 28056

=== Confusion Matrix ===

a b c d e f g h i j k l m n o p q r <-- classified as

2793 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 | a = draw

0 10 0 1 5 0 5 0 1 0 0 5 0 0 0 0 0 0 | b = zero

6 0 65 0 6 1 0 0 0 0 0 0 0 0 0 0 0 0 | c = one

0 9 5 225 2 0 0 2 3 0 0 0 0 0 0 0 0 0 | d = two
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5 0 4 5 35 16 4 5 3 4 0 0 0 0 0 0 0 0 | e = three

0 0 2 0 4 152 24 11 2 0 0 0 0 3 0 0 0 0 | f = four

0 0 0 3 1 24 343 47 25 9 6 1 4 0 2 6 0 0 | g = five

0 0 5 3 5 18 44 410 36 31 20 6 5 3 3 3 0 0 | h = six

1 0 3 5 0 8 32 49 374 126 23 33 15 6 8 0 0 0 | i = seven

0 0 6 1 0 0 5 13 77 1013 167 87 42 13 6 3 0 0 | j = eight

0 0 3 1 0 2 4 7 23 115 1209 181 108 37 21 1 0 0 | k = nine

0 0 2 0 0 2 9 4 6 41 168 1301 294 117 23 17 1 0 | l = ten

0 0 1 0 0 2 4 5 0 7 72 202 2099 342 109 5 6 0 | m = eleven

0 0 0 0 0 0 0 0 2 1 25 64 289 2720 418 76 2 0 | n = twelve

0 0 0 0 0 0 0 0 1 1 2 25 123 374 3286 353 28 1 | o = thirteen

0 0 0 0 0 0 0 0 0 0 0 3 10 65 446 3717 302 10 | p = fourteen

0 0 0 0 0 0 0 0 0 0 0 0 2 8 20 222 1881 33 | q = fifteen

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 8 90 291 | r = sixteen

Thirty two Objects per Leaf

Options: -U -M 32

J48 unpruned tree

------------------

Number of Leaves : 433

Size of the tree : 860

Time taken to build model: 57.79 seconds

Time taken to test model on training data: 2.97 seconds

=== Error on training (and test) data ===

Correctly Classified Instances 19903 70.9403 %

Incorrectly Classified Instances 8153 29.0597 %

Kappa statistic 0.6753

Mean absolute error 0.0439

Root mean squared error 0.1481

Relative absolute error 44.0794 %

Root relative squared error 66.3935 %

Total Number of Instances 28056

=== Confusion Matrix ===

a b c d e f g h i j k l m n o p q r <-- classified as

2787 0 0 6 0 0 3 0 0 0 0 0 0 0 0 0 0 0 | a = draw

0 10 6 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | b = zero

0 0 56 12 0 0 7 0 0 0 0 0 0 3 0 0 0 0 | c = one

0 0 18 223 0 0 5 0 0 0 0 0 0 0 0 0 0 0 | d = two

0 6 0 22 0 13 30 1 5 4 0 0 0 0 0 0 0 0 | e = three

0 5 3 1 0 105 40 37 4 0 0 0 0 3 0 0 0 0 | f = four

0 8 3 5 0 20 252 80 52 28 10 0 4 3 0 6 0 0 | g = five

0 5 6 6 0 9 55 381 65 30 13 6 7 3 3 3 0 0 | h = six

0 0 8 11 0 7 23 56 340 153 31 20 11 17 6 0 0 0 | i = seven

0 0 10 3 0 0 2 59 50 913 248 91 29 15 9 4 0 0 | j = eight
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0 0 7 0 0 0 2 7 50 176 1034 198 165 46 14 12 1 0 | k = nine

0 0 4 3 0 0 3 4 13 54 255 1136 312 155 31 14 1 0 | l = ten

0 0 1 0 0 0 5 7 0 21 150 292 1811 358 173 32 4 0 | m = eleven

0 0 0 0 0 0 0 0 5 11 38 109 366 2374 543 131 20 0 | n = twelve

0 0 0 0 0 0 0 0 0 4 4 31 106 464 3017 518 50 0 | o = thirteen

0 0 0 0 0 0 0 0 0 0 0 27 2 73 533 3517 381 20 | p = fourteen

0 0 0 0 0 0 0 0 0 0 0 0 0 1 49 377 1671 68 | q = fifteen

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 110 276 | r = sixteen

Sixty four Objects per Leaf

Options: -U -M 64

J48 unpruned tree

------------------

Number of Leaves : 227

Size of the tree : 452

Time taken to build model: 69.63 seconds

Time taken to test model on training data: 2.6 seconds

=== Error on training (and test) data ===

Correctly Classified Instances 17538 62.5107 %

Incorrectly Classified Instances 10518 37.4893 %

Kappa statistic 0.5809

Mean absolute error 0.054

Root mean squared error 0.1643

Relative absolute error 54.2515 %

Root relative squared error 73.6569 %

Total Number of Instances 28056

=== Confusion Matrix ===

a b c d e f g h i j k l m n o p q r <-- classified as

2787 0 0 0 0 0 3 4 0 2 0 0 0 0 0 0 0 0 | a = draw

0 0 5 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | b = zero

0 0 25 40 0 0 1 0 0 12 0 0 0 0 0 0 0 0 | c = one

0 0 5 209 0 0 26 4 0 2 0 0 0 0 0 0 0 0 | d = two

0 0 0 23 0 13 35 0 2 4 3 0 1 0 0 0 0 0 | e = three

0 0 0 12 0 111 36 29 4 3 0 0 0 3 0 0 0 0 | f = four

0 0 0 77 0 39 180 57 25 39 23 10 15 0 0 6 0 0 | g = five

0 0 0 10 0 54 113 175 87 58 27 43 22 0 0 3 0 0 | h = six

0 0 0 16 0 3 42 55 287 145 80 15 19 14 6 1 0 0 | i = seven

0 0 0 16 0 6 34 74 111 784 297 51 38 10 6 6 0 0 | j = eight

0 0 1 15 0 0 14 5 39 281 952 116 150 113 16 10 0 0 | k = nine

0 0 7 11 0 0 13 55 3 189 370 588 367 274 60 48 0 0 | l = ten

0 0 3 7 0 0 6 5 0 80 242 200 1509 480 264 51 7 0 | m = eleven

0 0 9 3 0 0 0 0 0 29 73 111 399 2011 764 188 10 0 | n = twelve

0 0 7 3 0 0 0 0 0 12 13 39 108 406 2843 715 48 0 | o = thirteen

0 0 4 0 0 0 0 0 0 0 2 3 11 93 679 3255 469 37 | p = fourteen

0 0 0 0 0 0 0 0 0 0 0 1 0 4 64 429 1530 138 | q = fifteen
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 10 84 292 | r = sixteen

Hundread twenty eight Objects per Leaf

Options: -U -M 128

J48 unpruned tree

------------------

Number of Leaves : 129

Size of the tree : 255

Time taken to build model: 51.57 seconds

Time taken to test model on training data: 2.97 seconds

=== Error on training (and test) data ===

Correctly Classified Instances 15872 56.5726 %

Incorrectly Classified Instances 12184 43.4274 %

Kappa statistic 0.5134

Mean absolute error 0.0606

Root mean squared error 0.1741

Relative absolute error 60.9312 %

Root relative squared error 78.0598 %

Total Number of Instances 28056

=== Confusion Matrix ===

a b c d e f g h i j k l m n o p q r <-- classified as

2787 0 0 6 0 0 0 0 0 0 0 0 0 0 0 3 0 0 | a = draw

0 0 0 23 0 0 0 0 0 0 0 4 0 0 0 0 0 0 | b = zero

0 0 0 59 0 0 12 0 0 3 0 3 0 0 0 1 0 0 | c = one

0 0 0 188 0 0 3 0 0 19 0 35 0 0 0 1 0 0 | d = two

0 0 0 3 0 12 25 4 0 28 0 3 1 0 0 5 0 0 | e = three

0 0 0 6 0 66 39 57 6 13 0 0 0 3 0 8 0 0 | f = four

0 0 0 20 0 40 244 23 31 58 0 22 15 0 0 18 0 0 | g = five

0 0 0 19 0 24 139 87 102 113 10 52 32 0 0 14 0 0 | h = six

0 0 0 19 0 8 82 23 213 136 81 66 22 14 6 13 0 0 | i = seven

0 0 0 72 0 0 113 54 150 586 227 123 69 10 15 14 0 0 | j = eight

0 0 0 66 0 0 28 11 63 256 650 191 302 96 26 23 0 0 | k = nine

0 0 0 44 0 0 4 23 31 97 291 628 402 278 97 90 0 0 | l = ten

0 0 0 19 0 0 3 0 13 32 203 370 1468 430 228 83 5 0 | m = eleven

0 0 0 23 0 0 0 0 9 12 74 146 552 1734 819 213 15 0 | n = twelve

0 0 0 18 0 0 0 0 5 9 24 16 246 448 2565 821 42 0 | o = thirteen

0 0 0 15 0 0 0 0 0 0 4 0 88 187 661 3229 369 0 | p = fourteen

0 0 0 1 0 0 0 0 0 0 0 0 3 14 88 706 1269 85 | q = fifteen

0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 11 217 158 | r = sixteen



Appendix B

Script Source Code

We implemented a script in Ruby1 to read automatically the primary database

and transform it practically in the new databases. This script allows us to chose

a particular attribute set and to specify some other options, mainly for test pur-

pose. The implementation is based on libraries which could be easily reused in

other programms, if needed. The Attribute Classes contain the description of each

attribute, and calculate their values based on the values returned by the Position

Class. The attributes are handled as a combination by the Attributes Class. The

Position Class computes all the distance values relying on the positions of the

�gures on the board. The Hash Class contains statistical functions which test

the properties of the new computed database. The Main File reads the primary

database and calls functions from the other classes, depending on what the Op-

tion Class, which deals with the command line options, speci�es. Some Utilities

are also included in the script, as well as Another Main File to test the attributes.

Attribute Classes

1 #########################################################################

2 # Pieces files and rank

3 ##

4
5 # white king

6
7 class Attr_WK_file

8 def getHeader

9 return "@attribute whiteKingFile {a, b, c, d, e, f, g, h}"

1http://www.ruby-lang.org/
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10 end

11
12 def compute(position)

13 return position.wkf.chr

14 end

15
16 def name

17 return "white king file"

18 end

19 end

20
21 class Attr_WK_file_Num

22 def getHeader

23 return "@attribute whiteKingFile numeric"

24 end

25
26 def compute(position)

27 return position.wkf - "a"[0] + 1

28 end

29
30 def name

31 return "white king file as a number"

32 end

33 end

34
35 class Attr_WK_rank

36 def getHeader

37 return "@attribute whiteKingRank {1, 2, 3, 4, 5, 6, 7, 8}"

38 end

39
40 def compute(position)

41 return position.wkr.chr

42 end

43
44 def name

45 return "white king rank"

46 end

47 end

48
49 class Attr_WK_rank_Num

50 def getHeader

51 return "@attribute whiteKingRank numeric"

52 end

53
54 def compute(position)

55 return position.wkr.chr.to_i

56 end
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57
58 def name

59 return "white king rank as a number"

60 end

61 end

62
63 # white rook

64
65 class Attr_WR_file

66 def getHeader

67 return "@attribute whiteRookFile {a, b, c, d, e, f, g, h}"

68 end

69
70 def compute(position)

71 return position.wrf.chr

72 end

73
74 def name

75 return "white rook file"

76 end

77 end

78
79 class Attr_WR_file_Num

80 def getHeader

81 return "@attribute whiteRookFile numeric"

82 end

83
84 def compute(position)

85 return position.wrf - "a"[0] + 1

86 end

87
88 def name

89 return "white rook file as a number"

90 end

91 end

92
93 class Attr_WR_rank

94 def getHeader

95 return "@attribute whiteRookRank {1, 2, 3, 4, 5, 6, 7, 8}"

96 end

97
98 def compute(position)

99 return position.wrr.chr

100 end

101
102 def name

103 return "white rook rank"
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104 end

105 end

106
107 class Attr_WR_rank_Num

108 def getHeader

109 return "@attribute whiteRookRank numeric"

110 end

111
112 def compute(position)

113 return position.wrr.chr.to_i

114 end

115
116 def name

117 return "white rook rank as a number"

118 end

119 end

120
121 # black king

122
123 class Attr_BK_file

124 def getHeader

125 return "@attribute blackKingFile {a, b, c, d, e, f, g, h}"

126 end

127
128 def compute(position)

129 return position.bkf.chr

130 end

131
132 def name

133 return "black king file"

134 end

135 end

136
137 class Attr_BK_file_Num

138 def getHeader

139 return "@attribute blackKingFile numeric"

140 end

141
142 def compute(position)

143 return position.bkf - "a"[0] + 1

144 end

145
146 def name

147 return "black king file as a number"

148 end

149 end

150
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151 class Attr_BK_rank

152 def getHeader

153 return "@attribute blackKingRank {1, 2, 3, 4, 5, 6, 7, 8}"

154 end

155
156 def compute(position)

157 return position.bkr.chr

158 end

159
160 def name

161 return "black king rank"

162 end

163 end

164
165 class Attr_BK_rank_Num

166 def getHeader

167 return "@attribute blackKingRank numeric"

168 end

169
170 def compute(position)

171 return position.bkr.chr.to_i

172 end

173
174 def name

175 return "black king rank as a number"

176 end

177 end

178
179
180 #########################################################################

181 # depth of win

182 ##

183
184 class Attr_Depth_of_win

185 def getHeader

186 return "@attribute depth_of_win {draw, zero, one, two, three, four, five, six,

187 seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen}"

188 end

189
190 def compute(position)

191 return position.dow

192 end

193
194 def name

195 return "depth of win"

196 end

197 end
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198
199 class Attr_Depth_of_win_Num

200 def getHeader

201 return "@attribute depth_of_win_num numeric"

202 end

203
204 def compute(position)

205 return {"draw"=>17, "zero"=>0, "one"=>1, "two"=>2, "three"=>3, "four"=>4,

206 "five"=>5, "six"=>6, "seven"=>7, "eight"=>8, "nine"=>9, "ten"=>10,

207 "eleven"=>11, "twelve"=>12, "thirteen"=>13, "fourteen"=>14,

208 "fifteen"=>15, "sixteen"=>16}[position.dow]

209 end

210
211 def name

212 return "depth of win as number"

213 end

214 end

215
216
217 #########################################################################

218 # attributes: Adjacents

219 ##

220
221 # black king threats white rook

222 class Attr_Adjacent_WR_BK

223 def getHeader

224 return "@attribute adjacent_WR_BK {true, false}"

225 end

226
227 def compute(position)

228 return(position.dist_WR_BK == 1)

229 end

230
231 def name

232 return "the black king threats the white rook"

233 end

234 end

235
236 # white king protects white rook

237 class Attr_Adjacent_WK_WR

238 def getHeader

239 return "@attribute adjacent_WK_WR {true, false}"

240 end

241
242 def compute(position)

243 return(position.dist_WK_WR == 1)

244 end
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245
246 def name

247 return "the white king protects the white rook"

248 end

249 end

250
251 # the two kings are adjacent: illegal

252 class Attr_Adjacent_WK_BK

253 def getHeader

254 return "@attribute adjacent_WK_BK {true, false}"

255 end

256
257 def compute(position)

258 return(position.dist_WK_BK == 1)

259 end

260
261 def name

262 return "the two kings are on adjacent squares"

263 end

264 end

265
266 #########################################################################

267 # attributes: Between

268 ##

269
270 # white rook divides the kings

271 class Attr_WR_between_WK_BK

272 def getHeader

273 return "@attribute WR_between_WK_BK {true, false}"

274 end

275
276 def compute(position)

277 return( smallerThan(position.wkf, position.wrf, position.bkf) or

278 smallerThan(position.wkr, position.wrr, position.bkr) or

279 smallerThan(position.bkf, position.wrf, position.wkf) or

280 smallerThan(position.bkr, position.wrr, position.wkr) )

281 end

282
283 def name

284 return "the white rook divides the both kings"

285 end

286 end

287
288 # white king divides white rook and black king

289 class Attr_WK_between_WR_BK

290 def getHeader

291 return "@attribute WK_between_WR_BK {true, false}"
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292 end

293
294 def compute(position)

295 return(smallerThan(position.wrf, position.wkf, position.bkf) or

296 smallerThan(position.wrr, position.wkr, position.bkr) or

297 smallerThan(position.bkf, position.wkf, position.wrf) or

298 smallerThan(position.bkr, position.wkr, position.wrr))

299 end

300
301 def name

302 return "the order of the pieces is white rook-white king-black king"

303 end

304 end

305
306 # black king divides white king and white rook

307 class Attr_BK_between_WK_WR

308 def getHeader

309 return "@attribute BK_between_WK_WR {true, false}"

310 end

311
312 def compute(position)

313 return(smallerThan(position.wkf, position.bkf, position.wrf) or

314 smallerThan(position.wkr, position.bkr, position.wrr) or

315 smallerThan(position.wrf, position.bkf, position.wkf) or

316 smallerThan(position.wrr, position.bkr, position.wkr))

317 end

318
319 def name

320 return "the order of the pieces is white king-black king-white rook"

321 end

322 end

323
324
325 #########################################################################

326 # attributes: Pieces distances

327 ##

328
329 # distance between the kings

330 class Attr_Distance_WK_BK

331 def getHeader

332 return "@attribute distance_WK_BK {1, 2, 3, 4, 5, 6, 7}"

333 end

334
335 def compute(position)

336 return position.dist_WK_BK

337 end

338
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339 def name

340 return "the distance between the kings is"

341 end

342 end

343
344 # distance between the kings (numeric)

345 class Attr_Distance_WK_BK_Num

346 def getHeader

347 return "@attribute distance_WK_BK_num numeric"

348 end

349
350 def compute(position)

351 return position.dist_WK_BK

352 end

353
354 def name

355 return "the distance between the kings as number is"

356 end

357 end

358
359 # distance between white rook and black king

360 class Attr_Distance_WR_BK

361 def getHeader

362 return "@attribute distance_WR_BK {1, 2, 3, 4, 5, 6, 7}"

363 end

364
365 def compute(position)

366 return position.dist_WR_BK

367 end

368
369 def name

370 return "the distance between the white rook and the black king is"

371 end

372 end

373
374 # distance between white rook and black king (numeric)

375 class Attr_Distance_WR_BK_Num

376 def getHeader

377 return "@attribute distance_WR_BK_num numeric"

378 end

379
380 def compute(position)

381 return position.dist_WR_BK

382 end

383
384 def name

385 return "the distance between the white rook and the black king as a number is"
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386 end

387 end

388
389 # distance between white king and white rook

390 class Attr_Distance_WK_WR

391 def getHeader

392 return "@attribute distance_WK_WR {0, 1, 2, 3, 4, 5, 6, 7}"

393 end

394
395 def compute(position)

396 return position.dist_WK_WR

397 end

398
399 def name

400 return "the distance between the white king and the white rook is"

401 end

402 end

403
404 # distance between white king and white rook (numeric)

405 class Attr_Distance_WK_WR_Num

406 def getHeader

407 return "@attribute distance_WK_WR_num numeric"

408 end

409
410 def compute(position)

411 return position.dist_WK_WR

412 end

413
414 def name

415 return "the distance between the white king and the white rook as a number is"

416 end

417 end

418
419 #########################################################################

420 # attributes: Pieces file and rank distances

421 ##

422
423 # file distance between the kings

424 class Attr_File_distance_WK_BK

425 def getHeader

426 return "@attribute file_distance_WK_BK {0, 1, 2, 3, 4, 5, 6, 7}"

427 end

428
429 def compute(position)

430 return position.fileDist_WK_BK

431 end

432
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433 def name

434 return "the file distance between the kings is"

435 end

436 end

437
438 # file distance between the kings (numeric)

439 class Attr_File_distance_WK_BK_Num

440 def getHeader

441 return "@attribute file_distance_WK_BK_num numeric"

442 end

443
444 def compute(position)

445 return position.fileDist_WK_BK

446 end

447
448 def name

449 return "the file distance between the kings as number is"

450 end

451 end

452
453 # rank distance between the kings

454 class Attr_Rank_distance_WK_BK

455 def getHeader

456 return "@attribute rank_distance_WK_BK {0, 1, 2, 3, 4, 5, 6, 7}"

457 end

458
459 def compute(position)

460 return position.rankDist_WK_BK

461 end

462
463 def name

464 return "the rank distance between the kings is"

465 end

466 end

467
468 # rank distance between the kings (numeric)

469 class Attr_Rank_distance_WK_BK_Num

470 def getHeader

471 return "@attribute rank_distance_WK_BK_num numeric"

472 end

473
474 def compute(position)

475 return position.rankDist_WK_BK

476 end

477
478 def name

479 return "the rank distance between the kings as number is"
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480 end

481 end

482
483 # file distance between white rook and black king

484 class Attr_File_distance_WR_BK

485 def getHeader

486 return "@attribute file_distance_WR_BK {0, 1, 2, 3, 4, 5, 6, 7}"

487 end

488
489 def compute(position)

490 return position.fileDist_WR_BK

491 end

492
493 def name

494 return "the file distance between the white rook and the black king is"

495 end

496 end

497
498 # file distance between white rook and black king (numeric)

499 class Attr_File_distance_WR_BK_Num

500 def getHeader

501 return "@attribute file_distance_WR_BK_num numeric"

502 end

503
504 def compute(position)

505 return position.fileDist_WR_BK

506 end

507
508 def name

509 return "the file distance between the white rook and the black king as a number is"

510 end

511 end

512
513 # rank distance between white rook and black king

514 class Attr_Rank_distance_WR_BK

515 def getHeader

516 return "@attribute rank_distance_WR_BK {0, 1, 2, 3, 4, 5, 6, 7}"

517 end

518
519 def compute(position)

520 return position.rankDist_WR_BK

521 end

522
523 def name

524 return "the rank distance between the white rook and the black king is"

525 end

526 end
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527
528 # rank distance between white rook and black king (numeric)

529 class Attr_Rank_distance_WR_BK_Num

530 def getHeader

531 return "@attribute rank_distance_WR_BK_num numeric"

532 end

533
534 def compute(position)

535 return position.rankDist_WR_BK

536 end

537
538 def name

539 return "the rank distance between the white rook and the black king as a number is"

540 end

541 end

542
543 # file distance between white king and white rook

544 class Attr_File_distance_WK_WR

545 def getHeader

546 return "@attribute file_distance_WK_WR {0, 1, 2, 3, 4, 5, 6, 7}"

547 end

548
549 def compute(position)

550 return position.fileDist_WK_WR

551 end

552
553 def name

554 return "the file distance between the white king and the white rook is"

555 end

556 end

557
558 # file distance between white king and white rook (numeric)

559 class Attr_File_distance_WK_WR_Num

560 def getHeader

561 return "@attribute file_distance_WK_WR_num numeric"

562 end

563
564 def compute(position)

565 return position.fileDist_WK_WR

566 end

567
568 def name

569 return "the file distance between the white king and the white rook as a number is"

570 end

571 end

572
573 # rank distance between white king and white rook
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574 class Attr_Rank_distance_WK_WR

575 def getHeader

576 return "@attribute rank_distance_WK_WR {0, 1, 2, 3, 4, 5, 6, 7}"

577 end

578
579 def compute(position)

580 return position.rankDist_WK_WR

581 end

582
583 def name

584 return "the rank distance between the white king and the white rook is"

585 end

586 end

587
588 # rank distance between white king and white rook (numeric)

589 class Attr_Rank_distance_WK_WR_Num

590 def getHeader

591 return "@attribute rank_distance_WK_WR_num numeric"

592 end

593
594 def compute(position)

595 return position.rankDist_WK_WR

596 end

597
598 def name

599 return "the rank distance between the white king and the white rook as a number is"

600 end

601 end

602
603 #########################################################################

604 # attributes: Board distances

605 ##

606
607 # distance from the black king to the closest edge

608 class Attr_Distance_BK_ce

609 def getHeader

610 return "@attribute Distance_WK_ce {0, 1, 2, 3}"

611 end

612
613 def compute(position)

614 return position.dist_BK_ce

615 end

616
617 def name

618 return "the distance from the black king to the closest edge is"

619 end

620 end
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621
622 # distance from the black king to the closest edge (numeric)

623 class Attr_Distance_BK_ce_Num

624 def getHeader

625 return "@attribute Distance_WK_ce_num numeric"

626 end

627
628 def compute(position)

629 return position.dist_BK_ce

630 end

631
632 def name

633 return "the distance from the black king to the closest edge as a number is"

634 end

635 end

636
637 # distance of the black king to the closest corner

638 class Attr_Distance_BK_co

639 def getHeader

640 return "@attribute Distance_BK_ce {0, 1, 2, 3}"

641 end

642
643 def compute(position)

644 return position.dist_BK_co

645 end

646
647 def name

648 return "the distance from the black king to the closest corner is"

649 end

650 end

651
652 class Attr_Distance_BK_co_Num

653 def getHeader

654 return "@attribute Distance_BK_ce_num numeric"

655 end

656
657 def compute(position)

658 return position.dist_BK_co

659 end

660
661 def name

662 return "the distance from the black king to the closest corner as a number is"

663 end

664 end

665
666 # distance of the white to the central cross

667 class Attr_Distance_WK_cr
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668 def getHeader

669 return "@attribute Distance_WK_cc {0, 1, 2, 3}"

670 end

671
672 def compute(position)

673 return position.dist_WK_cr

674 end

675
676 def name

677 return "the distance from the white king to the central cross is"

678 end

679 end

680
681 class Attr_Distance_WK_cr_Num

682 def getHeader

683 return "@attribute Distance_WK_cc_num numeric"

684 end

685
686 def compute(position)

687 return position.dist_WK_cr

688 end

689
690 def name

691 return "the distance from the white king to the central cross as a number is"

692 end

693 end

694
695 # distance of the white to the closest edge

696 class Attr_Distance_WK_ce

697 def getHeader

698 return "@attribute Distance_WK_ce {0, 1, 2, 3}"

699 end

700
701 def compute(position)

702 return position.dist_WK_ce

703 end

704
705 def name

706 return "the distance from the white king to the closest edge is"

707 end

708 end

709
710 class Attr_Distance_WK_ce_Num

711 def getHeader

712 return "@attribute Distance_WK_ce_num numeric"

713 end

714
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715 def compute(position)

716 return position.dist_WK_ce

717 end

718
719 def name

720 return "the distance from the white king to the closest edge as a number is"

721 end

722 end

723
724 # distance of the white to the closest corner

725 class Attr_Distance_WK_co

726 def getHeader

727 return "@attribute Distance_WK_co {0, 1, 2, 3}"

728 end

729
730 def compute(position)

731 return position.dist_WK_co

732 end

733
734 def name

735 return "the distance from the white king to the closest corner is"

736 end

737 end

738
739 class Attr_Distance_WK_co_Num

740 def getHeader

741 return "@attribute Distance_WK_co_num numeric"

742 end

743
744 def compute(position)

745 return position.dist_WK_co

746 end

747
748 def name

749 return "the distance from the white king to the closest corner is"

750 end

751 end

752
753 #########################################################################

754 # attributes: oriented caracteristics

755 ##

756
757 # Is the vertical distance between WR and BBK equal 1?

758 class Attr_Vertical_distance_WR_BK

759 def getHeader

760 return "@attribute vertical_distance_WR_BK_1 {not_one_square, one_square}"

761 end
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762
763 def compute(position)

764 choosenBottom = position.bottom

765
766 case choosenBottom

767 when "a"

768 if position.wrf == position.bkf + 1 then return "one_square"

769 else return "not_one_square" end

770 when "h"

771 if position.wrf == position.bkf - 1 then return "one_square"

772 else return "not_one_square" end

773 when "1"

774 if position.wrr == position.bkr + 1 then return "one_square"

775 else return "not_one_square" end

776 when "8"

777 if position.wrr == position.bkr - 1 then return "one_square"

778 else return "not_one_square" end

779 end

780 end

781
782 def name

783 return "the vertical distance (1) between the black king and the rook is"

784 end

785 end

786
787 # Is the vertical distance between WK and BK equal 2?

788 class Attr_Vertical_distance_WK_BK

789 def getHeader

790 return "@attribute vertical_distance_WK_BK_1 {not_two_squares, two_squares}"

791 end

792
793 def compute(position)

794 choosenBottom = position.bottom

795
796 case choosenBottom

797 when "a"

798 if position.wkf == position.bkf + 2 then return "two_squares"

799 else return "not_two_squares" end

800 when "h"

801 if position.wkf == position.bkf - 2 then return "two_squares"

802 else return "not_two_squares" end

803 when "1"

804 if position.wkr == position.bkr + 2 then return "two_squares"

805 else return "not_two_squares" end

806 when "8"

807 if position.wkr == position.bkr - 2 then return "two_squares"

808 else return "not_two_squares" end
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809 end

810 end

811
812 def name

813 return "the vertical distance between the both kings is"

814 end

815 end

816
817 # How is the horizontal distance between WK and BK

818 class Attr_Horizontal_distance_WK_BK

819 def getHeader

820 return "@attribute horizontal_distance_WK_BK_1 {odd, even, zero}"

821 end

822
823 def compute(position)

824 choosenBottom = position.bottom

825
826 case choosenBottom

827 when "a", "h"

828 if position.rankDist_WK_BK == 0

829 return "zero"

830 elsif position.rankDist_WK_BK % 2 == 0

831 return "even"

832 else

833 return "odd"

834 end

835
836 when "1", "8"

837 if position.fileDist_WK_BK == 0

838 return "zero"

839 elsif position.fileDist_WK_BK % 2 == 0

840 return "even"

841 else

842 return "odd"

843 end

844
845 end

846 end

847
848 def name

849 return "the horizontal distance between the both kings is"

850 end

851 end

852
853
854 #########################################################################

855 # attributes: special positions
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856 ##

857
858 # kings are in opposition

859 class Attr_K_in_opp

860 def getHeader

861 return "@attribute K_in_opp {true, false}"

862 end

863
864 def compute(position)

865 return( (position.fileDist_WK_BK == 0 and position.rankDist_WK_BK == 2) or

866 (position.fileDist_WK_BK == 2 and position.rankDist_WK_BK == 0) )

867 end

868
869 def name

870 return "the kings are in opposition"

871 end

872 end

873
874 # kings almost in opposition

875 class Attr_K_almost_in_opp

876 def getHeader

877 return "@attribute K_almost_in_opp {true, false}"

878 end

879
880 def compute(position)

881 return( (position.fileDist_WK_BK == 2 and position.rankDist_WK_BK == 1) or

882 or (position.fileDist_WK_BK == 1 and position.rankDist_WK_BK == 2) )

883 end

884
885 def name

886 return "the both kings are almost in opposition"

887 end

888 end

889
890 # white king, black king and white rook form a 'L' pattern

891 class Attr_L_patt

892 def getHeader

893 return "@attribute L_patt {true, false}"

894 end

895
896 def compute(position)

897 return( (position.fileDist_WK_BK == 0 and position.rankDist_WR_BK == 0 and

898 position.rankDist_WK_BK == 2) or (position.rankDist_WK_BK == 0 and

899 position.fileDist_WR_BK == 0 and position.fileDist_WK_BK == 2))

900 end

901
902 def name
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903 return "there is a L-pattern"

904 end

905 end

906
907
908 #########################################################################

909 # attributes: special positions on the board

910 ##

911
912 # the white rook divides the 2 kings toward the closest edge

913 class Attr_WR_divides_K_toward_ce

914 def getHeader

915 return "@attribute WR_divides_K_toward_ce {true, false}"

916 end

917
918 def compute(position)

919 return ((smallerThan(position.wkf, position.wrf, position.bkf) and

920 position.dist_BK_h == position.dist_BK_ce) or

921 (smallerThan(position.wkr, position.wrr, position.bkr) and

922 position.dist_BK_8 == position.dist_BK_ce) or

923 (smallerThan(position.bkf, position.wrf, position.wkf) and

924 position.dist_BK_a == position.dist_BK_ce) or

925 (smallerThan(position.bkr, position.wrr, position.wkr) and

926 position.dist_BK_1 == position.dist_BK_ce))

927 end

928
929 def name

930 return "the white rook divides the two kings towards the closest edge"

931 end

932 end

933
934 # the white rook holds the black king towards the closest edge

935 class Attr_WR_holds_BK_toward_ce

936 def getHeader

937 return "@attribute WR_holds_BK_toward_ce {true, false}"

938 end

939
940 def compute(position)

941 return

942 ((position.wrf == position.bkf + 1 and position.bk_closest_edge.include? "a") or

943 (position.wrf == position.bkf - 1 and position.bk_closest_edge.include? "h") or

944 (position.wrr == position.bkf + 1 and position.bk_closest_edge.include? "1") or

945 (position.wrr == position.bkr - 1 and position.bk_closest_edge.include? "8"))

946 end

947
948 def name

949 return "the white rook holds the black king towards the closest edge"
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950 end

951 end

952
953 # the kings are in opposition that forces the black king towards the closest edge

954 class Attr_K_in_opp_toward_ce

955 def getHeader

956 return "@attribute K_in_opp_toward_ce {true, false}"

957 end

958
959 def compute(position)

960 return ((position.wkf == position.bkf and position.wkr == position.bkr + 2 and

961 position.bk_closest_edge.include? "1") or (position.wkf == position.bkf and

962 position.wkr == position.bkr - 2 and position.bk_closest_edge.include? "8") or

963 (position.wkf == position.bkf + 2 and position.wkr == position.bkr and

964 position.bk_closest_edge.include? "a") or (position.wkf == position.bkf - 2 and

965 position.wkr == position.bkr and position.bk_closest_edge.include? "h"))

966 end

967
968 def name

969 return "the both kings are in opposition " +

970 "so that the black king is held towards the closest edge"

971 end

972 end

973
974 # the white rook divides the 2 kings toward the closest edge and

975 # the it holds the black king toward the closest edge

976 class Attr_WR_squeeze_BK

977 def getHeader

978 return "@attribute WR_squeeze_BK {true, false}"

979 end

980
981 def compute(position)

982 a = Attr_WR_divides_K_toward_ce.new

983 b = Attr_K_in_opp_toward_ce.new

984 return (a.compute(position) and b.compute(position))

985 end

986
987 def name

988 return "the black king is squeezed towards the closest edge"

989 end

990 end

991
992 #########################################################################

993 # attributes: Other

994 ##

995
996 # free space around the black king as let free by the rook
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997 class Attr_BK_free_space

998 def getHeader

999 return "@attribute BK_free_space {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14,

1000 15, 16, 18, 20, 21, 24, 25, 28, 30, 35, 36, 42, 49}"

1001 end

1002
1003 def compute(position)

1004 return position.rook_free_space

1005 end

1006
1007 def name

1008 return "the free space of the black king as let by the rook is"

1009 end

1010 end

1011
1012 class Attr_BK_free_space_Num

1013 def getHeader

1014 return "@attribute BK_free_space_num numeric"

1015 end

1016
1017 def compute(position)

1018 return position.rook_free_space

1019 end

1020
1021 def name

1022 return "the free space of the black king as let by the rook as a number is"

1023 end

1024 end

1025
1026 # true free space around the black king

1027 class Attr_BK_true_free_space

1028 def getHeader

1029 return "@attribute BK_true_free_space {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

1030 12, 14, 15, 16, 18, 20, 21, 24, 25, 28, 30, 35, 36, 42, 49}"

1031 end

1032
1033 def compute(position)

1034 return position.free_space

1035 end

1036
1037 def name

1038 return "the number of fields where the black king can go"

1039 end

1040 end

1041
1042 class Attr_BK_true_free_space_Num

1043 def getHeader
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1044 return "@attribute BK_true_free_space_num numeric"

1045 end

1046
1047 def compute(position)

1048 return position.free_space

1049 end

1050
1051 def name

1052 return "the number of fields where the black king can go"

1053 end

1054 end

1055
1056 # WR and BK are in the "same zone"

1057 class Attr_Same_zone_WR_BK_1

1058 def getHeader

1059 return "@attribute same_zone_WR_BK_1 {true, false}"

1060 end

1061
1062 def compute(position)

1063 choosenBottom = position.bottom

1064
1065 case choosenBottom

1066 when "a", "h"

1067 return ((position.wrr <= "3"[0] and position.bkr <= "3"[0]) or

1068 (position.wrr >= "3"[0] and position.wrr <= "6"[0] and

1069 position.bkr >= "3"[0] and position.bkr <= "6"[0]) or

1070 (position.wrr >= "6"[0] and position.bkr >= "6"[0]))

1071 when "1", "8"

1072 return ((position.wrf <= "c"[0] and position.bkf <= "c"[0]) or

1073 (position.wrf >= "c"[0] and position.wrf <= "f"[0] and

1074 position.bkf >= "c"[0] and position.bkf <= "f"[0]) or

1075 (position.wrf >= "f"[0] and position.bkf >= "f"[0]))

1076 end

1077 end

1078
1079 def name

1080 return "the black king and the rook are in the same zone: "

1081 end

1082 end

1083
1084 #########################################################################

1085 # attributes: mine

1086 ##

1087
1088 # file or rank WR - BK distance

1089 class Attr_Oriented_distance_WR_BK

1090 def getHeader
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1091 return "@attribute oriented_dist_WR_BK {0,1,2,3,4,5,6,7}"

1092 end

1093
1094 def compute(position)

1095 return [position.fileDist_WR_BK, position.rankDist_WR_BK].min

1096 end

1097
1098 def name

1099 return "the distance between the black king and the file or the rank of the rook is "

1100 end

1101 end

1102
1103 # file or rank WR - BK distance num

1104 class Attr_Oriented_distance_WR_BK_Num

1105 def getHeader

1106 return "@attribute oriented_dist_WR_BK_num numeric"

1107 end

1108
1109 def compute(position)

1110 return [position.fileDist_WR_BK, position.rankDist_WR_BK].min

1111 end

1112
1113 def name

1114 return "the distance between the black king and the file or the rank of the rook is "

1115 end

1116 end

1117
1118
1119

Attributes Class

1 class Attributes

2 attr_accessor :list, :mode

3 def initialize(mode = "enum")

4 @list = Array.new

5 @mode = mode

6 end

7
8 # add one or more attributes to the list

9 def add(*attrArray)

10 attrArray.each do |at|

11 if at.class == Array then

12 at.each { |att| self.addOne(att) }

13 else
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14 self.addOne(at)

15 end

16 end

17 end

18
19 def addOne(attr)

20 if @mode == "numeric" and

21 Module.constants.include?(attr.name.to_s + "_Num")

22 @list.push Module.const_get(attr.name.to_s + "_Num").new

23 else

24 @list.push attr.new

25 end

26 end

27
28 #return the header line for all the attributes

29 def getHeader

30 ret = ""

31 @list.each { |attr| ret += attr.getHeader + "\n"}

32 ret += Attr_Depth_of_win.new.getHeader + "\n"

33 return ret

34 end

35
36 def values(position)

37 vals = Array.new

38 @list.each { |attr| vals.push attr.compute(position).to_s }

39 return vals

40 end

41
42 def names

43 vals = Array.new

44 @list.each { |attr| vals.push attr.name }

45 return vals

46 end

47
48 def summary(position)

49 vals = Array.new

50 @list.each { |attr|

51 vals.push attr.name + ": " + attr.compute(position).to_s

52 }

53 return vals

54 end

55 end



B Script Source Code 139

Position Class

1 class Position

2 attr_accessor :wkf, :wkr, :wrf, :wrr, :bkf, :bkr, :dow

3 def initialize

4 @wkf = @wkr = @wrf = @wrr = @bkf = @bkr = 0

5 @dow = ""

6 end

7
8 # define the position with the 7 first elements of the array

9 def readArray(array)

10 if array.class == Array and array.size >= 7 then

11 @wkf = array[0][0]; @wkr = array[1][0]

12 @wrf = array[2][0]; @wrr = array[3][0]

13 @bkf = array[4][0]; @bkr = array[5][0]

14 @dow = array[6]

15 else

16 puts array.inspect

17 puts "Position::readArray() unvalid argument"

18 end

19 end

20
21 def to_s

22 @wkf.chr + @wkr.chr + "," + @wrf.chr + @wrr.chr +

23 "," + @bkf.chr + @bkr.chr

24 end

25 #########################################################################

26 # all distances

27 ##

28
29 def dist(a, b)

30 case a.downcase

31 when "wk" then return self.dist_WK(b)

32 when "wr" then return self.dist_WR(b)

33 when "bk" then return self.dist_BK(b)

34 end

35 end

36
37 def dist_WK(a)

38 case a.downcase

39 when "wk" then return 0

40 when "wr" then return self.dist_WK_WR

41 when "bk" then return self.dist_WK_BK

42 when "a" then return self.dist_WK_a

43 when "h" then return self.dist_WK_h

44 when "1" then return self.dist_WK_1
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45 when "8" then return self.dist_WK_8

46 when "ce" then return self.dist_WK_ce

47 when "cr" then return self.dist_WK_cr

48 when "co" then return self.dist_WK_co

49 end

50 end

51
52 def dist_WR(a)

53 case a.downcase

54 when "wk" then return self.dist_WK_WR

55 when "wr" then return 0

56 when "bk" then return self.dist_WR_BK

57 when "a" then return self.dist_WR_a

58 when "h" then return self.dist_WR_h

59 when "1" then return self.dist_WR_1

60 when "8" then return self.dist_WR_8

61 when "ce" then return self.dist_WR_ce

62 when "cr" then return self.dist_WR_cr

63 when "co" then return self.dist_WR_co

64 end

65 end

66
67 def dist_BK(a)

68 case a.downcase

69 when "wk" then return self.dist_WK_BK

70 when "wr" then return self.dist_WR_BK

71 when "bk" then return 0

72 when "a" then return self.dist_BK_a

73 when "h" then return self.dist_BK_h

74 when "1" then return self.dist_BK_1

75 when "8" then return self.dist_BK_8

76 when "ce" then return self.dist_BK_ce

77 when "cr" then return self.dist_BK_cr

78 when "co" then return self.dist_BK_co

79 end

80 end

81
82 #########################################################################

83 # file distances between pieces

84 ##

85
86 def fileDist_WK_WR

87 return (@wkf - @wrf).abs

88 end

89
90 def fileDist_WK_BK

91 return (@wkf - @bkf).abs
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92 end

93
94 def fileDist_WR_BK

95 return (@wrf - @bkf).abs

96 end

97
98 #########################################################################

99 # rank distances between pieces

100 ##

101
102 def rankDist_WK_WR

103 return (@wkr - @wrr).abs

104 end

105
106 def rankDist_WK_BK

107 return (@wkr - @bkr).abs

108 end

109
110 def rankDist_WR_BK

111 return (@wrr - @bkr).abs

112 end

113
114 #########################################################################

115 # distances between pieces

116 ##

117 def dist_WK_WR

118 return [self.fileDist_WK_WR, self.rankDist_WK_WR].max

119 end

120
121 def dist_WK_BK

122 return [self.fileDist_WK_BK, self.rankDist_WK_BK].max

123 end

124
125 def dist_WR_BK

126 return [self.fileDist_WR_BK, self.rankDist_WR_BK].max

127 end

128
129 #########################################################################

130 # distances between WK and edges, central cross

131 ##

132
133 # first column

134 def dist_WK_a

135 return (@wkf - 'a'[0]).abs

136 end

137
138 #8th column
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139 def dist_WK_h

140 return (@wkf - 'h'[0]).abs

141 end

142
143 #first row

144 def dist_WK_1

145 return (@wkr - '1'[0]).abs

146 end

147
148 # 8th row

149 def dist_WK_8

150 return (@wkr - '8'[0]).abs

151 end

152
153 #closest edge

154 def dist_WK_ce

155 return [self.dist_WK_a, self.dist_WK_h, self.dist_WK_1, self.dist_WK_8].min

156 end

157
158 #central cross

159 def dist_WK_cr

160 return [ [(@wkf - 'd'[0]).abs, (@wkf - 'e'[0]).abs].min,

161 [(@wkr - '4'[0]).abs, (@wkr - '5'[0]).abs].min ].max

162 end

163
164 #closest corner

165 def dist_WK_co

166 return [ [(@wkf - 'a'[0]).abs, (@wkf - 'h'[0]).abs].min,

167 [(@wkr - '1'[0]).abs, (@wkr - '8'[0]).abs].min ].max

168 end

169
170 #########################################################################

171 # distances between WR and edges

172 ##

173
174 # first column

175 def dist_WR_a

176 return (@wrf - 'a'[0]).abs

177 end

178
179 #8th column

180 def dist_WR_h

181 return (@wrf - 'h'[0]).abs

182 end

183
184 #first row

185 def dist_WR_1
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186 return (@wrr - '1'[0]).abs

187 end

188
189 # 8th row

190 def dist_WR_8

191 return (@wrr - '8'[0]).abs

192 end

193
194 #closest edge

195 def dist_WR_ce

196 return [self.dist_WR_a, self.dist_WR_h, self.dist_WR_1, self.dist_WR_8].min

197 end

198
199 #central cross

200 def dist_WR_cr

201 return [ [(@wrf - 'd'[0]).abs, (@wrf - 'e'[0]).abs].min,

202 [(@wrr - '4'[0]).abs, (@wrr - '5'[0]).abs].min ].max

203 end

204
205 #closest corner

206 def dist_WR_co

207 return [ [(@wrf - 'a'[0]).abs, (@wrf - 'h'[0]).abs].min,

208 [(@wrr - '1'[0]).abs, (@wrr - '8'[0]).abs].min ].max

209 end

210
211 #########################################################################

212 # distances between BK and edges, corners

213 ##

214
215 # first column

216 def dist_BK_a

217 return (@bkf - 'a'[0]).abs

218 end

219
220 #8th column

221 def dist_BK_h

222 return (@bkf - 'h'[0]).abs

223 end

224
225 #first row

226 def dist_BK_1

227 return (@bkr - '1'[0]).abs

228 end

229
230 # 8th row

231 def dist_BK_8

232 return (@bkr - '8'[0]).abs
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233 end

234
235 #closest edge

236 def dist_BK_ce

237 return [self.dist_BK_a, self.dist_BK_h, self.dist_BK_1, self.dist_BK_8].min

238 end

239
240 #closest corner

241 def dist_BK_co

242 return [ [self.dist_BK_a, self.dist_BK_h].min,

243 [self.dist_BK_1, self.dist_BK_8].min ].max

244 end

245
246 #central cross

247 def dist_BK_cr

248 return [ [(@wrf - 'd'[0]).abs, (@wrf - 'e'[0]).abs].min,

249 [(@wrr - '4'[0]).abs, (@wrr - '5'[0]).abs].min ].max

250 end

251
252 #########################################################################

253 # closest edges

254 ##

255
256 # return an array with the WK's closest edge(s)

257 def wk_closest_edge

258 ce = Array.new

259 ce.push "a" if self.dist_WK_a == self.dist_WK_ce

260 ce.push "h" if self.dist_WK_h == self.dist_WK_ce

261 ce.push "1" if self.dist_WK_1 == self.dist_WK_ce

262 ce.push "8" if self.dist_WK_8 == self.dist_WK_ce

263 return ce

264 end

265
266 # return an array with the WR's closest edge(s)

267 def wr_closest_edge

268 ce = Array.new

269 ce.push "a" if self.dist_WR_a == self.dist_WR_ce

270 ce.push "h" if self.dist_WR_h == self.dist_WR_ce

271 ce.push "1" if self.dist_WR_1 == self.dist_WR_ce

272 ce.push "8" if self.dist_WR_8 == self.dist_WR_ce

273 return ce

274 end

275
276 # return an array with the BK's closest edge(s)

277 def bk_closest_edge

278 ce = Array.new

279 ce.push "a" if self.dist_BK_a == self.dist_BK_ce
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280 ce.push "h" if self.dist_BK_h == self.dist_BK_ce

281 ce.push "1" if self.dist_BK_1 == self.dist_BK_ce

282 ce.push "8" if self.dist_BK_8 == self.dist_BK_ce

283 return ce

284 end

285
286 #########################################################################

287 # vertical and horizontal detection

288 ##

289
290 def bottom

291 ces = self.bk_closest_edge

292 case ces.size

293 when 1 then return ces[0]

294 when 2

295 if self.dist_WK(ces[0]) <= self.dist_WK(ces[1])

296 return ces[0]

297 else

298 return ces[1]

299 end

300 end

301 end

302
303
304 def rook_free_space

305 if @wrf < @bkf then width = 'h'[0] - @wrf

306 elsif @wrf > @bkf then width = @wrf - 'a'[0]

307 else width = ['h'[0] - @wrf, @wrf - 'a'[0]].max end

308
309 if @wrr < @bkr then height = '8'[0] - @wrr

310 elsif @wrr > @bkr then height = @wrr - '1'[0]

311 else height = ['8'[0] - @wrr, @wrr - '1'[0]].max end

312
313 return(width * height)

314 end

315
316 def free_space

317 d = false

318
319
320 pos = @bkf.chr + @bkr.chr

321 board = ('a'..'h').to_a.collect{|a| ((a+'1')..(a+'8')).to_a}.flatten

322 grasp = ((@bkf-1).chr..(@bkf+1).chr).to_a.collect{ |a|

323 (a+(@bkr-1).chr..a+(@bkr+1).chr).to_a

324 }.flatten

325 wkgrasp = ((@wkf-1).chr..(@wkf+1).chr).to_a.collect{ |a|

326 (a+(@wkr-1).chr..a+(@wkr+1).chr).to_a
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327 }.flatten

328
329 poss = (grasp & board) - Array[pos] - wkgrasp

330 fs = poss.size

331
332 for a in poss

333 i, j = a[0], a[1]

334 if i==@wrf and j!=@wrr and

335 !(j<@wkr and @wkr<@wrr and @wkf==@wrf) and

336 !(@wrr<@wkr and @wkr<j and @wkf==@wrf)

337
338 puts i.chr + "," + j.chr + ": rook file" if d; fs -= 1

339 next

340 end

341
342 if i!=@wrf and j==@wrr and

343 !(i<@wkf and @wkf<@wrf and @wkr==@wrr) and

344 !(@wrf<@wkf and @wkf<i and @wkr==@wrr)

345
346 puts i.chr + "," + j.chr + ": rook rank" if d

347 fs-=1

348 next

349 end

350
351 puts i.chr + "," + j.chr + " ok" if d

352 end

353 return fs

354 end

355
356 end

Hash Class

1 class MyHash

2 attr_reader :numberOfDifferentEntries, :numberOfEntries

3 attr_reader :numberOfAmbiguousEntries, :summary

4 attr_reader :hashContainer, :numbers

5
6 def initialize

7 @debug = false

8 @hashTrigger = false

9 @hashContainer = Hash.new

10 @hashContainerSummed = Hash.new

11 @dowContainer = Hash.new

12 @dowStatContainer = Hash.new
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13 @dowContainerSummed = Hash.new

14
15 @numberOfDifferentEntries = 0

16 @numberOfEntries = 0

17 @numberOfAmbiguousEntries = 0

18 @summaries = Hash.new

19 @matrix1 = Array.new

20 @graph1 = Array.new

21 @numbers = ["draw", "zero","one","two", "three", "four",

22 "five", "six", "seven", "eight", "nine", "ten", "eleven",

23 "twelve", "thirteen", "fourteen", "fifteen", "sixteen"]

24 end

25
26 def addEntry(attributes, value)

27 if @hashTrigger

28 index = attributes.join.hash

29 else

30 index = attributes

31 end

32 @dowContainer[value] = Array.new if !@dowContainer[value]

33 @dowContainer[value].push attributes.join.hash

34 @hashContainer[index] = Array.new if !@hashContainer[index]

35 @hashContainer[index].push value

36
37 @dowContainerSummed[value] = Hash.new if !@dowContainerSummed[value]

38 @dowContainerSummed[value][index] = 0 if !@dowContainerSummed[value][index]

39 @dowContainerSummed[value][index] += 1

40 @hashContainerSummed[index] = Hash.new if !@hashContainerSummed[index]

41 @hashContainerSummed[index][value] = 0 if !@hashContainerSummed[index][value]

42 @hashContainerSummed[index][value] += 1

43 end

44
45 def myCompare(a, b)

46 a = a.sort {|x, y| @numbers.index(x[0]) <=> @numbers.index(y[0])}

47 b = b.sort {|x, y| @numbers.index(x[0]) <=> @numbers.index(y[0])}

48 puts "MyHash::myCompare(" + a.class.to_s + "," + b.class.to_s + ")" if @debug

49 puts "| comparing " + a.inspect + " and " + b.inspect + " ..." if @debug

50
51 if a.size > b.size then res = 1

52 elsif a.size < b.size then res = -1

53 else res = self.recurs(a, b)

54 end

55 puts "| result: " + res.to_s if @debug

56 puts "----------------------------------------" if @debug

57 return res

58 end

59
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60 def recurs(a, b)

61 a = a.to_a if a.class == Hash

62 b = b.to_a if b.class == Hash

63 if @numbers.index(a[0][0]) > @numbers.index(b[0][0])

64 return 1

65 elsif @numbers.index(a[0][0]) < @numbers.index(b[0][0]) then return -1

66 else

67 if a.size == 1 then return 0

68 else return self.recurs(a[1..a.size], b[1..b.size])

69 end

70 end

71 end

72
73 def computeInfos

74 @numberOfDifferentEntries = @container.length

75 @numberOfEntries = 0

76 @numberOfAmbiguousEntries = 0

77 @hashContainer.each do |attributesSet, dowSet|

78 positionsOfTheSet = 0

79 summaryOfTheSet = ""

80 keyForSummaries = ("A"[0] + dowSet.length).chr

81
82 dowOfTheMax = @numbers.index(dowSet.max { |a, b| a[1] <=> b[1] }[0])

83 amplitudeOfTheSet = @numbers.index(dowSet.max{ |a, b|

84 @numbers.index(a[0]) <=> @numbers.index(b[0])

85 }[0]) - @numbers.index(dowSet.min{ |a, b|

86 @numbers.index(a[0]) <=> @numbers.index(b[0])

87 }[0])

88
89 @matrix1[dowOfTheMax] = Array.new if @matrix1[dowOfTheMax].class != Array

90 dowSet.sort{ |a, b| @numbers.index(a[0]) <=> @numbers.index(b[0]) }.each do

91 |dow, quantityOfPositions|

92
93 positionsOfTheSet += quantityOfPositions

94 summaryOfTheSet += (dow + "=>" + quantityOfPositions.to_s + ",")

95 keyForSummaries += ("A"[0] + @numbers.index(dow)).chr

96
97 if !@matrix1[dowOfTheMax][@numbers.index(dow)]

98 @matrix1[dowOfTheMax][@numbers.index(dow)] = quantityOfPositions

99 else

100 @matrix1[dowOfTheMax][@numbers.index(dow)] += quantityOfPositions

101 end

102
103 if !@graph1[@numbers.index(dow)] or

104 @graph1[@numbers.index(dow)] < amplitudeOfTheSet

105
106 @graph1[@numbers.index(dow)] = amplitudeOfTheSet
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107 end

108
109 end

110 while @summaries.has_key? keyForSummaries do

111 keyForSummaries += "A"

112 end

113 @summaries[keyForSummaries] = "[" + attributesSet.join(",") +

114 "] => " + positionsOfTheSet.to_s +

115 " {" + summaryOfTheSet[0..-2] + "}"

116 @numberOfEntries += positionsOfTheSet

117 @numberOfAmbiguousEntries += positionsOfTheSet if dowSet.length > 1

118 end

119 end

120
121 def summary

122 summary = ""

123 print "computing the summary."

124 @hashContainerSummed.sort{ |a,b|

125 self.myCompare(a[1], b[1])

126 }.each {|attributes, values|

127 summary += "["

128
129 if @hashTrigger

130 summary += attributes.to_s

131 else

132 summary += attributes.join(",")

133 end

134
135 summary += "] => {"

136 values.sort{ |a,b|

137 @numbers.index(a[0]) <=> @numbers.index(b[0])

138 }.each { |dow, quantity|

139 summary += dow + ":" + quantity.to_s + ","

140 }

141 summary[summary.size-1] = '}'

142 summary += "\n"

143 print "." if @debug

144 }

145 print "\n"

146 return summary

147 end

148
149 def load(hash)

150 @hashContainer = hash

151 end

152
153 def amplitude
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154 quartiles = true

155
156 if @debug

157 print "first loop size: ",

158 @dowContainerSummed.size,

159 "; second loop average size: ",

160 Kernel.eval( "(" +

161 @dowContainerSummed.to_a.collect { |a|

162 a[1].size

163 }.join("+")+")/" +

164 @dowContainerSummed.size.to_s),

165 "; second loop iterations sum: ",

166 Kernel.eval("(" + @dowContainerSummed.to_a.collect{ |a|

167 a[1].size

168 }.join("+")+")"),

169 "\n"

170 end

171 print "calculating the amplitude."

172
173 graph = "#dow\tmin\tmed\tmax\tfirstQ\tthirdQ\tnb\tnbfalseNb\n"

174 @dowContainerSummed.sort{ |a,b|

175 @numbers.index(a[0]) <=> @numbers.index(b[0])

176 }.each { |dow, hashVals|

177 falseNb = 0

178 nb, min, max, sum, sum2 = 0, 10000000000, 0, 0, 0

179 allValues = Hash.new if quartiles

180 hashVals.each {|attrs, number|

181 @hashContainerSummed[attrs].each { |ndow, renumber|

182 nb += number * renumber

183 falseNb += renumber if dow != ndow

184 d = @numbers.index(ndow)

185 min = d if min > d

186 max = d if max < d

187 sum += d * renumber * number

188 sum2 += d**2 * number * renumber

189 if quartiles

190 allValues[ndow] = 0 if !allValues[ndow]

191 allValues[ndow] += number*renumber

192 end

193 }

194 }

195
196 size = 0

197 firstQ = 0

198 thirdQ = 0

199 if quartiles

200 allValues.each {|a, b| size += b}
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201 fq = (size.to_f / 4).ceil

202 tq = (3 * size.to_f / 4).floor

203
204 allValues.sort{ |a,b|

205 @numbers.index(a[0]) <=> @numbers.index(b[0])

206 }.each{ |idow, quant|

207
208 fq -= quant

209 tq -= quant

210 firstQ = @numbers.index(idow) if fq <= 0 and firstQ == 0

211 thirdQ = @numbers.index(idow) if tq <= 0 and thirdQ == 0

212 break if fq < 0 and tq < 0

213 }

214 end

215 med = sum.to_f / nb

216 std = Math.sqrt((sum2.to_f / nb) - ((sum**2).to_f / (nb**2)))

217 print "."

218
219 graph += @numbers.index(dow).to_s + "\t" + min.to_s +

220 graph += "\t" + med.to_s + "\t" + max.to_s

221 if quartiles

222 graph += "\t" + firstQ.to_s + "\t" + thirdQ.to_s + "\t" + size.to_s

223 end

224 graph += "\t" + falseNb.to_s + "\n"

225 }

226 print "\n"

227 return graph

228 end

229
230 def graph2

231 graph = ""

232 for i in 0..17

233 graph += i.to_s + "\t" + @graph1[i].to_s + "\n"

234 end

235 return graph

236 end

237
238 def size

239 @hashContainer.size

240 end

241
242 def newDb

243 db = String.new

244 errors = Array.new

245 if @hashTrigger

246 raise "cannot print new database with hashed attributes"

247 end
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248
249 @hashContainerSummed.sort{ |a,b|

250 self.myCompare(a[1], b[1])

251 }.each {|attributes, dows|

252 if dows.size == 1

253 db += attributes.join(",") + ',' + dows.keys[0] + "\n"

254 else

255 errors.push attributes

256 end

257 }

258 return db, errors

259 end

260 end

Main File

1 #!/usr/bin/ruby

2
3 require "utils.rb"

4 require "position.rb"

5 require "attributes.rb"

6 require "attribute.rb"

7 require "myhash.rb"

8 require "options.rb"

9
10 file = "./krkopt.data"

11 attributes = Attributes.new

12 options = Options.new

13 options.read ARGV

14
15 if options.attributes.length > 0 then

16 if options.numeric then attributes.mode = "numeric" end

17 attributes.add options.attributes

18 else

19 raise "error: no attribute given"

20 end

21
22 newdb = "@relation krk\n\n"

23 newdb << attributes.getHeader

24 newdb << "\n@data\n"

25
26 aFile = File.new(file, "r")

27 i = 0

28 hashTable = MyHash.new

29
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30 t0 = Time.new

31 puts t0.strftime("[%H:%M:%S] calculating new db...")

32 aFile.each_line do |line|

33
34 if line.chomp.split(',').size < 7

35 raise "unvalid line " + i.to_s + ": " + line

36 end

37 position = Position.new

38 position.readArray line.chomp.split(',')

39
40 b = attributes.values(position)

41 if b.include? "irrelevant" then next end

42
43 hashTable.addEntry(b, position.dow)

44
45 i += 1

46 break if options.maxIterations > 0 and i >= options.maxIterations

47 end

48 aFile.close

49
50 puts Time.now.strftime("[%H:%M:%S]") + " " +

51 i.to_s + " lines calculated, analysing results..."

52
53 ##

54 # saving all produced lines

55 #

56 repartitionFile = File.new(options.resultsFileName + ".rep",

57 File::CREAT|File::TRUNC|File::WRONLY)

58 repartitionFile << "Stats\n "

59 repartitionFile << "size: " << hashTable.size << "\n"

60 repartitionFile << hashTable.summary

61 repartitionFile.close

62 puts "writing repartition into " + options.resultsFileName + ".rep"

63
64
65 ##

66 # saving the amplitudes for gnuplot to draw a graphic

67 ##

68 amplitudeFile = File.new(options.resultsFileName + ".amp",

69 File::CREAT|File::TRUNC|File::WRONLY)

70 amplitudeFile << hashTable.amplitude

71 amplitudeFile.close

72 puts "writing amplitudes into " + options.resultsFileName + ".amp"

73
74 ##

75 # new database

76 ##
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77 dbFile = File.new(options.resultsFileName + ".arff",

78 File::CREAT|File::TRUNC|File::WRONLY)

79 dbFile << newdb

80 dbFile << (db, errors = hashTable.newDb; db)

81 dbFile.close

82 puts Time.now.strftime("[%H:%M:%S]") +

83 " writing new database into " +

84 options.resultsFileName + ".arff"

85 errorsFile = File.new(options.resultsFileName + ".dber",

86 File::CREAT|File::TRUNC|File::WRONLY)

87
88 aFile = File.new(file, "r")

89 aFile.each_line do |line|

90 if line.chomp.split(',').size < 7

91 raise "unvalid line " + i.to_s + ": " + line

92 end

93 position = Position.new

94 position.readArray line.chomp.split(',')

95
96 b = attributes.values(position)

97 if b.include? "irrelevant" then next end

98 if errors.include? b then errorsFile << line end

99 break if options.maxIterations > 0 and i >= options.maxIterations

100 end

101 aFile.close

102 errorsFile.close

103
104
105 puts Time.now.strftime("[%H:%M:%S]") +

106 " done after " + printTime(Time.new - t0)

Option Class

1 class Options

2 attr_reader :maxIterations, :attributes, :resultsFileName,

3 attr_reader :position, :numeric

4
5 def initialize

6 @maxIterations = 0

7 @attributes = Array.new

8 @resultsFileName = "results"

9 @position = Array.new

10 @numeric = false

11 end

12
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13 def read(argv)

14 argv.each do |option|

15
16 # searching for option --max-lines=20 and -l=20

17 if option[0,12] == "--max-lines=" or option[0,3] == "-l=" then

18 _start = (0..option.size - 1).find {|x| option[x] == "="[0]} + 1

19 @maxIterations = option[_start..option.size].to_i

20 puts "reading only the " + @maxIterations.to_s +

21 " first lines of the input file"

22
23 # searching for option --mode=morales and -m=s

24 elsif option[0,7] == "--mode=" or option[0,3] == "-m=" then

25 _start = (0..option.size - 1).find {|x| option[x] == "="[0]} + 1

26 _cut = (0..@resultsFileName.size - 1).find {|x|

27 @resultsFileName[x..@resultsFileName.length - 1] == ".arff"

28 }

29
30 case option[_start..option.size].downcase

31 when "m", "morales"

32 push("morales")

33 @resultsFileName = "morales"

34 puts "adding Morales' attributes"

35
36 when "t", "torres"

37 push "torres"

38 @resultsFileName = "torres"

39 puts "adding Torres y Quevedos' attributes"

40
41 when "b", "bain"

42 push "bain"

43 @resultsFileName = "bain"

44 puts "adding Bain's attributes"

45
46 when "s", "sadikov"

47 push "sadikov"

48 @resultsFileName = "sadikov"

49 puts "adding Sadikov's attributes"

50
51 when "a", "all"

52 push("bain"); push("morales"); push("sadikov")

53 push("torres"); push("gab")

54 @resultsFileName = "bmst"

55 puts "setting mode All (bmst)"

56
57 when "d", "debug"

58 push "debug"

59 @resultsFileName = "debug"
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60 puts "adding debug's attributes"

61
62 when "g", "gab", "gabriel"

63 push "gab"

64 @resultsFileName = "gabriel"

65 puts "adding gabriel's special attributes"

66 end

67
68 # searching for option --out-file=results

69 elsif option[0,11] == "--out-file=" or option[0..2] == "-f=" then

70 _start = (0..option.size - 1).find {|x| option[x] == "="[0]} + 1

71 @resultsFileName = option[_start..option.size]

72 puts "setting results file name to " + @resultsFileName

73
74 # searching for option --position=a,1,b,2,c,3

75 elsif option[0,11] == "--position=" or option[0..2] == "-p=" then

76 _start = (0..option.size - 1).find {|x| option[x] == "="[0]} + 1

77 @position = option[_start..option.size].split(",")

78 @position.push ""

79
80 # searching for option --numeric or -n

81 elsif option[0,9] == "--numeric" or option[0..1] == "-n" then

82 @numeric = true

83 puts "setting numeric on"

84 end

85 end

86 end

87
88 def push(name)

89 case name

90 when "bain"

91 @attributes.push(Attr_File_distance_WK_BK, Attr_Rank_distance_WK_BK,

92 Attr_File_distance_WR_BK, Attr_Rank_distance_WR_BK,

93 Attr_File_distance_WK_WR, Attr_Rank_distance_WK_WR,

94 Attr_WK_between_WR_BK, Attr_WR_between_WK_BK,

95 Attr_BK_between_WK_WR, Attr_Adjacent_WK_WR,

96 Attr_Adjacent_WK_BK, Attr_Adjacent_WR_BK)

97 when "morales"

98 @attributes.push(Attr_Adjacent_WR_BK, Attr_WR_between_WK_BK,

99 Attr_K_almost_in_opp, Attr_L_patt, Attr_WK_between_WR_BK)

100 when "sadikov"

101 @attributes.push(Attr_Distance_WK_BK, Attr_Distance_WR_BK,

102 Attr_K_in_opp, Attr_Distance_BK_ce, Attr_BK_free_space,

103 Attr_WR_between_WK_BK, Attr_WR_divides_K_toward_ce,

104 Attr_WR_holds_BK_toward_ce, Attr_K_in_opp_toward_ce,

105 Attr_WR_squeeze_BK, Attr_Distance_BK_co, Attr_Distance_WK_cr)

106 when "torres"
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107 @attributes.push(Attr_Vertical_distance_WR_BK,

108 Attr_Same_zone_WR_BK_1, Attr_Vertical_distance_WK_BK,

109 Attr_Horizontal_distance_WK_BK)

110 when "gab"

111 @attributes.push(Attr_Distance_WR_BK, Attr_Distance_WK_WR,

112 Attr_Distance_WK_BK, Attr_Distance_BK_co,

113 Attr_Oriented_distance_WR_BK, Attr_BK_true_free_space,

114 Attr_BK_free_space, Attr_K_in_opp_toward_ce, Attr_Distance_WK_cr,

115 Attr_Distance_WK_co, Attr_K_almost_in_opp)

116 when "debug"

117 @attributes.push(Attr_WK_file, Attr_WK_rank, Attr_WR_file,

118 Attr_WR_rank, Attr_BK_file, Attr_BK_rank)

119 else

120 raise "no valable attributes group"

121 end

122 @attributes.uniq!

123 end

124 end

Utilities

1 def smallerThan(*int)

2 cond = true

3 if int.length > 1 then

4 for i in 0.. int.length - 2 do

5 cond = (cond and int[i] < int[i+1])

6 end

7 end

8 return cond

9 end

10
11 def printTime(timeInS)

12 if timeInS < 60.0

13 return timeInS.to_s + "s"

14 elsif timeInS < 3600.0

15 timeM = (timeInS / 60.0).floor

16 return timeM.to_s + "m" + (timeInS - 60.0 * timeM).to_s + "s"

17 elsif timeInS < 86400.0

18 timeH = (timeInS / 3600.0).floor

19 timeM = ((timeInS - 3600.0 * timeH) / 60.0).floor

20 return timeH.to_s + "h" + timeM.to_s + "m" +

21 (timeInS - 3600.0 * timeH - 60.0 * timeM).to_s + "s"

22 end

23 end

24
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Another Main File to test the Attributes

1 #!/usr/bin/ruby

2
3 require "utils.rb"

4 require "position.rb"

5 require "attributes.rb"

6 require "attribute.rb"

7 require "attributetype.rb"

8 require "myhash.rb"

9 require "options.rb"

10
11 position = Position.new

12 attributes = Attributes.new

13 options = Options.new

14 options.read ARGV

15
16 attributes.add options.attributes

17
18 if options.position.empty? then

19 puts "error: no position given to test attributes"

20 exit

21 else

22 position.readArray options.position

23 i = 0

24 attributes.summary(position).each { |a| print i, "-", a,"\n"; i+= 1}

25 puts

26 end

27
28
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