
Department of Computer Science

Darmstadt University of Technology

An Intelligent Artificial Player for the

Game of Risk

Diploma Thesis of Michael Wolf

Darmstadt, 2005

2

Für Carla

3

Abstract

Risk is a classical strategy board game and played in many countries around the world

since 1959. Despite its popularity, the game lacks scientific attention and neither its

complexity nor suitable artificial intelligence techniques are known. In this work a the-

oretical analysis of the complexity of Risk is presented. This analysis is completed by a

test run measuring the complexities encountered in real games.

The design and implementation of a basic artificial player utilising a linear evaluation

function with handcrafted features is presented. The deficits of this basic player are

discussed and an enhanced player is introduced. This enhanced version of the player

uses high-level goals and plans to overcome the drawbacks of the first one. It is shown

that this enhanced player is capable of regularly defeating the average human novice

and able to beat an experienced human player.

To be able to let the optimal feature weights of the evaluation function be determined

automatically, temporal difference learning is applied to the enhanced player. Even

though the increase in playing strength is only moderate, TD learning seems to be a

promising technique for Risk.

The results of this work imply the presumption that dynamic, player-defined high-level

goals in combination with temporal difference learning may yield a very strong artificial

player.

Keywords: Risk, Artificial Intelligence, Game Playing, Linear Evaluation Function,

Machine Learning, Reinforcement Learning, Temporal Difference Learning.

4

Zusammenfassung

Risiko ist ein klassisches Strategiespiel, das seit 1959 in vielen Ländern auf der Welt

gespielt wird. Trotz seiner Beliebtheit fehlt dem Spiel die Aufmerksamkeit der Wis-

senschaft. Es ist weder die Komplexität von Risiko bekannt, noch wurden erfolgver-

sprechende Techniken der Künstlichen Intelligenz veröffentlicht.

In dieser Arbeit wird eine Analyse der Komplexität von Risiko vorgestellt. Ein theo-

retischer Ansatz wird von einer Messreihe vervollständigt, bei der die Komplexität von

realen Spielen gemessen wurde.

Das Design und die Implementierung eines einfachen künstlichen Spielers werden er-

läutert. Dieser einfache Spieler verwendet eine lineare Evaluierungsfunktion mit handge-

fertigten Features. Die Defizite dieses Spielers werden diskutiert und ein verbesserter

Spieler vorgestellt. Diese verbesserte Version des Spielers verwendet hochstufige Zielvor-

gaben sowie Pläne um die Nachteile des ersten Spielers zu beheben. Es wird gezeigt, dass

dieser verbesserter Spieler beim Spiel gegen menschliche Spieler in der Lage ist Anfänger

regelmäßig zu besiegen es aber auch schafft gegen fortgeschrittene Spieler zu gewinnnen.

Um die optimalen Feature Gewichte der Evaluierungsfunktion automatisch bestim-

men zu können, wird Temporal Difference Lernen verwendet. Auch wenn der Zugewinn

an Spielstärke dadurch nur moderat war, so scheint TD Lernen doch eine erfolgver-

sprechende Technik für Risiko zu sein.

Die Ergebnisse dieser Arbeit legen die Annahme nahe, dass die Kombination von

dynamischen, Spieler-definierbaren hochstufigen Zielen mit Temporal Difference Lernen

einen sehr starken künstlichen Spieler hervorbringen wird.

Stichwörter: Risiko, Künstliche Intelligenz, Spieltheorie, Lineare Evaluierungsfunk-

tion, Machinelles Lernen, Reinforcement Learning, Temporal Difference Lernen.

5

Contents

1. Introduction 18

2. Risk - The Game 20

2.1. Overview . 20

2.2. Equipment . 20

2.2.1. Gameboard . 20

2.2.2. Risk Cards . 20

2.3. Rules . 21

2.3.1. Object of the Game . 21

2.3.2. Game Setup . 22

2.3.3. Playing the Game . 22

2.3.4. Trading in Risk Cards . 22

2.3.5. Placing new Armies . 23

2.3.6. Attacking . 25

2.3.7. Fortifying the Position . 28

2.4. Probabilities . 28

2.5. Complexity . 32

2.5.1. State-Space Complexity . 34

2.5.2. Branching Factor . 36

2.5.3. Game-Tree Complexity . 40

2.5.4. Comparison with Classic Games 40

2.5.5. Adaptions of the Risk Framework 41

2.6. Existing Implementations . 42

6

Contents

3. The Risk Framework 43

3.1. Overview . 43

3.2. Game Manager . 43

3.3. Gameboard . 44

3.4. Rules . 45

3.5. Map . 46

3.6. Player . 47

3.6.1. Random Player . 49

3.6.2. Human Text Player . 49

3.7. Battle Computer . 49

4. Basic Evaluation Player 52

4.1. Overview . 52

4.2. Useful Functions . 53

4.2.1. Continent Rating . 53

4.3. Decision Making Process . 54

4.3.1. chooseBest . 57

4.3.2. Evaluators . 58

4.4. Evaluation Function . 62

4.5. Features . 63

4.5.1. Armies Feature . 64

4.5.2. Best Enemy Feature . 64

4.5.3. Continent Safety Feature . 64

4.5.4. Continent Threat Feature . 64

4.5.5. Distance to Frontier Feature . 65

4.5.6. Enemy Estimated Reinforcements Feature 65

4.5.7. Enemy Occupied Continents Feature 66

4.5.8. Hinterland Feature . 66

4.5.9. Maximum Threat Feature . 66

4.5.10. More Than One Army Feature . 66

4.5.11. Occupied Territories Feature . 67

4.5.12. Own Estimated Reinforcements Feature 67

4.5.13. Own Occupied Continents Feature 67

4.5.14. Own Occupied Risk Card Territories Feature 67

7

Contents

4.5.15. Risk Cards Feature . 68

4.6. Trade Evaluation Function . 68

4.7. Trade-Features . 68

4.7.1. Occupied Territories Trade-Feature 68

4.7.2. Unoccupied Territories Trade-Feature 69

4.7.3. Trade Value Trade-Feature . 69

5. Enhanced Evaluation Player 70

5.1. Drawbacks of the Basic Evaluation Player 70

5.2. Target Continent . 71

5.2.1. Continent Army Domination Feature 72

5.2.2. Continent Domination Feature . 72

5.3. Plans . 73

5.3.1. Activating Plans . 79

5.3.2. Player Elemination Plan . 81

5.3.3. Australia Plan . 83

5.3.4. Continent Conquering Plan . 83

5.4. Reinforcement Distribution . 84

6. Learning Player 90

6.1. Temporal-Difference Learning . 90

6.1.1. Introduction . 90

6.1.2. The TD(Lambda) Learning Algorithm 90

6.1.3. TD Learning in Risk . 91

6.2. Implementation of the Learning Process 93

7. Experiments 94

7.1. Complexity Measurement . 94

7.1.1. Methods . 94

7.1.2. Results . 95

7.2. Rating System . 97

7.2.1. Benchmark Player . 98

7.2.2. Rating a Player . 98

7.3. Enhanced Evaluation Player . 98

8

Contents

7.3.1. Methods . 98

7.3.2. Results . 99

7.4. TD Learning . 99

7.4.1. Methods . 101

7.4.2. Results . 101

7.5. Human Opponents . 103

7.5.1. Methods . 103

7.5.2. Results . 103

8. Conclusion 106

A. Complexity Measurement Histograms 108

B. Detailed Learning Curves 115

C. Feature Weight Changes 120

9

List of Figures

2.1. The Actual Version of the Risk Board Game 21

2.2. Game Flow of a Game Turn . 23

2.3. Game Flow of the Trading in Risk Cards Game Phase 25

2.4. Game Flow of the Placing new Armies Game Phase 26

2.5. Game Flow of the Attacking Game Phase 29

2.6. Game Flow of the Fortifying the Position Game Phase 30

2.7. Distribution of the Expanded Turn-Tree Complexities 38

3.1. The Core Architecture of the Risk Framework 44

3.2. Example Battle Tree . 50

4.1. The Core Architecture of the Basic Evaluation Player 53

4.2. Interactions of the Decision-Making Process of the Evaluation Player . . . 56

5.1. The Core Architecture of the Enhanced Evaluation Player 71

5.2. Updating of an Example Attack Tree . 78

5.3. The Plan Activation Process . 82

7.1. Distribution of the Number of Occupied Territories in the Place Armies

decision . 97

7.2. Summary of the Player Ratings of the BEP Enhancements 100

7.3. Graphs of the alpha functions of the different learning players 102

7.4. Average Player Ratings of the Various Learning Players 104

7.5. Comparison of Human Players with the Benchmark Player 105

A.1. Distribution of the valid actions of the Place Armies decisions as imple-

mented in the Risk Framework . 108

10

List of Figures

A.2. Distribution of the occurrences of the Trade decision 109

A.3. Distribution of the valid actions of the Trade decisions 109

A.4. Distribution of the occurrences of the Place Armies decision 110

A.5. Distribution of the valid actions of the Place Armies decisions 110

A.6. Distribution of the Number of Reinforcement Armies in the Place Armies

decision . 111

A.7. Distribution of the Number of Occupied Territories in the Place Armies

decision . 111

A.8. Distribution of the occurrences of the Attack decision 112

A.9. Distribution of the valid actions of the Attack decisions 112

A.10.Distribution of the occurrences of the Combat Move decision 113

A.11.Distribution of the valid actions of the Combat Move decisions 113

A.12.Distribution of the valid actions of the Fortify Position decisions 114

B.1. Player Rating of the Learning Player Red 115

B.2. Player Rating of the Learning Player Black 118

B.3. Player Rating of the Learning Player Yellow 118

B.4. Player Rating of the Learning Player Blue 119

C.1. Development of the Armies Feature . 120

C.2. Development of the Best Enemy Feature 121

C.3. Development of the Continent Safety Feature 121

C.4. Development of the Continent Threat Feature 122

C.5. Development of the Distance to Frontier Feature 122

C.6. Development of the Enemy Estimated Reinforcement Feature 123

C.7. Development of the Enemy Occupied Continents Feature 123

C.8. Development of the Hinterland Feature . 124

C.9. Development of the Maximum Threat Feature 124

C.10.Development of the More Than One Army Feature 125

C.11.Development of the Occupied Territories Feature 125

C.12.Development of the Own Estimated Reinforcement Feature 126

C.13.Development of the Own Occupied Continents Feature 126

C.14.Development of the Own Occupied Risk Card Territories Feature 127

C.15.Development of the Risk Cards Feature 127

11

List of Figures

C.16.Development of the Continent Army Domination Feature 128

C.17.Development of the Continent Domination Feature 128

12

List of Tables

2.1. Army Bonuses for Valid Sets of Risk Cards 24

2.2. Army Bonuses for Completely Occupied Continents 26

2.3. Probabilities of Attack Results in Risk . 31

2.4. Characteristics of the Distribution of the Expanded Turn-Tree Complexities 37

2.5. Average Game-Tree Complexity for Different Average Branching Factors . 40

2.6. Complexities of Classic Boardgames and Risk 41

4.1. Characteristics and Ratings for the Continents 55

5.1. Computation Time Demand of Different Reinforcement Distribution Pro-

cedures . 89

7.1. Settings for the Risk Complexity Measurement 95

7.2. Frequencies of Risk Decisions . 95

7.3. Valid Actions of Risk Decisions . 96

7.4. Durations of Risk Games . 96

7.5. Summary of the Player Ratings of the BEP Enhancements 100

7.6. Players Participating in the Training Games 101

7.7. Average Player Ratings of the Various Learning Players 103

7.8. Player Ratings of Several Human Players 105

B.1. Player Ratings of the Learning Player Red 116

B.2. Player Ratings of the Learning Player Black 116

B.3. Player Ratings of the Learning Player Yellow 117

B.4. Player Ratings of the Learning Player Blue 117

13

List of Listings

3.1. The Main Loop of the Risk Framework . 45

3.2. The processTrade Method of the Abstract Class Player 45

3.3. The processReinforcements Method of the Abstract Class Player 46

3.4. The processAttack Method of the Abstract Class Player 46

3.5. The processMove Method of the Abstract Class Player 47

4.1. Decision-Making Methods of the Evaluation Player 55

4.2. makeAttack Method of the Evaluation Player 56

4.3. The chooseBest Method of the Evaluation Player 57

4.4. The evaluate Method of an Evaluator . 58

4.5. The evaluate Method of the Battle Evaluator 61

5.1. The initialize Method of Class Plan . 74

5.2. The chooseStartTerritory Method of Class Plan 74

5.3. The chooseNextTerritory Method of Class Plan 75

5.4. The addOwnTerritory Method of Class Plan 76

5.5. The Standard Distribution Procedure . 85

5.6. The Standard-Max Distribution Procedure 85

5.7. The Max-Placement Method . 86

5.8. The Half-Quarter-One-Max Distribution Procedure 87

5.9. The Quarter-Quarter-One-Max Distribution Procedure 88

5.10. The Quarter-One-Max Distribution Procedure 88

14

Nomenclature

25P 25 Percentile.

75P 75 Percentile.

ABF Average Branching Factor.

ACR Adjusted Continent Rating.

AGT Average number of game turns of a single game.

AGTC Average Game-Tree Complexity.

AI Artificial Intelligence.

AP Actual Player.

AP Australia Plan.

AT Attack Tree.

AtPa Attack Path.

Attack Path A connected directed graph representing a series of battles. The

nodes represent territories while the edges represent battles. Each

node has to have a degree of 2.

Attack Tree A tree representing a series of battles. The nodes represent ter-

ritories while the edges represent battles from the parent nodes

against the child nodes.

Battle A series of attacks from one territory against another, continuing

until either the attacked territory is captured or the attacker does

not have enough armies left occupying the attacking territory to

continue attacking.

Battle Tree A tree where each node represents a battle and the edges repre-

sent attack outcomes.

Benchmark Player . . The enhanced evaluation player with the Standard-Max rein-

forcement ditribution procedure.

15

List of Listings

BEP Basic Evaluation Player.

BF Branching Factor.

BP Benchmark Player.

BT Battle Tree.

CCP Continent Conquering Plan.

Combat Move The additional movement of armies from the attacking territory

to the attacked territory occurring in case an attack leads to the

occupation of the attacked territory.

CR Continent Rating.

Decision-Type The type of a decision, i.e. Attack decision, in contrast to a

concrete decision occuring during a game.

EBR Expected Battle Result.

ED Expected battle result under the prerequisite of losing the battle.

EEP Enhanced Evaluation Player.

Enemy Territory A territory not occupied by the actual player.

EP Evaluation Player.

ER Expected rating of a battle1.

EV Battle Result.

EV Expected battle result under the prerequisite of winning the bat-

tle.

First Player The player who starts the game.

Fortified Territory . . A territory which is occupied by more than one army.

Friendly Territory . . . A territory occupied by the actual player.

Game Round A game round starts with the beginning of the game turn of the

first player and ends with the end of the game turn prior to the

following game turn of the first player.

Game Turn A game turn of a player starts when the last player’s turn has

ended and ends when he has fortified his position.

Hinterland Territory A territory which is not adjacent to any enemy territory.

ITF Initial Test Factor.

MBF Maximal Branching Factor.

1Note that battles are not rated directly by the evaluation function. Rather, one or more game states

are created which are then rated by the evaluation function.

16

List of Listings

MSE Mean-Squared Error.

PEP Player Elimination Plan.

PF Plan Factor.

PR Player Rating.

RD Reinforcement Distribution.

RF Risk Factor.

RFW Risk Framework.

SC Success Chance.

Success Chance The probability that a plan succeeds, i.e. all territories of the

target list will be occupied.

TC Target Continent.

TD Temporal-Difference.

Victory Probability . The probability that a battle is victorious, i.e. the target territory

will be occupied.

VP Victory Probability.

17

1. Introduction

Risk is a popular board game played in many countries all around the globe. Despite

its popularity and the various computer implementations of the game, there exists no

scientific work discussing the techniques suitable for building a strong artificial Risk

player. There also exists no article presenting computer implementations of the game.

This lack of scientific attention to such a widely known game is one reason why I have

chosen to build an artificial player for Risk. A further reason is that the game is different

from the classic games usually addressed in the field of scientific computer game playing

research, thus making the creation of an artificial player for Risk more challenging and

interesting.

In Risk, the player has to make several decisions in a single game turn, including the

question whether to make another move or not. The number of players ranges from two

to six, further differentiating Risk from classic two-player boardgames.

The game is presented in detail in Chapter 2, including the specification of the rules

I used in my implementation of the game and some theoretical work on the complexity

of Risk.

Chapters 3 to 6 present the practical part of my thesis, focusing on the design and ar-

chitecture of the implementation. They also address the problems I encountered in the

course of my work and the measures I took to solve them. To be able to start imple-

menting a Risk player at all, a framework has to be built that contains the rules, the

gameboard, a game manager and an interface for the players. It allows Risk to be played

and is the basis for all further work. This framework is presented in Chapter 3.

The first player, the basic evaluation player is introduced in Chapter 4. It chooses its

moves by utilising a linear evaluation function in combination with handcrafted features.

Chapter 5 analyses several deficits of the basic evaluation player and introduces the en-

hanced evaluation player, which is built to overcome these flaws.

The last part of my implementation applies the technique of TD Learning to the en-

18

1. Introduction

hanced evaluation player. This is done to be able to automatically determine the optimal

feature weights of the evaluation function. This learning player is introduced in Chap-

ter 6.

To provide reusability and flexibility the software is designed in a modular way. This

allows to easily add new players, rule variants and game maps. The complete code is

written in Java.

To be able to rate the playing skill of the players I performed several experiments setting

the playing strength of the different players in relation to each other and several human

players. I also measured the complexity of the games played in the Risk framework. The

methods and results of these experiments are presented in detail in Chapter 7.

Finally, Chapter 8 offers a summary and discussion of this work.

19

2. Risk - The Game

2.1. Overview

Risk is a classical strategy board game for 2 to 6 players published by Parker Brothers

in 1959. The game was originally invented in 1957 by Albert Lamorisse and called La

Conquete du Monde. After having been adapted to satisfy “american taste”, it was

published by Parker Brothers under the name of Risk Continental Game [Has, 1999]. In

1996 the game was renamed into Risk: The Game of Global Domination to better suit

Parker Brothers’ view of current world affairs. There are different version of the rules in

various international editions of the game as well as updates to the original U.S. rules

in 1963, 1965, 1980, 1993 and 1999. Furthermore there are two other games in the Risk

series: Risk 2210 A.D. and Risk The Lord of the Rings. Since 1991 the rights to the

game are owned by Hasbro Inc.

2.2. Equipment

2.2.1. Gameboard

The gameboard that I used in my work is the original Risk gameboard and consists of

a map of the world divided into 6 continents and 42 territories.

Figure 2.1 shows a picture of the actual version of the Risk board game.

2.2.2. Risk Cards

For each of the territories there exists a Risk Card showing either an Artillery symbol,

Cavalry symbol or an Infantry symbol. In addition to these cards there exist 2 Risk

Cards, called Wild Cards, showing all three symbols at once. The Wild Cards are not

linked to any territory.

20

2. Risk - The Game

Figure 2.1.: The Actual Version of the Risk Board Game [Has, 2004].

2.3. Rules

There exist many different official rule variants for the Risk board game [Lyne et al.,

2004]. Not only have the rules been changed over the course of time, but there are also

differences depending on the country of publication.

The rules that I used in my work are close to the German Risiko de Luxe rules [Has].

2.3.1. Object of the Game

The U.S. rules for the 1999 Risk 40th anniversary Collector’s Edition [Has, 1999] sum-

marise the object of the game as follows:

21

2. Risk - The Game

To conquer the world by occupying every territory on the board, thus elimi-

nating all your opponents.

2.3.2. Game Setup

At the beginning of the game the territories are distributed randomly and equally among

the players. All territories are distributed, even though that may result in some players

owning one territory more than the other players. Each player places one of his armies on

each of his territories. The Risk Cards are shuffled and the stack is placed upside-down

next to the gameboard. The starting player is determined randomly.

2.3.3. Playing the Game

Risk is a turn based game where each player can perform his actions only during his

turn. The game begins with the turn of the starting player. After he has finished his

moves the next player’s turn begins. If all players have completed their turns the first

game round is over and the next one starts with the starting payer. This is repeated

until all players except for one have been eliminated.1 The remaining player has won

the game.

During his turn a player can perform actions corresponding to the sequence:

Trading in Risk Cards - Placing new Armies - Attacking - Fortifying the Position.

Figure 2.2 shows an activity diagram of a game turn in Risk.

2.3.4. Trading in Risk Cards

A player can trade in three of his Risk Cards to gain additional reinforcement armies.

The number of Risk Cards currently in his possession determine whether he is allowed

to make a trade or whether he is forced to make a trade. If he has less then five Risk

Cards in his possession he has a choice, otherwise he has to trade in a tradeable set of

his Risk Cards.

A set of Risk Cards is tradeable if it contains three Risk Cards either each showing

the same symbol or each showing a different symbol. Wild Cards are treated like regular

Risk Cards showing a symbol of the player’s choice.

1A player is eliminated if he does not own any territory anymore.

22

2. Risk - The Game

 Trading in Risk Cards

 Fortifying the Position

 Attacking

 Placing new Armies

Figure 2.2.: Game Flow of a Game Turn

Trading in Risk Cards allows the player to place an extra set of new armies. As shown

in table 2.1 the army bonus is determined by the symbols on the Risk Cards of the traded

set. In addition to these armies, which are placed during the Place new Armies game

phase, the player gets two new armies for each Risk Card of the set, whose corresponding

territory is occupied by him. These new armies are placed immediately on the territory

corresponding to the Risk Card.

Figure 2.3 shows an activity diagram of the Trading in Risk Cards game phase.

2.3.5. Placing new Armies

The number of armies that have to be reinforced is based on the number of territories the

player occupies, the continents he controls and the army bonus from trading Risk Cards.

23

2. Risk - The Game

Symbol 1 Symbol 2 Symbol 3 Army Bonus

Infantry Infantry Infantry 4

Cavalry Cavalry Cavalry 6

Artillery Artillery Artillery 8

Infantry Cavalry Artillery 10

Table 2.1.: Army Bonuses for Valid Sets of Risk Cards

The total number of reinforcements is the sum of the reinforcements from territories,

continents and Risk Cards.

Total Reinforcements = Territory Reinforcements +

Continent Reinforcements +

Trading Reinforcements

Territory Reinforcements For every three territories a player occupies, he has to rein-

force one army. These reinforcements have a minimum of three, so that each player

will at least get three reinforcement armies regardless of the number of territories

he occupies.

Territory Reinforcements = max
(⌊

Occupied Territories
3

⌋
, 3
)

Continent Reinforcements For each continent which is completely occupied by the

player2, he receives additional reinforcement armies.

Table 2.2 shows the reinforcements for the continents of the original Risk game-

board.

Trading Reinforcements If the player has traded in a set of Risk Cards at the beginning

of his turn, he gets the army bonus listed in table 2.1.

The reinforcement armies have to be placed on territories already occupied by the player.

The player is not forced to place all of his reinforcements on the same territory; he may,

2A continent is completely occupied by a player if that player occupies every territory of the continent.

24

2. Risk - The Game

 Perform Trade

Risk Cards > 4

No
Yes

Risk Cards < 3

Else

Make Trade?

Figure 2.3.: Game Flow of the Trading in Risk Cards Game Phase

on the contrary, place each reinforcement army independently.

Figure 2.4 shows an activity diagram of the Placing new Armies game phase.

2.3.6. Attacking

A player may attack a territory which is occupied by another player from an adjacent

territory occupied by him. The territory from where the attack is launched has to be

occupied by a minimum of two armies. The attacking player chooses the number of

attacking armies, which has to be a natural number of less than four. It is also limited

by the number of armies occupying the territory from where the attack is launched minus

one.

Attacking Armies ∈ [1,min(Armies in Attacking Territory− 1, 3)]

25

2. Risk - The Game

Continent Army Bonus

Australia 2

South America 2

Africa 3

Europe 5

North America 5

Asia 7

Table 2.2.: Army Bonuses for Completely Occupied Continents

 Reinforcements :=
 Territory Reinforcements +

 Continent Reinforcements +
 Trading Reinforcements

 Perform Placement of new Armies

Figure 2.4.: Game Flow of the Placing new Armies Game Phase

The defending player has to choose3 the number of defending armies, which has to be a

natural number of less than three. It is also limited by the number of armies occupying

the attacked territory.

Defending Armies ∈ [1,min(Armies in Defending Territory, 2)]

3In some rule variants the defending player is allowed to choose the number of defending armies after

the attacking player has rolled the dice for the attacking armies. It is important to note that in

my implementation this is not the case. All the probabilities presented in Section 2.4 as well as

the predication that the defender should always choose the maximum possible number of defending

armies are based on this fact.

26

2. Risk - The Game

In the Risk framework the decision to choose the number of defending armies is omitted.

The maximum possible number of defending armies is automatically chosen.

The battle is conducted by rolling a six-sided die for each participating army. The

highest result of the attacking armies is compared to the highest result of the defending

armies. If the attackers’ result is higher the defender loses one army, otherwise the

attacker loses one. If both sides rolled at least two dice the second-highest results of

both sides are compared too, and the army losses are determined analogous. Armies

that are lost are removed from the gameboard.

The player is not limited in the number of attacks he may launch. He may not attack

at all or he might continue attacking as long as at least one of his territories occupied

by at least two armies is adjacent to a territory held by another player.

Capturing a Territory

If the defender has lost all of his armies within the defending territory, the attacking

player has captured that territory. He has to move the armies which participated in

the attack from the attacking territory to the captured territory. Additionally, he may

move more armies from the attacking territory to the captured territory4. The number

of moving armies has to be natural and is limited by the number of armies occupying

the attacking territory minus 1.

Moving Armies ∈ [Attacking Armies, Armies in Attacking Territory− 1]

If it is the first time during his current turn that the player captures a territory, he

receives a Risk Card from the Risk Card stack. The player does not have to show the

Risk Cards he holds to the other players. Therefore the players only know the number

of Risk Cards held by the other players but neither the symbols nor the corresponding

territories of these cards. If the defending player loses his last territory he is eliminated

by the attacking player.

Eliminating a Player

A player is eliminated if he does not occupy any territory anymore. If a player is

eliminated he does not participate in the game any longer. The Risk Cards he may

have owned are given to the player who captured his last territory. If the attacking
4I call such a movement a combat move.

27

2. Risk - The Game

player now has a total of more than four Risk Cards he immediately has to trade in

as many sets of Risk Cards as are necessary to reduce the number of his Risk Cards

below five. The trade and the following placement of the reinforcement armies follow

the rules of Section 2.3.4 and Section 2.3.5 respectively, with the exception that only the

reinforcements from the traded Risk Cards are placed. After placing his reinforcement

armies the attacking player continues his Attacking phase in the usual way.

Figure 2.5 shows an activity diagram of the Attacking game phase.

2.3.7. Fortifying the Position

After the player made the last attack of his current turn he may fortify his position. A

player fortifies his position by moving armies from one of his occupied territories to an

adjacent territory that is also occupied by him. The number of moving armies has to be

natural and is limited by the number of armies occupying the territory that the armies

are leaving minus 1.

Moving Armies ∈ [0, Armies in Territory of Origin− 1]

Figure 2.6 shows an activity diagram of the Fortifying the Position game phase.

2.4. Probabilities

When playing Risk it is very important to know the probabilities of the possible outcomes

of an attack or a series of attacks as well as the expectation of the army losses of the

attacker and defender. It is easy to compute that for both - attacker and defender - it is

always favourable to use the maximum possible number of armies in the attack5. More

participating armies always result in a higher victory probability and lower expected

losses. While computing these numbers for a single attack is trivial, it is very complex

to compute them for a longer series of attacks. Usually, the series of attacks most

interesting to players are the continuing attacks from one territory against another,

until either the territory is captured or the attacker does not have enough armies left

occupying the attacking territory to continue attacking6. Players need to know the

5This is only true for the specific Rules presented here. There are rule variants where this predication

does not hold.
6I call such a series of attacks a battle.

28

2. Risk - The Game

 Perform Attack

Yes

Make Attack?

 Take Eliminated Player's Risk Cards

 Perform Combat Move

Territory Occupied?

Yes
No

Player Eliminated?

Yes
No

Risk Cards > 4

Else

 Perform Trade

 Reinforcements := Trading Reinforcements

 Perform Placement of new Armies

No

Figure 2.5.: Game Flow of the Attacking Game Phase

29

2. Risk - The Game

 Perform Fortifying the Position

No
Yes

Fortify the Position?

Figure 2.6.: Game Flow of the Fortifying the Position Game Phase

probability of capturing an enemy territory and the expectation of their army losses

achieving this. Tan [Tan, 1997] first addressed this topic. In the case of rolling multiple

dice for the attacker or defender, he did treat the dice independently. But because the

results of the multiple dice rolls are ordered they are not independent anymore.

This issue was correctly addressed by Blatt and Osborne [Blatt, 2002, Osborne, 2003]

who both showed a way of computing the victory probability and expected losses of

a battle using Markov Chains. They compute a matrix S (Osborne calls the matrix

F) which in turn is used to compute the probability of capturing a territory and the

expected losses thereby.

The time complexity to compute these values is O(columns(S)) whereas the memory

requirement for the matrix S is O(columns(S)× rows(S)).

Let a denote the number of attacking armies, d the number of defending armies and S

the minimal matrix needed to compute the victory probability P (a, d) and the expected

losses, then the number of rows in S is

rows(S) = a× d

and the number of columns is

columns(S) = a + d

30

2. Risk - The Game

Armies Result

A D A Loses 2 A Loses 1 Both Lose 1 D Loses 1 D Loses 2

1 1 — 0.583 — 0.417 —

1 2 — 0.745 — 0.255 —

2 1 — 0.421 — 0.579 —

2 2 0.448 — 0.324 — 0.228

3 1 — 0.340 — 0.660 —

3 2 0.293 — 0.336 — 0.371

Table 2.3.: Probabilities of Attack Results in Risk [Lyne et al., 2004]. A and D are

abbrevations for Attacker and Defender respectively.

Considering the number of armies participating in battles in the games played in the Risk

framework a and d should at least number 100 armies each. Assuming 8 bytes of memory

requirement for each entry in S7 the memory requirement of S, can be computed.

Memory(S) = rows(S)× columns(S)×memory(number)

= (100× 100)× (100 + 100)× 8 bytes

= 10000× 200× 8 bytes

= 16 Megabytes

With that amount of memory needed to compute only a limited number of battle results,

this approach is of no practical use. Instead, I chose to compute the relevant information

(victory probability, expected losses in case attacker wins and expected losses in case

defender wins) recursively. To reuse the results and save computation time I dynami-

cally build a table storing the results of each computed battle situation. For detailed

information see Section 3.7

Table 2.3 shows the different outcomes of single attacks and their corresponding proba-

bilities.

7An entry in S consists of a floating-point number

31

2. Risk - The Game

2.5. Complexity

The complexity of a game can be measured by the state-space complexity and the game-

tree complexity. The state-space complexity is a measurement of the number of different

game states possible in a game. The game-tree complexity, on the other hand, is a

measurement of the complexity of the decisions occurring in a game combined with the

duration of the game measured in game turns. The game-tree complexity can be defined

as [Wikipedia, 2004]:

The game-tree complexity is the number of possible different ways the game

can be played

The complexity of the decisions can be expressed in the branching factor.

In contrast to many other games, a game turn in Risk consists of a sequence of several

different decisions. Even the number of decisions per game turn is neither fixed nor

deterministic.

The following decisions occur while playing Risk:

Trade Cards In the trade cards decision the player is required to choose a tradeable set

out of the Risk Cards in his possesion. He can also decide not to perform any trade

if he owns less than five Risk Cards. If the player has less than three Risk Cards

in his possesion, he cannot possibly have any tradeable set of Risk Cards and his

only valid action would be not to trade. Therefore the decision occurs only if the

player owns more than two Risk Cards.

Let P denote the number of players participating in the game, then

Occurrence per Turn ∈
[
0, P + 1

]
Let tradeOptions(Set cardSet) be the function that returns the number of trade-

able subsets of the set of Risk Cards cardSet and CScardNumber denote the set

containing all sets of Risk Cards with cardNumber Risk Cards, then

Actions per Occurrence ∈
[
1, max

cs∈CS10

(
tradeOptions(cs)

)
+ 1
]

Place Armies In the place new armies decision the player is given the number of his

reinforcement armies and is required to distribute these armies among his territo-

ries.

32

2. Risk - The Game

Let P denote the number of players participating in the game, then

Occurrence per Turn ∈
[
1, P + 1

]
and

Actions per Occurrence ∈
[
1,

(
41 + 35 + min (20, (P − 2)× 20)− 1

35 + min (20, (P − 2)× 20)

)]
∈
[
1,

(
75 + min (20, (P − 2)× 20)
35 + min (20, (P − 2)× 20)

)]
Attack In the attack decision the player is required to choose a valid attack action or

to finish his Attacking game phase. An attack action consists of the attacking

territory, the target territory and the number of attacking armies.

It is easy to see that

Occurrence per Turn ∈ [1,∞)

Let attackOptions(GameState state) be the function that returns the number of

valid (attacking territory, target territory) pairs possible in the game state state.

Let S denote the set containing all game states with two participating players and

four armies occupying each territory, then

Actions per Occurrence ∈
[
0,max

s∈S

(
attackOptions(s)

)
× 3 + 1

]
Combat Move In the combat move decision the player is required to choose the number

of additional armies moving from the attacking territory to the newly conquered

territory. The decision occurs only if the player is able to move at least a single

army.

It is easy to see that

Occurrence per Turn ∈ [0,∞)

and

Actions per Occurrence ∈ [2,∞)

Fortify Position In the fortify position decision the player is required to choose the

number of armies moving from a friendly territory to an adjacent friendly territory.

It is easy to see that

Occurrence per Turn = 1

33

2. Risk - The Game

and

Actions per Occurrence ∈ [1,∞)

As these theoretical values for the decision occurrences and valid actions are no help in

getting an impression of the average complexity of a game of Risk, I measured the values

occurring in a series of test games. Section 7.1 presents both the methods and results of

the experiment in detail.

2.5.1. State-Space Complexity

The state-space of a game is the set of all legal board states. It is easy to see that the

state-space of Risk is infinite.

Theorem:

The state-space of Risk is infinite.

Proof:

There is no limit on the number of armies in the game. Each turn a player has to

reinforce at least three armies while no attack - the only action that removes armies

from the gameboard - is enforced. As there is no limit on the number of armies in the

game, the maximal possible number of armies occupying a single territory is unlimited

too8.

Let s be an arbitrary state, t an arbitrary territory and sx the state that arises when

placing x armies in state s on territory t, then all states sn, n ∈ N are valid game states.

The states are also distinct, because in each one a different number of armies is occupying

territory t. We can deduce, therefore, that the state-space of Risk is (countably) infinite.

In practice, there are rarely more than 1,000 armies on the gameboard in a game played

in the Risk framework9. It is, therefore, possible to calculate the size of a limited state-

space still big enough to be sufficient for almost all games played in the Risk framework.

For simplicity’s sake I completely ignored the Risk Card distribution among the players.

Let M denote the maximum number of armies on the gameboard, T the number of

8Assuming the number of territories is finite - which is naturally given in any playable Risk map
9The number is based on the results of the complexity measurement test run presented in Section 7.1.

I have done no statistical analysis though, the number is solely based on my personal observation.

34

2. Risk - The Game

territories on the map and P the number of players participating in the game, then

using the formula10

Game States(M,P) = Army Distribution× Territory Distribution

=
M∑

A=T

(
T + (A− T)− 1

(A− T)

)
×
(

P + T − 1
T

)

=
M∑

A=T

(
A− 1
A− T

)
×
(

P + T − 1
T

)

we can calculate the size of the reduced state-space with a maximum of 1,000 armies on

the gameboard and four players participating in the game11.

Game States(1, 000, 4) =
1,000∑
A=42

(
A− 1
A− 42

)
×
(

45
42

)

=
1,000∑
A=42

(A− 1)!
((A− 1)− (A− 42))!× (A− 42)!

× 45!
(45− 42)!× 42!

=
1,000∑
A=42

(A− 1)!
(42− 1)!× (A− 42)!

× 45!
3!× 42!

= 2.972× 1074 × 14, 190

= 4.218× 1078

≈ 1078

When humans play Risk far less armies are commonly used. In my personal experience

I never observed more than 200 armies on the gameboard in any game. Using the same

10It should be noted that I also did not include the current player in the definition of a game state,

therefore reducing the state-space to the space of the possible gameboard states. Of course, a complete

game state specification would also need to encompass the distribution of the Risk Cards among the

players as well as the definition of the current player.
11Assuming the classic Risk map with T = 42 is used.

35

2. Risk - The Game

formula we can calculate the complexity of the reduced state-space with a maximum of

200 armies on the gameboard and four players participating in the game12.

Game States(200,4) =
200∑

A=42

(
A− 1
A− 42

)
×
(

45
42

)

=
1,000∑
A=42

(A− 1)!
((A− 1)− (A− 42))!× (A− 42)!

× 45!
(45− 42)!× 42!

=
200∑

A=42

(A− 1)!
(42− 1)!× (A− 42)!

× 45!
3!× 42!

= 3.029× 1043 × 14, 190

= 4.298× 1047

≈ 1047

The game itself supplies approximately 200 army playing pieces per player13, therefore

a maximum of 800 armies could be on the gameboard in any four player game.

2.5.2. Branching Factor

The branching factor is a measurement of the complexity of the decisions of a game.

That encompasses the frequency of the decisions per game turn as well as the number

of valid actions for the decisions. I distuinguish three different branching factors:

Branching Factor The branching factor (BF) of a game state is the number of different

game states14 that can be reached from that state by the actions of a player in a

single game turn. The branching factor of a game turn is exactly the complexity,

i.e. the number of leaf nodes, of its turn-tree. The turn-tree is a tree whose nodes

correspond with game states. The child nodes of a parent node are the nodes

corresponding to all the game states that can be reached from that node during a

decision in the game turn15. The root node is the node corresponding to the game

state at the beginning of the game turn.
12Assuming the classic Risk map with T = 42 is used.
13I counted the playing pieces in a German Risk version sold in 2005.
14If a game state can be reached by several different sequences of actions, the game state is counted for

each of them.
15It should be noted, that there may well be multiple nodes corresponding to the same game state.

36

2. Risk - The Game

Distribution Min 25P Median 75P Max Average

BF Approximation 7 106 1011 1018 1090 1085

Table 2.4.: Characteristics of the Distribution of the Expanded Turn-Tree Complexities

The branching factor of a game state is very hard to compute in Risk. Using the

data of the complexity measurement (Section 7.1) we can compute approximations

of branching factors of the game states encountered in the test run.

Let options(Decisiond) be the function that returns the number of valid game states

reachable by choosing a valid action of d16 and Dt denote the set of all decisions

occurring in game turn t, then the branching factor for t is approximated using

the formula

BFt ≈
∏

d∈Dt

options(d)

By using this formula the path through the turn-tree actually taken by the player is

expanded to form an approximation of the turn-tree. Every (virtual) path through

this approximated turn-tree has exactly the same sequence of decisions and all de-

cisions on the same level of the tree have the same number of valid actions. Of

course, the expanded part of such an approximated turn-tree does not correlate

with valid game states and actions anymore.

Figure 2.7 shows a histogram of the approximated branching factors calculated

from the data of the complexity measurement while table 2.4 offers some charac-

teristics of the distribution of the approximations.

Maximal Branching Factor The maximal branching factor (MBF) of a game is the

maximum of the branching factors of all game states.

Theorem:

The maximal branching factor of Risk is infinite.

Proof:

For each branching factor n ∈ N it is easy to construct a game state with a

branching factor n′ > n. Let s be the game state with the branching factor n. Let
16In case of a decision with deterministic actions only, i.e. all decisions in Risk except the Attack decision,

the number of reachable game states is equal to the number of valid actions.

37

2. Risk - The Game

Figure 2.7.: Distribution of the Expanded Turn-Tree Complexities

s′ be the state that is created by placing a single army on an arbitrary territory

t occupied by the actual player, which is adjacent to a territory occupied by a

different player. There exists such a territory, otherwise s would be a final state

with a branching factor of zero.

The number of game states that can be reached in the Trading in Risk Cards and

Placing new Armies game phases is equal for s and s′. In the Attacking game

phase, however, the number of game states reachable from s′ is greater than the

number of game states reachable from s. By first attacking17 an arbitrary territory

from t with a single army and losing that army, we can reach all the states reachable

by s. On the other hand, by not attacking at all, we have states unreachable from

s.

We have shown that all the states reachable from s in the players turn can also be

reached from s′, but there exist states reachable from s′ but not from s. Therefore

the branching factor n′ of s′ is greater than n.

17This attack is possible because of the definition of t.

38

2. Risk - The Game

Of course, in each finite game the maximal branching factor is also finite.

Average Branching Factor The average branching factor (ABF) of a game is the arith-

metic average of the branching factors of all game states. With no exact data on

the individual branching factors of the game states and the huge number of game

states it is not possible to compute the exact value. Because the average branching

factor is used to compute the game-tree complexity of a game, it is important to

get at least an approximation of the exact value.

I have computed two different approximations of the average branching factor:

Average-Decision The average-decision approximation makes use of the average

frequency of the decisions and the average numbers of valid actions per oc-

currence of the decisions. These values are calculated from the data of the

complexity measurement test run (Section 7.1).

Let options(Decisiond) be the function that returns the number of valid game

states reachable by choosing a valid action of d18, frequency(Decision-TypeD)

the function that returns the occurrence per turn of D and �(Data data) the

function that returns the arithmetic mean of data over the values measured

in the complexity measurement. Let DT denote the set of all decision-types

of the game, then

ABF =
∏

D∈DT

�d∈D

(
options(d)

)�(frequency(D))

The average branching factor computed with the average-decision approxi-

mation using the data of the complexity measurement is 6.133× 1033.

Average-Branching-Factor The average-branching-factor approximation uses

the approximations of the branching factors of the game states and calcu-

lates the arithmetic mean over these approximations. The approximations

themselves are computed and measured in the complexity measurement (Sec-

tion 7.1).

Let �(Data data) be the function that returns the arithmetic mean of data.

Let T denote the set of all measured game turns, then

ABF = �t∈T (BFt)
18In case of a decision with deterministic actions only, i.e. all decisions in Risk except the Attack decision,

the number of reachable game states is equal to the number of valid actions.

39

2. Risk - The Game

Average Branching Factor Game-Tree Complexity

Average-Decision Approximation 102350

Average-Branching-Factor Approximation 105945

Table 2.5.: Average Game-Tree Complexity for Different Average Branching Factors

The average branching factor computed with the average-branching-factor

approximation using the data of the complexity measurement is 2.774× 1085.

2.5.3. Game-Tree Complexity

The game-tree is a tree whose nodes correspond with game states. The child nodes of

a parent node are the nodes corresponding to all the game states that can be reached

from that node during the player’s turn19. The root node is the node corresponding to

the game state at the beginning of the game. The game-tree is used, for example, in the

widely known minimax or expectimax algorithms [Russell and Norvig, 1995].

The average game-tree complexity (AGTC) depends on the average branching factor

(ABF) and the average number of game turns (AGT)20:

AGT = ABFAGT

Table 2.5 shows the average game-tree complexities for Risk. The complexities are com-

puted using the two average branching factors presented in Section 2.5.2 and the average

number of game turns measured in the complexity measurement test run (Section 7.1).

2.5.4. Comparison with Classic Games

When comparing these results with other board game complexities, it is easy to see

that Risk is far more complex than any of the traditional boardgames. Table 2.6 shows

the state-space complexity and the game-tree complexity of several popular boardgames

summarised by Jaap van den Herik [Jaap van den Herik et al., 2002] in comparison to

Risk. Additionally the complexities of the restrained state-space Risk versions, as cal-

culated in Section 2.5.1, are shown.

19It should be noted, that there may well be multiple nodes corresponding to the same game state.
20The complexity of the game-tree is the number of leaf nodes of the tree.

40

2. Risk - The Game

Game State-Space Complexity Game-Tree Complexity

Nine Men’s Morris 1010 1050

Checkers 1018 1031

Othello 1028 1058

Chess 1046 10123

Risk (200 armies) 1047 102350 | 105945

Shogi 1071 10226

Risk (1000 armies) 1078 102350 | 105945

Go (19 x 19) 10172 10360

Risk ∞ 102350 | 105945

Table 2.6.: Complexities of Classic Boardgames and Risk

It is important to note, though, that the game-tree complexities of Risk are approxima-

tions of the average game-tree complexity, while the game-tree complexities of the classic

games refer to the maximal size of the game-tree. The maximal game-tree complexity

of Risk is infinite.

2.5.5. Adaptions of the Risk Framework

To be able to cope with the complexity of Risk, I simplified two decisions for the artificial

players in the Risk Framework.

As shown in Section 2.4 it is always favourable21 to choose the maximal possible

number of attacking repectively defending armies in an attack. The artificial players

automatically choose the maximal possible number of attacking armies while the number

of defending armies is set to the maximal possible number for all players.

The very high branching factor of Risk is making it infeasible to build a game-tree

and use a traditional minimax algorithm. Even evaluating and comparing the ≈ 1033

different game states of the first level of the game-tree is infeasible. By separating the

different decisions and treating each one independently as well as splitting up the Place

new Armies game phase into an independent decision for each reinforced army, I was

21In terms of victory probability and estimated losses.

41

2. Risk - The Game

able to cut down the number of evaluated game states to ≈ 106 each turn22. This allows

computing the decisions in a reasonable amount of time23.

On the other hand, this approach also neglects all strategically important dependences

between the different decisions. Even an average playing skill in Risk demands combining

the decisions of at least the current game turn into an unified strategy. For example

capturing a territory does not only require making the relevant attack decisions but also

placing enough reinforcement armies on the territory from where the attack is launched.

Chapter 5 describes in detail how this problem is at least partially solved.

2.6. Existing Implementations

There exist many computer implementations of the Risk board game. Some are free-

ware, some shareware and some are regular commercial products. The two most known

versions are Risk and Risk 2 by Hasbro Interactive. To the extend of my knowledge none

of these implementations is open source nor is there any scientific publication addressing

the artificial intelligence of computer implementations of Risk.

22See Section 4.3 for details.
23Both numbers are based on the average-decision approximation of the branching factor.

42

3. The Risk Framework

As the basis for all other work a framework is needed that allows Risk to be played and

takes care of the rules, the gameboard and the flow of the game. This chapter describes

the software architecture and the important classes of that framework.

3.1. Overview

The main components of the framework are the classes GameManager, Gameboard,

Rules and GameMap. The class GameManager is the core of the architecture, it con-

trols the flow of the game and checks whether the player’s actions comply with the rules

of the game. The class Gameboard is a representation of the gameboard as it can be

perceived by the players at any given situation. It encompasses the distribution of the

armies on the territories as well as the number of Risk Cards each player owns. The

class Rules represents the part of the Risk rules that may change when playing different

variants of the game. The core game concepts are not in this class but generally incor-

porated in the code at the relevant positions, because they are equal among all common

rule variants. The class GameMap implements a graph representation of the map of the

gameboard.

Figure 3.1 shows an informal representation of the core architecture of the Risk frame-

work.

3.2. Game Manager

The main task of the class GameManager is to control the flow of the game. It also keeps

track of the actual game by maintaining and updating a private gameboard. The game

manager communicates with the players telling them to make the appropriate decisions.

After receiving the chosen action the game manager checks it for validity and updates

the gameboard accordingly.

43

3. The Risk Framework

GameManagerPlayer Gameboard

Rules
Map

RandomPlayer HumanTextPlayer

Figure 3.1.: The Core Architecture of the Risk Framework

Listing 3.1 shows a pseudocode representation of the main loop of the game flow, while

listings 3.2 to 3.5 show the handling of the different decisions in more detail.

3.3. Gameboard

The class Gameboard keeps track of the part of the game state which is visible to the

players. For each territory the class gameboard stores which player occupies it as well as

the number of occupying armies. It also keeps track of the number of Risk Cards each

player holds, it does not, however, store which Risk Cards are owned by the players.

The gameboard has several methods that, given a deterministic action or an attack

result, will update the gameboard to the new situation. Additionally it offers several

methods supplying information derived from the game situation. This includes, for

example, the total number of armies and territories of each player as well as the number

of armies of each player on a specific continent.

44

3. The Risk Framework

while not gameboard . gameIsOver () {

i f not gameboard . p l aye r I sDe f ea t ed (ac tua lP laye r) {

processTrade ()

processRe in forcement ()

processAttack ()

processMove ()

}

ac tua lP laye r ← nextPlayer ()

}

Listing 3.1: The Main Loop of the Risk Framework

i f gameboard . getNumberOfPlayerCards (ac tua lP laye r) > 2 {

chosenTrade ← ac tua lP laye r . makeTrade ()

i f checkTrade (ru l e s , chosenTrade) {

executeTrade (ru l e s , chosenTrade)

}

}

Listing 3.2: The processTrade Method of the Abstract Class Player

3.4. Rules

The class Rules is an abstract class that contains a set of abstract methods that all

concrete subclasses have to implement. By providing a fixed interface this architecture

allows a new Rule system to be added very easily.

It also provides methods for each decision that return all valid actions as well as

methods that verify whether a given action is legal in a given game state. It thereby

provides players with a set of legal actions to choose from and allows the game manager

to easily check chosen actions for validity.

45

3. The Risk Framework

chosenReinforcement ← ac tua lP laye r . d i s t r i bu t eRe in f o r c ement ()

checkReinforcement (ru l e s , gameboard , chosenReinforcement)

executeReinforcement (ru l e s , gameboard , chosenReinforcement)

Listing 3.3: The processReinforcements Method of the Abstract Class Player

do{

chosenAttack ← ac tua lP laye r . makeAttack ()

i f checkAttack (ru l e s , gameboard , chosenAttack) {

executeAttack (ru l e s , gameboard , chosenAttack)

i f gameboard . occupationOccurred and

gameboard . combatMovePossible {

chosenCombatMove ← ac tua lP laye r . makeCombatMove ()

i f checkCombatMove (ru l e s , gameboard , chosenCombatMove) {

executeCombatMove (ru l e s , gameboard , chosenCombatMove)

}

}

}

}while chosenAttack 6= n u l l

Listing 3.4: The processAttack Method of the Abstract Class Player

3.5. Map

The abstract class GameMap implements a graph representation of the map of the

gameboard. By providing a fixed interface this architecture allows a new map to be

added very easily.

The map can be interpreted as a graph where each node represents a territory and each

edge a border between the corresponding territories of the nodes of the edge. The graph

itself is implemented using an adjacency list representation which in turn is implemented

by two parallel arrays (as thouroughly explained in [Cormen et al., 2001]).

Additionally the map stores the sets of territories that form the continents of the map,

the reinforcement bonus of the continents, the symbols of the corresponding Risk Cards

46

3. The Risk Framework

chosenMove ← ac tua lP laye r . makeMove ()

i f checkMove (ru l e s , gameboard , chosenMove) {

executeMove (ru l e s , gameboard , chosenMove)

}

Listing 3.5: The processMove Method of the Abstract Class Player

of the territories, the number of Wild Cards and, of course, the names of the territories

and continents.

The class also provides many useful graph level methods like computing the set of

adjacent territories of a given territory, testing whether two given territories are adjacent

or computing the distance of two given territories.

3.6. Player

The abstract class Player defines an interface between the game manager and the players.

This architecture allows a new player to be added very easily.

The class offers some methods that form the core of the game manager to player

communication. These methods are:

void startTurn(int gameRound) This method is called by the game manager at the

start of a player’s turn to indicate that his turn has just begun. The parameter

of the method is the number of the actual game round. The player can use this

information to initialize any calculation that is not depending on a specific decision

but rather on the actual situation at the start of the turn. For example, players

could calculate a turn specific goal that they may want to achieve during this turn

or learning players could perform a learning step at the beginning of each game

turn.

Trade makeTrade(int reinfSoFar, boolean tradeNecessary) This method is called

by the game manager if a trade is theoretical possible, i.e. the player has at

least three Risk Cards. It corresponds to the game phase Trading in Risk Cards

(Section 2.3.4). However, it may still be that the player does not own a tradeable

set of Risk Cards, in that case the player has to return null. The method has

two parameters, first the number of reinforcements the player will receive without

47

3. The Risk Framework

performing a trade, and second whether the rules demand that he has to trade in

a set of Risk Cards. Returning null is interpreted as not performing a trade. This

is, of course, not legal when the second argument has the value true.

Reinforcement distributeReinforcements(int reinf) This method is called at least

once every game turn and corresponds to the game phase Placing new Armies

(Section 2.3.5). The parameter of the method is the number of reinforcements to

distribute, while the return value is a reinforcement distribution.

Attack makeAttack() This method corresponds to the game phase Attacking (Sec-

tion 2.3.6) and is only called during that game phase. The return value is the

chosen attack. The method is called repeatedly until null is returned, which ends

the attacking phase.

Move makeCombatMove(Move combatMove) This method is called whenever an at-

tack leads to the occupation of the attacked territory and the attacking player has

more than one army left in the attacking region1. The parameter is already a valid

combat move, more precisely, it is the combat move with the maximal number of

moving armies. This parameter is not necessary for the player to make his deci-

sion, but rather simplifies the processing of the decision for the player. The return

value of the method is the chosen combat move. Returning null is treated by the

game manager like returning a valid combat move with 0 moving armies.

Move makeMove() This method is called exactly once every game turn and corresponds

to the game phase Fortifying the Position (Section 2.3.7). The return value is the

chosen move.

void endTurn(int gameRound) This method is called by the game manager at the

end of a player’s turn to indicate that his turn is ending now. The parameter

of the method is the number of the actual game round. The player can use this

information to initialize any calculation that is not depending on a specific decision

but rather on the actual situation after the player made his moves. For example

learning players could perform a learning step at the end of each turn.

1After the armies participating in the last attack have been moved.

48

3. The Risk Framework

This abstract class acts as the interface between the game manager and various player

implementations. The first two concrete player implementations are the Random Player

and the Human Text Player.

3.6.1. Random Player

The class RandomPlayer implements a minimalistic artificial Risk player. As the name

suggests, the random player completely lacks any systematic decision-making. The algo-

rithm is simple and straightforward. For each decision, the player creates a list of valid

actions and picks one of them randomly.

It is interesting to note that even though this player lacks any skill in playing Risk, a

feature that is usually associated with a good playing skill turns up nevertheless. The

territories occupied by random players will eventually form connected clusters which

often contain hinterland territories. This can be explained by the fact that the chance

of attacking an enemy territory grows linearly with the number of borders the random

player already has to that territory. Usually territories close to a cluster of friendly ter-

ritories will have more borders to friendly territories and, therefore, will be attacked and

consequently conquered more often than far off territories with few borders to friendly

territories.

3.6.2. Human Text Player

The class HumanTextPlayer implements a basic interface for a human to play Risk. The

interface is text based and allows the human player to make his decisions by typing the

appropriate numbers to the console. A prompt usually asks the human player to type the

number of a territory or the number of armies depending on the current decision. The

gameboard is not graphically shown but the user can always access a text description of

the actual game situation.

For convenience, I recommend using a regular Risk gameboard to visualize the game

situation.

3.7. Battle Computer

The class BattleComputer provides methods to predict the outcome of an attack or a

series of attacks. The series has to be a battle, i.e. an attack from a single territory

49

3. The Risk Framework

against a single territory that has to end either when the attacked territory is conquered

or the attacker does not have enough armies left to continue attacking. The interesting

values are the victory probability of a battle2 and the expected army losses of the attacker

in case of a victory as well as the expected army losses of the defender in case of a defeat.

The prediction is calculated by recursively computing the results of the attacks. This

is possible because the results of the first attack of a battle are always either a final state

where the battle is either won or lost, or other battles with fewer armies participating.

With a maximum of three different possible outcomes of an attack, computing the victory

probability and the expected losses recursively creates a tree with a maximal branching

factor of 3. Figure 3.2 shows an example of such a battle tree. The height of the tree is

Figure 3.2.: Example Battle Tree

limited by the maximum of the participating armies of the attacker and defender. Thus

we can compute an upper bound on the number of nodes of the battle tree.

Let a and d denote the number of attacking respectively defending armies in a battle,

then

Upper Bound = 3max (a,d)

2The probability that the attacked territory will be conquered

50

3. The Risk Framework

Even if we limit the number of attacking and defending armies to 100 each, which would

be sufficient for almost all battles fought in games played in the Risk framework, the

upper bound of the battle tree would be 3100 = 5.154 × 1047. With a function call for

each node, this would result in a recursion tree of the same size, which, of course, is

infeasible to compute during each battle.

Fortunately, we can cut down the number of actually needed recursive function calls

to a very small fraction of this upper bound. This is possible because the outcome of

an attack only depends on the number of attacking and defending armies. If a armies

attack d armies only a× d different battles can occur in the battle tree. In the example

of both 100 attacking and 100 defending armies, that would be 104 different battles;

thus, on average, each unique battle is processed roughly 1043 times.

By storing the outcomes of already computed battles in a hashtable, the computation

is reduced to calculating so far unencountered battle situations and looking up known

results. The memory requirement is the space for a × d battle results with a memory

requirement for the data of 24 bytes each. In the case of the 100× 100 armies example,

it amounts to 240 Kilobytes of memory and 104 computations in the case of a formerly

empty hashtable. If the battle is encountered a second time, the battle computer just

looks up the results3 in the hashtable.

In the actual implementation the hashtable is initialized and dynamically filled with

computed results every game anew. This drawback can easily be remedied by making

the hashtable persistent.

Table 2.3 shows the different outcomes of single attacks and their corresponding proba-

bilities.

3Computed and stored in the hashtable when the battle was encountered first.

51

4. Basic Evaluation Player

The basic evaluation player chooses its moves by utilising a linear evaluation function in

combination with handcrafted features.

4.1. Overview

The basic evaluation player makes his decisions by choosing the move that will lead to

the game state with the highest expected value. This is done independently for each

decision and even for each reinforced army in the Placing new Armies game phase. That

is, the player simulates all valid actions of the current decision, rates and compares the

resulting game states with each other and picks the action that leads to the game state

with the highest rating. For example, the evaluation player compares all different game

states that arise when placing a single army in the Placing new Armies game phase, then

chooses the territory yielding the highest rated game state, completely indifferent to the

other decisions. While this does not restrict the accessible state-space it does, however,

reduce the overall playing strength of the player. Chapter 5 presents the negative effects

of this approach as well as several measures to cope with them.

To be successful the player needs to be able to predict the game state that will arise

when applying any one action as well as a way to rate the different game states.

The prediction is easy for most of the possible actions, because they are deterministic

and the player can correctly compute the resulting game state. In the case of an attack

or a battle, however, the resulting game state is not deterministic, because it depends

on the results of multiple dice rolls.

The rating is done by the evaluation function, which, given a gameboard and a player,

will return the rating of the game state. To do this the evaluation function uses hand-

crafted features. The features are also functions that are given a game state and a player

and return a feature value. The evaluation function returns the weighted sum of all the

feature values, therefore it can be classified as a linear evaluation function.

52

4. Basic Evaluation Player

Figure 4.1 shows an informal representation of the core architecture of the basic evalu-

ation player.

EvaluationPlayerEvaluationFunction

TradeEvaluationFunction

ReinforcementEvaluator

BattleEvaluator

AttackEvaluator

MoveEvaluator

TradeEvaluator

Feature 1 Feature n

TradeFeature 1 TradeFeature n

Evaluator

Figure 4.1.: The Core Architecture of the Basic Evaluation Player

4.2. Useful Functions

This class offers a few methods that are quite useful while trying to play Risk successfully.

Among others these methods include a function calculating an estimation of the number

of reinforcements for a given player, as well as a method computing the probability that

a given territory will be conquered by other players if they try to do so.

It also offers a method that utilises an A*-Search [Russell and Norvig, 1995] to com-

pute the attack path with the highest victory probability given a start territory and a

destination territory. The method assumes that the start territory and the destination

territory are occupied by different players. It returns an ordered list of territories (the

attack path) as well as the probability that all the path territories will be successfully

conquered by the player occupying the start territory.

4.2.1. Continent Rating

The continents in Risk have several characteristics which determine their usefulness for

the players. In general, it is a good idea to conquer a continent, but the decision which

53

4. Basic Evaluation Player

continent to conquer first is not as simple. The game state, of course, determines the

general circumstances for all strategic decisions. But the characteristics of the continents

themselves, regardless of the actual game state, must be considered too. The three

distinct charatcteristics of the continents are the army bonus, the border number and

the territory number.

Army Bonus The army bonus is the number of additional reinforcement armies which

the player will get who completely occupies the continent. This is the sole reason

why continents are important in Risk. In the original map the army bonuses of

the continents are vital to winning the game.

Border Number The number of borders of a continent determine how easily it can be

defended when it is completely occupied by a single player. Because the army bonus

is so important, other players will surely try to break the complete occupation of

the continent - and they have to come through the border territories. The more

border territories a continent has, the harder it is to defend.

Territory Number The number of territories in the continent is the least important of

the three characteristics. It determines the number of battles required to conquer

it and thereby influences the number of armies needed to conquer it.

To be able to rate the continents I compute a rating from the three characteristics. This

rating is computed with a general formula, instead of just manually assigning the six

continents a rating. That approach simplifies the introduction of new maps to the Risk

Framework.

Continent Rating =
15 + Army Bonus− 4× Border Number

Territory Number

Table 4.1 shows the characteristics and ratings for the continents.

4.3. Decision Making Process

The basic evaluation player makes his decisions by rating and comparing an estimation

of the game states that will probably result from his actions. The rating of the game

states is done by the evaluation function, while the class EvaluationPlayer creates the

expected game states and compares the ratings returned by the evaluation function.

To be more precisely, the evaluation player creates a set of legal actions for the current

54

4. Basic Evaluation Player

Continent Army Bonus Border Number Territory Number Rating

Australia 2 1 4 3.250

South America 2 2 4 2.250

North America 5 3 9 1.222

Africa 3 3 6 1.000

Europe 5 4 7 0.571

Asia 7 5 12 0.167

Table 4.1.: Characteristics and Ratings for the Continents

decision whose elements are then evaluated by the Evaluators which utilise the evaluation

function for this task.

The makeAttack method is a little different than the other decision making methods.

Actually, it utilises the chooseBest method twice. First, it chooses the best battle to be

fought and, if a battle is chosen, it returns the attack corresponding to that battle. If

no battle is chosen, it chooses and returns the best attack to be fought. That enables

the player not only to launch attacks of worthwhile battles, but also to launch attacks

where it is not advisable to continue fighting the whole battle.

Sections 4.3.1 and 4.3.2 describe this process in more detail while figure 4.2 shows

a sequence diagram of the interactions of an arbitrary single decision. The method

makeDecision can be substituted by any of the specific decision-methods introduced in

Section 3.6, while <Decision>Evaluator is the approprioate Evaluator for the current

decision as introduced in Section 4.3.2.

Listing 4.1 shows a pseudocode representation of such a makeDecision method in the

general case, while listing 4.2 depicts the makeAttack method.

Evaluat ionPlayer : : makeDecision (d e c i s i o n parameters){

Act ions ← c reateSetOfLega lAct ions ()

bestAct ion ← t h i s . chooseBest (Actions , de c i s i onEva lua to r)

return bestAct ion

}

Listing 4.1: Decision-Making Methods of the Evaluation Player

55

4. Basic Evaluation Player

 ep : EvaluationPlayer ef : EvaluationFunction f : Feature e : <Decision>Evaluator gm : GameManager

makeDecision()

* evaluate(action, board)

chooseBest(Actions, e)

evaluate(simulationBoard)

evaluate(simulationBoard)

Figure 4.2.: Interactions of the Decision-Making Process of the Evaluation Player

Evaluat ionPlayer : : makeAttack (){

Bat t l e s ← c r ea t eSe tOfLega lBat t l e s ()

be s tBat t l e ← t h i s . chooseBest (Batt l e s , Batt l eEva luator)

bestAttack ← getCorrespondingAttack (be s tBat t l e)

i f bestAttack = n u l l {

Attacks ← createSetOfLega lAttacks ()

bestAttack ← t h i s . chooseBest (Attacks , at tackEva luator)

}

return bestAttack

}

Listing 4.2: makeAttack Method of the Evaluation Player

56

4. Basic Evaluation Player

4.3.1. chooseBest

This method of the class EvaluationPlayer expects a set of possible actions as well as an

appropriate Evaluator. The method is completely independent of any specific decision.

The decision specific processing was done earlier when the method corresponding to the

decision type created the set of legal actions and called the chooseBest method. There

is also a specific evaluator for each decision that incorporates the information how to

generate the expected game states as well as the information necessary to compute the

expectation of the rating of the expected game state.

For each action of the given set, the method chooseBest calls the given evaluator’s

evaluate method, which in turn returns the expected rating of the game state that will

probably result from this action. The method keeps track of the best rating so far

computed for this decision and returns the best action of the set. In the case of several

actions resulting in game states with equal expected ratings, the method chooses one of

these actions randomly and equably.

Listing 4.3 shows a pseudocode representation of the chooseBest method.

Evaluat ionPlayer : : chooseBest (Actions , eva lua to r){

bes tEva luat ion ←−∞
equa lEva luat ions ← 0

for each ac t i on in Actions {

actua lEva luat ion ← eva luato r . eva luate (act ion , gameboard)

i f actua lEva luat ion > bestEva luat ion {

bestAct ion ← ac t i on

bestEva luat ion ← actua lEva luat ion

equa lEva luat ions ← 1

}

i f actua lEva luat ion = bestEva luat ion {

equa lEva luat ions++

randomNumber ← createRandomNumber ()

i f randomNumber × equa lEva luat ions < 1 {

bestAct ion ← ac t i on

bestEva luat ion ← actua lEva luat ion

equa lEva luat ions ← 1

57

4. Basic Evaluation Player

}

}

}

return bestAct ion

}

Listing 4.3: The chooseBest Method of the Evaluation Player

4.3.2. Evaluators

There are different evaluators for the different decisions:

• Trade Evaluator

• Reinforcement Evaluator

• Attack Evaluator

• Battle Evaluator

• Move Evaluator

The evaluators are responsible for generating the expected game state resulting when

applying an action on the current game state, thus simulating the execution of an action.

They also use the evaluation function to compute the rating of the generated game

states. For most decisions this is fairly easy, because the actions are deterministic and

the evaluator just creates a copy of the actual game state and tells the gameboard to

update itself with the actual action. This game state is then rated by the evaluation

function and the result returned to the method chooseBest.

The only nondeterministic decision (i.e. the attack decision) is a little more compli-

cated and the approach I chose is presented in the following subsections.

Listing 4.4 shows a pseudocode representation of the evaluate method of the evaluator

in the general case.

Evaluator : : eva luate (act ion , gameboard){

s imu la t i on ← s imulateAct ionExecut ion (act ion , gameboard)

eva lua t i on ← Evaluat ionFunct ion . eva luate (s imu la t i on)

58

4. Basic Evaluation Player

return eva lua t i on

}

Listing 4.4: The evaluate Method of an Evaluator

Battle Evaluator

An attack is not deterministic, making it harder for the evaluator to predict the game

state resulting from applying the attack action to the actual game state.

A straightforward approach would be to compute the expected result of the battle and

rate that game state. However, even though this would be suitable for battles with a very

high or low victory probability it is inadequate for uncertain battles. When computing

the expectation of the battle outcome before rating the game state vital information

could be lost. For example, if a battle is evaluated and the expected outcome is a loss

and the rating of the resulting game state is worse than the rating of the current one,

then the corresponding attack will not be launched. It might well be though, that there

was a reasonable chance1 to win the battle and that the rating of the resulting game

state was very high. The straightforward player would almost never fight a battle with

less than 50% victory probability, even if a victory would result in a significant gain for

the player while a defeat could well be borne.

Let Eval(State gs) be the evaluation function2, State(BattleResult br) the function that

returns the game state incorporating the battle result br and P(BattleResult br) the

function that returns the probability of br. Let BR(Battle b) be the function that

returns the set of all possible results of b and EBR(b) be the function that returns the

expected battle result3 of a given battle b. Then the expected rating (ER) of a given

battle B is

ER (B) =

 ∑
br∈BR(B)

P (br)

× Eval

State

 ∑
br∈BR(B)

P (br)× br


= 1× Eval

(
State

(
EBR (B)

))
= Eval

(
State

(
EBR (B)

))
1Though less than 50%
2Ignoring that it also expects to be given a player as an additional argument.
3The EBR of a given battle could easily be provided by the battle computer (Section 3.7).

59

4. Basic Evaluation Player

The solution to this drawback is to create all game states that can possibly arise in

a given battle along with their probabilities. The different game states will be rated

and afterwards multiplied with their probability, and then added up to the rating of

the expected outcome of the battle. This approach, which applies the rating before

calculating the expectation, will provide accurate ratings of battle outcomes. But it has

its drawback, too. The sheer number of possible game states in bigger battles which

have to be rated in combination with the fact that the rating of a game state and the

calculation of the probability of the corresponding battle outcome requires a considerable

amount of computation time makes this approach infeasible.

Let Eval(State gs) be the evaluation function4, State(BattleResult br) the function that

returns the game state incorporating the battle result br and P(BattleResult br) the

function that returns the probability of br. Let BR(Battle b) be the function that

returns the set of all possible results of b. Then the expected rating (ER) of a given

battle B is

ER (B) =
∑

br∈BR(B)

P (br)× Eval
(
State (br)

)
Fortunately, it is possible to get a meaningful ER with an acceptable amount of

coputation time. I compute the victory probability of a battle and the expected battle

outcome under the prerequisite that the attacker is victorious as well as the expected

battle outcome under the prerequisite that the attacker suffers a defeat. The two game

states corresponding to the battle outcomes will be rated and then multiplied by their

probability and added up to get the expected rating of the outcome of the battle. To

understand this, it is important to know that the part of the outcome of a battle which

affects the territory distribution, i.e. victory or defeat, has a far greater impact on the

rating of the game state than the part affecting the army distribution, i.e. army losses.

Therefore, this approach requires only the computation of a single victory probability

and two battle outcomes as well as two game state ratings while keeping the important

differentiation whether the battle was victorious or not.

Let Eval(State gs) be the evaluation function5, State(BattleResult br) the function that

returns the game state incorporating the battle result br and P (BattleResult br) the

function that returns the probability of br. Let V (Battle b) be the function that returns
4Ignoring that it also expects to be given a player as an additional argument.
5Ignoring that it also expects to be given a player as an additional argument.

60

4. Basic Evaluation Player

the set of all victorious results of b and D(Battle b) be the function that returns the set

of all non-victorious results of b. Let EV (b) be the function that returns the expected

battle result of a given battle b only considering victorious battle results and ED(b) be

the function that returns the expected battle result of a given battle b only considering

battle results leading to a defeat. Let V P (Battle b) be the function that returns the

victory probability of b6. Then the expected rating (ER) of a given battle B is

ER (B) =

 ∑
v∈V (B)

P (v)

× Eval

State

 ∑
v∈V (B)

P (v)× v

+

 ∑
d∈D(B)

P (d)

× Eval

State

 ∑
d∈D(B)

P (d)× d


= V P (B)× Eval

(
State

(
EV (B)

))
+(

1− V P (B)
)
× Eval

(
State

(
ED (B)

))
Listing 4.5 shows a pseudocode representation of the evaluate method of the battle

evaluator.

Batt l eEva luator : : eva luate (attack , gameboard){

s imVictory ← s imu la teVic to ry (attack , gameboard)

s imDefeat ← s imulateDe feat (attack , gameboard)

eva lua t i onVic to ry ← eva luat ionFunct ion . eva luate (s imVictory)

eva luat i onDe f ea t ← eva luat ionFunct ion . eva luate (s imDefeat)

eva lua t i onVic to ry ← eva lua t i onVic to ry × getVictoryProb ()

eva luat i onDe f ea t ← eva luat i onDe f ea t ×
(

1 − getVictoryProb ()
)

eva lua t i on ← eva lua t i onVic to ry + eva luat i onDe f ea t

return eva lua t i on

}

Listing 4.5: The evaluate Method of the Battle Evaluator

6The EV, ED and VP of a given battle are provided by the battle computer (Section 3.7).

61

4. Basic Evaluation Player

Attack Evaluator

An attack is not deterministic, making it harder for the evaluator to predict the game

state resulting from applying the attack action to the actual game state.

The attack evaluator is principally very similar to the battle evaluator, but rather

than simulating the victory and defeat of a whole battle it simulates the 2-3 possible

outcomes of a single attack.

4.4. Evaluation Function

The evaluation function has the task of rating a game state. It is a function that expects

a game state and a player and returns a real value. So even the simple function that, for

every game state and player, always returns the constant 1 is a valid evaluation function.

The challenge is to design an evaluation function that maps higher ratings to ‘better’

game states and thereby imposes an order on the game states with respect to their

‘quality’. Of course, ‘quality’ has to be defined. In a non-deterministic game like Risk

the probability that a given player in a given game state will eventually win the game

is a good definition of the quality of a game state. That still leaves the challenge to

determine which features of the game state are crucial for winning the game and what

interpedences exist between them.

I designed several features from my personal Risk experience. Each feature is a func-

tion that expects a game state and a player as input and returns a real value. That is

exactly the definition of an evaluation function. In fact, each feature is an evaluation

function but with a different definition of the quality of the game state. It does not

try to order the game states according to the probability of winning the game from the

actual game state, but rather concentrates on the much smaller scale of its definition.

Ordering the game states according to specific small scale features of the game states is

much easier than ordering them according to the probability of winning the game.

This approach (similar to divide and conquer) requires a way to merge the results of

the small scale features into a combined rating that correctly orders the game states

according to the probability of winning the game. This is done using a linear function:

For each feature there exists a positive real value7 called the feature weight which

adjusts the feature result to the feature’s relative importance in relation to all other

7To be precisely it is element of R+
0

62

4. Basic Evaluation Player

features. Because the features are not restricted in their co-domain and do not necessarily

return comparable results, the feature weight itself does not necessarily correlate with

its feature’s importance.

The evaluation function just adds up the adjusted feature results

Game State Rating =
∑

Features

(Feature Weight× Feature Result)

This linear approach makes the evaluation function comparatively fast. It also allows

the feature weights to be manually tuned in a relative simple though cumbersome way.

A more complex non-linear approach on the other hand would have allowed for a wider

range of possible functions that would also be able to capture non-linear correlations

between features. A brief overview of the advantages and disadvantages of linear and

non-linear evaluation functions respectively can be found in [Fürnkranz, 2001].

4.5. Features

This section presents the handcrafted features I created to capture the strategically

important aspects of the game state. The features themselves can be interpreted as

small scale evaluation functions which rate a game state not on the high-level goal of

winning the game, but on the rather specific definition of the feature. Each feature

expects a game state and a player as input and returns a real value.

To make the evaluation of a game state faster I introduced decision types, i.e. the fea-

ture has another input parameter specifying the actual decision the player has to make.

Thereby all features that are irrelevant to this decision do not have to be evaluated. To

save computation time the irrelevant features just return 0 instead of calculating the

real feature result. For each feature the game phases where the feature is irrelevant are

listed in the individual feature description.

There exists another positive real value for each feature called the feature scale factor

which is used to roughly scale the feature results into the co-domain [0, 1] if possible.

This creates a rough correlation between a feature’s weight and its importance.

63

4. Basic Evaluation Player

4.5.1. Armies Feature

The Armies Feature returns the number of armies of the actual player (AP) in relation

to the total number of armies on the gameboard.

Feature Result =
Armies of AP

Total Armies

The feature result is always in the interval [0, 1]. This feature is not applied in the

Placing new Armies and Fortifying the Position phases of the game.

4.5.2. Best Enemy Feature

The Best Enemy Feature returns a negative measure of the power of the best enemy

player. The power of the enemy players is measured by their averaged relative army

strength and relative territory strength.

Feature Result = −1× max
Enemy Player i

((
Armies of i

Total Armies
+

Territories of i

Territories on Map

)
/2

)
The feature result is always in the interval [−1, 0]. This feature is not applied in the

Placing new Armies and Fortifying the Position phases of the game.

4.5.3. Continent Safety Feature

The Continent Safety Feature returns a negative measurement of the threat from enemy

players against continents which are completely occupied by the actual player. The

threat is also weighted by the rating of the continents.

Let threat(Territory t) be the function that computes the probability that the given

territory t will be occupied by enemy players if they try to conquer it. It is implemented

in the class UsefulFunctions (Section 4.2). Let CR(Continent c) be the function that

returns the continent rating of c. Let C denote all continents fully occupied by the actual

player and B the border territories of the current continent c.

Feature Result = −1×
∑
c∈C

(((∑
b∈B

threat(b)2
)

+
(

max
b∈B

(threat(b))
))
× CR(c)

)

4.5.4. Continent Threat Feature

The Continent Threat Feature returns a measurement of the threat from the actual

player against continents which are completely occupied by enemy players. The threat

64

4. Basic Evaluation Player

is also weighted by the rating of the continents.

Let threat(Territory t) be the function that computes the probability that the given

territory t will be occupied by enemy players if they try to conquer it. It is implemented

in the class UsefulFunctions (Section 4.2). Let CR(Continent c) be the function that

returns the continent rating of c. Let C denote all continents fully occupied by enemy

players and B the border territories of the current continent c.

Feature Result =
∑
c∈C

((∑
b∈B

threat(b)2
)
× CR(c)

)

4.5.5. Distance to Frontier Feature

The Distance to Frontier Feature returns a measurement of the army distribution

throughout the actual player’s territories. Armies positioned far away from territories

occupied by enemy players result in a lower feature value than armies positioned on

border territories. The function distance(territory) is implemented in the class Useful-

Functions and computes the distance of a given friendly territory to the nearest enemy

territory.

Let T denote the territories occupied by the actual player (AP).

Feature Result =
Total Armies of AP∑

t∈T Armies in t× distance(t)

The feature result is always in the interval (0, 1]. This feature is not applied in the

Attacking phase of the game.

4.5.6. Enemy Estimated Reinforcements Feature

The Enemy Estimated Reinforcement Feature returns the negative estimation of the

total number of armies the enemy players will be able to reinforce in the course of the

next game round8.

Feature Result = −1×
∑

Enemy Player i

Army Reinforcement Expectation of i

This feature is not applied in the Placing new Armies and Fortifying the Position phases

of the game.
8In this context the next game round is defined as the time period which starts immediately after the

actual player’s current turn ends and lasts until the actual player’s next turn starts.

65

4. Basic Evaluation Player

4.5.7. Enemy Occupied Continents Feature

The Enemy Occupied Continents Feature returns the number of continents which are

completely occupied by enemy players.

This feature is not applied in the Placing new Armies and Fortifying the Position

phases of the game.

4.5.8. Hinterland Feature

The Hinterland Feature returns the percentage of the territories of the actual player

(AP) which are hinterland territories, i.e. which are not adjacent to an enemy territory.

Feature Result =
Hinterland Territories of AP

Total Territories of AP

The feature result is always in the interval [0, 1]. This feature is not applied in the

Placing new Armies and Fortifying the Position phases of the game.

4.5.9. Maximum Threat Feature

The Maximum Threat Feature returns a measurement of the probability that the actual

player is able to successfully occupy at least a single enemy territory during his next

Attacking game phase. Of all possible battles that the actual player is able to initiate

the feature computes the victory probability and the maximum of these probabilities is

returned.

Let Battles denote all the battles that the actual player would be able to initiate if he

was in his Attacking phase.

Feature Result = max
b∈Battles

(
victoryProbability(b)

)
The feature result is always in the interval [0, 1]. This feature is not applied in the

Attacking phase of the game.

4.5.10. More Than One Army Feature

The More Than One Army Feature returns the percentage of the territories of the actual

player (AP) which are fortified territories, i.e. which are occupied by more than one army.

Feature Result =
Fortified Territories of AP

Total Territories of AP

The feature result is always in the interval [0, 1].

66

4. Basic Evaluation Player

4.5.11. Occupied Territories Feature

The Occupied Territories Feature returns the number of territories which are occupied

by the actual player in relation to the total number of territories on the map. In the case

of the original map, which I used throughout my work, the total number of territories

is 42.

Feature Result =
Territories of AP

Total Territories
The feature result is always in the interval (0, 1]. This feature is not applied in the

Placing new Armies and Fortifying the Position phases of the game.

4.5.12. Own Estimated Reinforcements Feature

The Own Estimated Reinforcement Feature returns the expectation of the total number

of armies the actual player (AP) will be able to reinforce in his next Placing new Armies

game phase.

Feature Result = Army Reinforcement Expectation of AP

This feature is not applied in the Placing new Armies and Fortifying the Position phases

of the game.

4.5.13. Own Occupied Continents Feature

The Own Occupied Continents Feature returns the number of continents which are

completely occupied by the actual player.

This feature is not applied in the Placing new Armies and Fortifying the Position

phases of the game.

4.5.14. Own Occupied Risk Card Territories Feature

The Own Occupied Risk Card Territories Feature returns the number of Risk Cards in

posession of the actual player whose corresponding territory is occupied by the actual

player.

This feature is not applied in the Placing new Armies and Fortifying the Position

phases of the game.

67

4. Basic Evaluation Player

4.5.15. Risk Cards Feature

The Risk Cards Feature returns the number of Risk Cards which are in posession of the

actual player.

This feature is not applied in the Placing new Armies and Fortifying the Position

phases of the game.

4.6. Trade Evaluation Function

The trade evaluation function is an evaluation function in the domain of the Risk Card

trades which is used in the Trading in Risk Cards game phase. It is similar to, though

completely independent of the evaluation function (Section 4.4) that evaluates the game

states in the Placing new Armies, Attacking and Fortifying the Position game phases.

The trade evaluation function expects a game state and a potential trade of Risk Cards

as parameters and is using this input to compute a real valued rating of the trade. This

is done by simply adding up the evaluations of the features. Because the rating of a

trade is much simpler than the rating of the complete game state the trade evaluation

function needs less features than the evaluation function.

4.7. Trade-Features

The trade-features are similar to the features presented in Section 4.5 with the difference

that the trade-features rate a trade rather than a game state.

To retain simplicity the trade-features are crafted in a way that the corresponding

feature weights all have the value 1.0 and that no feature scale factors are needed. The

trade-features themselves measure their feature results in army numbers that the trade

is worth. Accordingly the features all return 0 in case the ‘no trade’ trade is evaluated.

4.7.1. Occupied Territories Trade-Feature

The Occupied Territories Trade-Feature returns the number of Risk Cards whose corre-

sponding territory is occupied by the actual player (AP) multiplied by 2. This correlates

to the additional armies the trading player receives for occupying territories shown on

the traded set of Risk Cards as introduced in Section 2.3.4.

Let territory(Risk Card rc) be the function that returns the territory of rc and

68

4. Basic Evaluation Player

occupied(Territory t, Player p) be the function which returns 1 if t is occupied by p

and zero otherwise. Let RC denote the set of Risk Cards of the trade excluding Wild

Cards.

Feature Result =
∑

c∈RC

occupied
(
territory(c), AP

)
× 2

4.7.2. Unoccupied Territories Trade-Feature

The Unoccupied Territories Trade-Feature returns a negative measurement of the po-

tential opportunity costs of reinforcement armies if this trade is performed now instead

of being performed in a later Trading in Risk Cards game phase. For each Risk Card of

the set, excluding Wild Cards, whose corresponding territory is occupied by an enemy

player the feature computes the probability that the actual player would conquer that

territory if he tried. Trades are rated less when the territories shown on the traded Risk

Cards are not currently occupied by the actual player, but could easily be conquered.

Let threat(Territory t) be the function that computes the probability that the given

territory t will be occupied by the actual player if he tries to conquer it. If t is already

occupied by the actual player the function returns 0. It is implemented in the class

UsefulFunctions (Section 4.2). Let territory(Risk Card rc) be the function that returns

the territory of rc and RC denote the set of Risk Cards of the trade set excluding Wild

Cards.

Feature Result = −1×

(∑
c∈RC

max
(

threat
(
territory(c)

)
− 0.25, 0

))
× 2

4.7.3. Trade Value Trade-Feature

This feature works only with the rules of the Trading in Risk Cards game phase that

are introduced in Section 2.3.4, especially the army bonuses presented in table 2.1.

The Trade Value Trade-Feature returns a negative measurement of the potential op-

portunity costs of reinforcement armies if this trade is performed now instead of being

performed in a later Trading in Risk Cards game phase. More precisely, it returns the

negative difference between the maximal army bonus of a trade and the army bonus of

the actual trade. Generally speaking, the less the army bonus of a trade, the less the

rating of the trade.

Feature Result = −1× (10−Army Bonus of Trade)

69

5. Enhanced Evaluation Player

The drawbacks that arise because the decisions are treated independently are discussed

together with the measures I took to lessen their effect. These measures include defining

a target continent, using plans to achieve specific pre-defined goals as well as different

strategies for the distribution of the reinforcement armies.

5.1. Drawbacks of the Basic Evaluation Player

The basic evaluation player presented so far has several major disadvantages: Armies

are not placed where they are needed and important battles are not fought. The cause of

these bad decisions is the fact that the evaluation player does not look ahead. Not only

does it not search a game tree of the next game turns1, but there is also no coordination

between the different decisions of a single game turn. For example, the basic evaluation

player has no way to realise that placing armies on a fought-over continent, or conquering

a territory in that continent increases the chance to — several moves or turns later —

occupy the whole continent.

Looking ahead in Risk is very time consuming, because it is so complex. As shown in

Section 2.5, even searching a game tree of the decisions of a single game turn is infeasible.

To cope with the worst manifestations of this problem I introduced the target con-

tinent along with two new features utilising it as well as three tactical goals for which

series of coordinated battles are planned and several different methods of placing the

reinforcement armies.

Figure 5.1 shows an informal representation of the core architecture of the enhanced

evaluation player.

1Including the other player’s turns

70

5. Enhanced Evaluation Player

EvaluationPlayerEvaluationFunction

TradeEvaluationFunction

ReinforcementEvaluator

BattleEvaluator

AttackEvaluator

MoveEvaluator

TradeEvaluator

Feature 1 Feature n

TradeFeature 1 TradeFeature n

Plan

ContinentConqueringPlanPlayerEliminationPlan AustraliaPlan

Evaluator

Figure 5.1.: The Core Architecture of the Enhanced Evaluation Player

5.2. Target Continent

The target continent tells the evaluation player on which continent to concentrate its

efforts. This is done by using two features: the Continent Army Domination Feature

and the Continent Domination Feature.

The Continent Army Domination Feature provides that placing armies on territories

in the target continent is preferred during the Placing new Armies game phase. It also

encourages moving armies from territories not part of the target continent into territories

of the target continent during the Fortifying the Position game phase.

The Continent Domination Feature, on the other hand, provides that conquering

territories in the target continent is preferred during the Attacking game phase. It also

encourages moving armies from territories not part of the target continent into territories

of the target continent in case of a combat move.

If the feature weights are set accordingly, this approach provides game play more

concentrated on conquering a single continent.

71

5. Enhanced Evaluation Player

The continent target is computed anew for every decision2, so that in case of different

circumstances the continent target can be adapted. It is chosen from all the continents

not completely occupied by the actual player. The decsision is based on the continent

rating (Section 4.2.1) and the actual army and territory distribution. The continent

rating is multiplied with a factor measuring the relative power of the actual player (AP)

in that continent. The continent with the highest adjusted continent rating (ACR) is

chosen as the continent target. Steadyness of the continent target is guaranteed by the

fact that the decisions which are encouraged by the two new features increase the relative

power of the player in the continent target, thus increasing the adjusted continent rating

even further.

Let CR(Continentc) be the function that returns the continent rating of c, then for a

continent C

ACR (C) =

((
Armies of AP on C

Total Armies on C
+

Territories of AP on C

Territories on C

)
/2

)
× CR (C)

5.2.1. Continent Army Domination Feature

The Continent Army Domination feature returns the number of armies the actual player

(AP) has on the target continent (TC) divided by the total number of armies on the

target continent.

Feature Result =
Armies of AP on TC

Total Armies on TC

The feature result is always in the interval [0, 1]. This feature is not applied in the

Attacking phase of the game.

5.2.2. Continent Domination Feature

The Continent Domination Feature returns a measurement of the relative power of the

actual player (AP) on the target continent (TC) multiplied by the rating of the target

continent.

Let CR(Continentc) be the function that returns the continent rating of c.

Feature Result =

((
Armies of AP on TC

Total Armies on TC
+

Territories of AP on TC

Territories on TC

)
/2

)
×CR(TC)

2An exception is the Trading Cards decision.

72

5. Enhanced Evaluation Player

This feature is not applied in the Placing new Armies and Fortifying the Position phases

of the game.

5.3. Plans

From all the flaws arising from the original evaluation player’s inability to look ahead a

series of battles, I chose the three most important ones and developed a method to cope

with them. I created the abstract class Plan which allows arbitrary territory targets to

be specified and computes a forest of attack trees3 containing all the target territories.

So far this cannot be done dynamically. Instead, a concrete subclass of the class Plan

has to be created. For each of the three major flaws of the basic evaluation player during

the Attacking game phase4 I built a concrete subclass of the class Plan which creates

the required list of target territories.

The class Plan offers a few methods that should be noted:

void initialize(Vector targetList) This is the core method of the class. From the given

list of target territories it computes a forest of attack trees containing all of the

target territories. The created forests are not necessarily optimal, in the sense that

they do not take into account the number of armies currently positioned on the

root territories of the attack trees. Hence, it is possible that a different attack

tree with the same number of nodes exists, that has more armies positioned on

its root territory, thus having a higher chance of successfully occupying all target

territories in the tree.

Listings 5.1 to 5.4 show the pseudocode version of the algorithm creating the forest

of attack trees.

double getSuccessChance(Gameboard b) This method, given the current game sit-

uation, simply returns the probability that the plan succeeds, i.e. all target terri-

tories are occupied by the actual player when the plan finishes. The success chance

3An attack tree specifies a series of battles, which can contain several battles starting from the same

territory.
4Namely the inability to efficiently eliminate enemy players, the inability to snatch the continent Aus-

tralia from an enemy player in case the opportunity exists and the slowness with which continents

are conquered due to inefficient sequences of battles.

73

5. Enhanced Evaluation Player

Plan : : i n i t i a l i z e (Vector t a r g e t L i s t) {

while (not t a r g e t L i s t . isEmpty ()) {

t ← t h i s . choo s eS ta r tTe r r i t o ry (t a r g e t L i s t)

path . add (t)

t a r g e t L i s t . remove (t)

while (t 6= n u l l) {

t ← t h i s . chooseNextTerr i tory (t a r g e t L i s t , t)

path . add (t)

t a r g e t L i s t . remove (t)

}

path ← t h i s . addOwnTerritory (path)

t h i s . removePathTerr i tor iesFromTargetList ()

}

pathLi s t . add (path)

path ← new Vector ()

}

Listing 5.1: The initialize Method of Class Plan

Plan : : choo s eS ta r tTe r r i t o ry (Vector t a r g e t L i s t) {

t a r g e t L i s t ← t h i s . s o r t T e r r i t o r i e s (t a r g e t L i s t)

// s o r t s the t a r g e t t e r r i t o r i e s wi th r e s p e c t to the number

// o f ad jacenc i e s towards each other , ascending

for each t in t a r g e t L i s t {

i f board . t e r r i t o r y I s I n F r o n t O f P l a y e r (actua lP layer , t){

return t

}

}

return t a r g e t L i s t . g e t F i r s t T e r r i t o r y ()

}

Listing 5.2: The chooseStartTerritory Method of Class Plan

74

5. Enhanced Evaluation Player

Plan : : chooseNextTerr i tory (Vector t a r g e t L i s t , Te r r i t o ry pTer) {

t a r g e t L i s t ← t h i s . s o r t T e r r i t o r i e s (t a r g e t L i s t)

// s o r t s the t a r g e t t e r r i t o r i e s wi th r e s p e c t to the number

// o f ad jacenc i e s towards each other , ascending

for each t in t a r g e t L i s t {

i f board . ad jacent (pTer , t){

return t

}

}

return n u l l

}

Listing 5.3: The chooseNextTerritory Method of Class Plan

is computed by multiplying the individual success chances of the various attack

trees of the plan.

double getSuccessChanceWithReinf(int ra, Gameboard b) This method, given the

current game situation and a number of additional army reinforcements, returns

the probability that the plan succeeds, i.e. all target territories are occupied when

the plan finishes. The success chance is computed by multiplying the individual

success chances of the various attack trees of the plan. In contrast to the previous

method, this method internally uses the distributeReinforcements method to hy-

pothetically distribute the reinforcement armies in a way that increases the success

chance of the plan. The method returns this increased success chance.

Additionally the class Plan has methods of gameplay similar to the ones that the abstract

class Player (Section 3.6) stipulates. That allows the Plan, in cooperation with teh

enhanced version of the evaluation player, to effectively take over the gameplay from the

player.

Reinforcement distributeReinforcements(int r, Gameboard b) This method creates

and returns a valid distribution of a number of reinforcement armies equal to, or

less than the given number of reinforcement armies.

75

5. Enhanced Evaluation Player

Plan : : addOwnTerritory (Vector path) {

pa i r ← g e t C l o s e s t T e r r i t o r y P a i r (ownTerr i to r i e s , path)

// re turns the pa i r (OwnTerritory , pa thTerr i t o ry)

// wi th s h o r t e s t d i s t ance

attackPath ← UseFulFunctions . getBestAttackPath (pa i r)

i f (t h i s . over lappingPaths (attackPath , pathLi s t) {

t h i s . r emoveTerr i to r i e sBe fo reOver lap (attackPath)

t h i s . appendToEarlierPath (attackPath)

}

meeting = t h i s . checkWherePathsMeet (attackPath , path)

switch (meeting)

case 0 {

// s t a r t o f path

attackPath . append (path)

}

case 1 {

// end o f path

path . r e v e r s e ()

attackPath . append (path)

}

case 2 {

// middle o f path

f i r s t P a r t ← t h i s . g e tF i r s tPa r t (path)

f i r s t P a r t . r e v e r s e

secondPart ← t h i s . getSecondPart (path)

attackPath . append (f i r s t P a r t , secondPart)

}

return attackPath

}

Listing 5.4: The addOwnTerritory Method of Class Plan

76

5. Enhanced Evaluation Player

The reinforcement armies are distributed only among the root territories of the

attack trees of the plan. A single reinforcement army is continually placed on the

root territory whose attack tree has the least individual success chance. This is

done until either the given number of reinforcement armies is distributed, or the

overall success chance exceeds 0.95. If less than the given number of reinforcements

are distributed the improved evaluation player distributes the remainder of the

reinforcement armies on its own.

Attack makeAttack(Gameboard b) This method creates and returns a valid attack.

The algorithm making the decision is quite simple, it chooses the first attack of

the first attack tree with the maximal possible number of attacking armies. If an

attack results in the occupation of the target territory a combat move decision is

made if necessary and the attack tree is updated to reflect the new game situation.

If the number of child nodes of the root node exceeds 1, the attack tree is divided

into two independent attack trees with the same root node. The segmentation is

done in a way that the root node of the new attack tree containing the executed

attack has a degree of 1. After that segmentation, the root node of the attack tree

including the executed attack necessarily has a branching factor of 15. If the node

of the target territory is a leaf of the former attack tree, i.e. no attack is started

from the newly conquered territory, the attack tree including the executed attack

is deleted. Otherwise the root node of the attack tree including the executed attack

is removed and the node of the target territory is the new root node of the tree.

Figure 5.2 shows several steps in the update process of an example attack tree.

Move makeCombatMove(Move combatMove, Gameboard b) This method decides

how many armies will be moved along in a newly conquered territory. If the root

node of the attack tree of the last attack has a branching factor of 16, the maximal

possible number of armies is moving along. Otherwise the armies so far remaining

in the start territory of the attack have to be divided. The method distributes the

available armies to the different attack trees that arise when the current attack

tree will be split. This is done similar to the plan-controlled distribution of armies

in the Placing new Armies game phase. A single army is continually allocated to

5If the segmentation was not necessary, the root node had a brachning factor of 1 to start with.
6Note that this method is executed before the attack tree is upated.

77

5. Enhanced Evaluation Player

Figure 5.2.: Updating of an Example Attack Tree

the attack tree with the lowest individual success chance until all availbale armies

have been distributed. The number of armies making the combat move is set

to the number of armies allocated to the attack tree including the last executed

attack.

In case the node of the target territory was a leaf of the former attack tree, i.e.

no attack is started from the freshly conquered territory, the enhanced evaluation

player is given control of the combat move decision.

78

5. Enhanced Evaluation Player

When the improved evaluation player activates the plan, the plan will have complete

control over the player’s decisions as long as it is executing. A plan finishes either when

it is successful or when it failes, i.e. the success chance has fallen to 0. Plans can start at

the beginning of a player’s game turn and in the Attacking game phase after a previous

plan has finished. In general, all plans finish during the Attacking game phase of the

same game turn in which they started.

5.3.1. Activating Plans

Plans can start at the beginning of a player’s game turn and in the Attacking game

phase after a previous plan has finished. In these situations the improved evaluation

player checks whether a new plan should be initiated. All three plans are checked for

initiation one after the other as long as no plan has already been chosen. This imposes

an order to the plans. The Player Elimination Plan has the highest priority, followed

by the Australia Plan and finally by the Continent Conquering Plan.

The checking routine consists of three different tests:

Initial Test The initial test - performed before a plan is created - is a rough estimate

whether a plan is feasible at all. The main purpose of the initial test is to reduce

the computation time required by the creation of plans with a insufficient success

chance. Generally speaking, it denies the creation of a new plan when the number

of reinforcement armies the player has at its disposal7 is equal or less than an

estimate of the number of armies that would have to be destroyed multiplied with

the initial test factor (ITF).

The creation of a plan is allowed if

Maximal Reinforcements > ITF × Estimated Resistance

As the result of several short intuitive trials I have set the initial test factor to

1.25. The estimated number of resisting enemy armies depends on the plan itself

and is elucidated in the individual sections of the different plans.

Standard Test After the plan has been created, the standard test decides whether the

plan is executed based on the success chance (SC) of the plan and a plan-specific
7Containing regular reinforcement armies for territories and continents as well as the maximal number

of reinforcements the player could receive for trading in a set of Risk Cards

79

5. Enhanced Evaluation Player

plan factor (PF). In the calculation the test makes use of the risk factor (RF),

which individual players can use to influence the minimal success chance that a

plan needs to provide before it is allowed to execute.

Let SCR(int reinforcements) be the function that returns the success chance of the

plan after reinforcements additional reinforcement armies have been distributed by

the plan. A plan is executed if

SCR(Reinforcements without Trade) > 1−RF × PF

It is important to note that the standard test does not take into account any

reinforcement armies received from trading in Risk Cards. This implies that when

a plan is executed after the standard test the player does not necessarily have to

trade in a set of Risk Cards.

After performing several test runs, I set the risk factor to 0.08, though values

between 0.04 and 0.12 performed almost equally well. The plan factor for the

three plans is elucidated in the sections of the plans themselves.

Trade Test If the plan has been rejected by the standard test the trade test decides

whether the plan will be executed in combination with a trade of Risk Cards. By

adding the maximal number of reinforcement armies achievable by trading in Risk

Cards to the distributable reinforcement armies the success chance of the plan is

inreased8. This happens at the price of losing Risk Cards as well as the opportunity

costs which arise when trading in a set of Risk Cards in a later game turn would

result in a greater number of reinforcement armies. The trade test takes this into

consideration and adjusts the risk factor for trades with army bonuses below the

maximal army bonus. The trade test is only applied if the player can trade in at

least a single set of Risk Cards.

Let SCR(int reinforcements) be the function that returns the success chance of the

plan after reinforcements additional reinforcement armies have been distributed by

the plan and MTR denote the maximal number of reinforcements achievable by a

trade of Risk Cards. A plan is executed if

SCR(Maximal Reinforcements) > 1−
(

RF − 10−MTR

125

)
× PF

8This predication is only true if the player is able to trade in at least one valid set of Risk Cards.

Therefore the trade test is only applied in that case.

80

5. Enhanced Evaluation Player

If a plan is executed due to the trade test, the enhanced evaluation player is forced

to choose a set of Risk Cards to trade for reinforcement armies. But the decision

which set to trade is still made by the player, it just is not able to choose the

option of not trading.

As the result of several short intuitive trials I set the denominator of the fraction

to 125. The plan factor for the three plans is elucidated in the sections of the plans

themselves.

Figure 5.3 shows an activity diagram of the plan activation process.

5.3.2. Player Elemination Plan

One of the worst flaws of the basic evaluation player was its inability to efficiently

eliminate enemy players. The player did not utilise an opportunity to wipe out an enemy

player unless the enemy player had only a single territory left. But eliminating enemy

players, especially if they posses many Risk Cards, is vital to winning the game. There

are two reasons for this importance. First, enemy players possesing many Risk Cards

are likely to trade in a set of these cards, resulting in a major boost to the number of

their reinforcement armies. Second, when a player is eliminated, the eliminating player

captures all Risk Cards currently in possession of the eliminated player. Eliminating a

player with many Risk Cards may even result in an immediate trade of Risk Cards by

the eliminating player. This is the only possible way of placing additional reinforcement

armies in the middle of the Attacking game phase.

The Player Elimination Plan is designed to cope with this problem. The list of target

territories consists of all the territories currently occupied by the to-be-eliminated player.

But the Player Elimination Plan is not without risk, if it fails it may very well result

in a worse game situation for the actual player. Not only did he use his resources in a

way that might not be matching his overall strategy, but he also nearly extinguished an

enemy player possesing a potential high number of Risk Cards. That might allow other

players the opportunity to easily finish the actual player’s failed attempt to eliminate

the target player.

The estimated resistance used in the initial test is the total number of armies of the

to-be-eliminated player, while the plan factor of the standard and trade tests is the

number of Risk Cards currently in possession of that player. Therfore, the higher the

81

5. Enhanced Evaluation Player

 Start Plan Execution

Failed

Passed
Failed

Passed

Standard Test

Initial Test

 Create Plan

Passed
Failed

Trade Test

 Enforce Trade

Figure 5.3.: The Plan Activation Process

82

5. Enhanced Evaluation Player

number of Risk Cards in possession of the to-be-eliminated player, the less the minimum

required victory chance for a plan to be executed.

5.3.3. Australia Plan

Australia is an important continent, especially in the early part of the game. It consists

of only four territories making it easy and fast to conquer, while it has just a single border

making it easy to defend. Naturally, many players try to conquer it at the beginning

of the game. Usually, once the first struggle is decided, it is very hard to conquer the

continent. But the situation might arise that the player occupying Australia reduces the

number of defending armies and the actual player has sufficient reinforcement armies to

successfully conquer the continent.

This plan is designed to use such an opportunity and snatch Australia away from the

occupying player. It is only executed when Australia is completely occupied by a single

enemy player9 and only when there is a decent chance of success. It is of no use to the

actual player to destroy the defending armies and not to be able to conquer the whole

continent, or not to be able to defend it in the case of a success.

The estimated resistance used in the initial test is the total number of armies positioned

on the continent of Australia and the territory of Siam10, while the plan factor of the

standard- and trade test is 2.

5.3.4. Continent Conquering Plan

The Continent Conquering Plan strives to improve the conquest of the target continent.

The target list consists of the territories of the target continent currently not occupied

by the actual player. In contrast to the other two plans, even a failed plan only improves

the overall strategic goal of the actual player. Therefore, even if the chance to completely

conquer a continent is rather low, the plan may be executed.

The estimated resistance used in the initial test is the total number of enemy armies

on the target continent, while the plan factor of the standard- and trade test is 5.

9The impact of that restriction has not been researched yet.
10The armies positioned on Siam are only included if Siam is not occupied by the actual player.

83

5. Enhanced Evaluation Player

5.4. Reinforcement Distribution

Another flaw of the basic evaluation player is the completely independent army place-

ment in the Placing new Armies game phase. Let us assume, for example, that a

territory was in need of armies to defend itself or to conquer an adjacent one. Let us

further assume that the victory probability was very low, so that quite a few a armies

were needed to achieve an expected victory. Even though the basic evaluation player

might have enough armies to place in that territory he would not do so. This is due to

the placement of single armies on at a time. In case of very low victory probabilities,

placing a single army on the territory will only very slightly increase the rating of the

game state, while placing the army on a different territory is likely to yield a better

overall rating.

To cope with the problem I changed the way the armies are distributed. As explained

in Section 2.5, placing the armies in a single action is not feasible. So I extended the one-

at-a-time placement and added the possibility to place all reinforcemet armies on a single

territory. After all armies are placed the final reinforcement distribution is compared

to the different distributions placing all reinforcement armies on a single territory. The

distribution yielding the best evaluation is chosen. I also developed procedures were the

armies are not completely placed one after another, but in several packages with each

having a decreasing number of armies.

I created five different army placement procedures:

One This is the distribution procedure of the basic evaluation player. Single armies are

successively placed on the territory yielding the highest gain in the overall game

state evaluation.

Listing 5.5 shows a pseudocode version of this placement procedure.

One-Max Single armies are successively placed on the territory yielding the highest

gain in the overall game state evaluation. In addition to the One procedure, the

resulting distribution is compared to the different distributions that arise when all

reinforcement armies are placed on a single territory. The distribution yielding the

best evaluation is chosen.

Listing 5.6 shows a pseudocode version of this placement procedure while listing 5.7

shows the max-placement method.

84

5. Enhanced Evaluation Player

Evaluat ionPlayer : : standard (i n t armies , Reinforcement r e i n f) {

T e r r i t o r i e s ← board . g e t T e r r i t o r i e s (ac tua lP laye r)

while armies > 0 {

for each t e r r i t o r y in T e r r i t o r i e s {

tempReinf ← new Reinforcement (t e r r i t o r y , 1)

Re in fL i s t . add (tempReinf . mergeReinf (r e i n f))

}

r e i n f . mergeReinf (chooseBest (Re in fL i s t , eva lua to r))

armies−−
}

return r e i n f

}

Listing 5.5: The Standard Distribution Procedure

Evaluat ionPlayer : : standardMax (i n t armies) {

r e i n f ← t h i s . standard (armies , new Reinforcement ())

return t h i s . max(armies , r e i n f)

}

Listing 5.6: The Standard-Max Distribution Procedure

Half-Quarter-One-Max This dsitribution procedure places half of the reinforcement

armies as a bundle in the first step of the process. The second step consists of

placing a bundle of a quarter of the reinforcement armies, after that the proce-

dure distributes the remainder of the reinforcement armies similar to the standard

procedure. In addition, the resulting distribution is compared to the different dis-

tributions that arise when all reinforcement armies are placed on a single territory.

The distribution yielding the best evaluation is chosen.

The occurring fractions are rounded to the closest natural number.

Listing 5.8 shows a pseudocode version of this placement procedure.

Quarter-Quarter-One-Max This distribution procedure places a quarter of the rein-

forcement armies as bundles in the first two steps of the process. After that, the

85

5. Enhanced Evaluation Player

Evaluat ionPlayer : : max(i n t armies , Reinforcement r e i n f) {

T e r r i t o r i e s ← board . g e t T e r r i t o r i e s (ac tua lP laye r)

for each t e r r i t o r y in T e r r i t o r i e s {

Re in fL i s t . add (new Reinforcement (t e r r i t o r y , armies))

}

Re in fL i s t . add (r e i n f)

return chooseBest (Re in fL i s t , eva lua to r)

}

Listing 5.7: The Max-Placement Method

procedure distributes the remainder of the reinforcement armies similar to the

standard procedure. In addition, the resulting distribution is compared to the dif-

ferent distributions that arise when all reinforcement armies are placed on a single

territory. The distribution yielding the best evaluation is chosen.

The occurring fractions are rounded to the closest natural number.

Listing 5.9 shows a pseudocode version of this placement procedure while.

Quarter-One-Max This distribution procedure places a quarter of the reinforcement

armies as a bundle in the first step of the process. After that the procedure

distributes the remainder of the reinforcement armies similar to the standard pro-

cedure. In addition the resulting distribution is compared to the different distri-

butions that arise when all reinforcement armies are placed on a single territory.

The distribution yielding the best evaluation is chosen.

The occurring fractions are rounded to the closest natural number.

Listing 5.10 shows a pseudocode version of this placement procedure.

The different army placement procedures require different amounts of computation time,

whereas the procedures presented in this section all have comparably modest require-

ments and are feasible to implement.

Table 5.1 shows the computation time demand of the different army placement proce-

dures measured in evaluations of game states.

86

5. Enhanced Evaluation Player

Evaluat ionPlayer : : HalfQuarterOneMax (i n t armies) {

h a l f ← round (armies / 2 . 0)

quart ← round (armies / 4 . 0)

T e r r i t o r i e s ← board . g e t T e r r i t o r i e s (ac tua lP laye r)

for each t e r r i t o r y in T e r r i t o r i e s {

Re in fL i s t . add (new Reinforcement (t e r r i t o r y , h a l f))

}

r e i n f ← chooseBest (Re in fL i s t , eva lua to r)

Re in fL i s t . c l e a r ()

for each t e r r i t o r y in T e r r i t o r i e s {

tempReinf ← new Reinforcement (t e r r i t o r y , quart)

Re in fL i s t . add (tempReinf . mergeReinf (r e i n f))

}

r e i n f . mergeReinf (chooseBest (Re in fL i s t , eva lua to r))

r e i n f . mergeReinf (t h i s . standard (armies − h a l f − quart , r e i n f))

return t h i s . max(armies , r e i n f)

}

Listing 5.8: The Half-Quarter-One-Max Distribution Procedure

87

5. Enhanced Evaluation Player

Evaluat ionPlayer : : QuarterQuarterOneMax (i n t armies) {

quarte r ← round (armies / 4 . 0)

T e r r i t o r i e s ← board . g e t T e r r i t o r i e s (ac tua lP laye r)

for each t e r r i t o r y in T e r r i t o r i e s {

Re in fL i s t . add (new Reinforcement (t e r r i t o r y , quarte r))

}

r e i n f ← chooseBest (Re in fL i s t , eva lua to r)

Re in fL i s t . c l e a r ()

for each t e r r i t o r y in T e r r i t o r i e s {

tempReinf ← new Reinforcement (t e r r i t o r y , quarte r)

Re in fL i s t . add (tempReinf . mergeReinf (r e i n f))

}

r e i n f . mergeReinf (chooseBest (Re in fL i s t , eva lua to r))

r e i n f . mergeReinf (t h i s . standard (armies − 2 ∗ quarter , r e i n f))

return t h i s . max(armies , r e i n f)

}

Listing 5.9: The Quarter-Quarter-One-Max Distribution Procedure

Evaluat ionPlayer : : QuarterOneMax (i n t armies) {

quarte r ← round (armies / 4 . 0)

T e r r i t o r i e s ← board . g e t T e r r i t o r i e s (ac tua lP laye r)

for each t e r r i t o r y in T e r r i t o r i e s {

Re in fL i s t . add (new Reinforcement (t e r r i t o r y , quarte r))

}

r e i n f ← chooseBest (Re in fL i s t , eva lua to r)

r e i n f . mergeReinf (t h i s . standard (armies − quarter , r e i n f))

return t h i s . max(armies , r e i n f)

}

Listing 5.10: The Quarter-One-Max Distribution Procedure

88

5. Enhanced Evaluation Player

Procedure Evaluations A = 9, T = 13

One A× T 117

One-Max (A + 1)× T 130

Half-Quarter-One-Max (
⌊

A
4

⌋
+ 3)× T 65

Quarter-Quarter-One-Max (A− 2×
⌊

A
4 + 0.5

⌋
+ 3)× T 104

Quarter-One-Max (A−
⌊

A
4 + 0.5

⌋
+ 2)× T 117

Optimal
(
T+A−1

A

)
293,930

Table 5.1.: Computation Time Demand of Different Reinforcement Distribution Proce-

dures. The demand is measured in game state evaluations. A and T are

abbrevations for the number of Armies and Territories of the reinforcing

player. The example features the average number of armies and territories

in the Placing new Armies game phase measured in the complexity measure-

ment test run (Section 7.1).

89

6. Learning Player

To be able to automatically determine the optimal feature weights of the evaluation

function I applied the technique of TD-Learning to the enhanced evaluation player.

6.1. Temporal-Difference Learning

6.1.1. Introduction

Temporal-Difference (TD) learning is a reinforcement learning technique that combines

Monte Carlo ideas with dynamic programming ideas [Sutton and Barto, 1998]. Sut-

ton [Sutton and Barto, 1998] introduces temporal-difference learning as follows:

Like Monte Carlo methods, TD methods can learn directly from raw experi-

ence without a model of the environment’s dynamics. Like dynamic program-

ming, TD methods update estimates based in part on other learned estimates,

without waiting for a final outcome.

Because TD learning is learning a guess from a guess [Sutton and Barto, 1998], it is

called a bootstrapping method.

In TD learning the previous estimates of the learning task are changed towards the

current one. Therefore, it is possible to continually update the estimate whithout having

to wait for the final outcome. For a detailed introduction on TD learning interested

readers refer to Sutton’s work [Sutton and Barto, 1998].

6.1.2. The TD(Lambda) Learning Algorithm

The TD(λ) learning algorithm was introduced by Sutton in 1988 [Sutton, 1988]. It

changes the weights of the prediction according to the difference of the last two predic-

tions in a way that reduces the error of the previous predictions. The parameter λ1 is
10 ≤ λ ≤ 1

90

6. Learning Player

used to weigh the impact of the previous predictions. λ = 0 does only consider the last

error while λ = 1 gives equal weight to all the previous errors.

Let Pt be the prediction of time-step t and w the vector of weights.

wt+1 = wt + α× (Pt+1 − Pt)×
t∑

k=1

λt−k∆wPk

with α a positive step-size parameter and ∆wf(w), for any function f , denotes the vector

of partial derivatives with respect to w.

In the case of the linear evaluation function the vector of partial derivatives is just the

vector of the feature values.

Let F (GameState s) be the linear evaluation function and fi(GameState s) the function

evaluating the ith feature. Let xt denote the game state of time-step t, then the formula

used to update the weight of the ith feature is [Fürnkranz, 2001]

wi,t+1 = wi,t + α×
(
F (xt+1)− F (xt)

)
×

t∑
k=1

λt−kfi(xk)

Sutton [Sutton and Barto, 1998] shows that the vector of the feature weights will converge

to an optimum as long as the step-size parameter α is reduced over time according to

the conditions
∞∑

k=1

αk =∞

and
∞∑

k=1

α2
k <∞

6.1.3. TD Learning in Risk

Reinforcement

The goal of the learning algorithm is to modify the evaluation function in a way that it

converges to the function that returns the probability of winning the game from a given

game state. This can be achieved by setting the reinforcements of winning and losing a

game to one and zero respectively.

Let xT denote the game state of the last time-step T , then

F (xT) = 1

91

6. Learning Player

if the player has won the game, and

F (xT) = 0

otherwise.

Learning Steps

When learning is applied to a traditional board game, there is one learning step, i.e. one

weight update, after each turn of the learning player. In Risk, on the other hand, it is

also possible to learn after each individual decision in the course of the player’s turn.

Learning after each decision clearly accelerates the learning process, but introduces the

problem of inhomogenous learning steps. Most of the time only the player’s last action

would have changed the game state without any of the other players acting in between,

but once every turn not only the player’s last action but also all of the other players

actions would have changed the game state. The game state after the other players

made their moves is rather likely to be worse for the learning player than the game

states occurring after performing the player’s action only. I assume this would cause the

learning algorithm to overrate the actions without the interference of other players as

well as underrating the actions with the interference of the other players. Therefore, I

chose to perform only a single learning step at the end of the player’s turn.

Normalization

After implementing the formula shown in Section 6.1.2, I observed that the feature

weights of the evaluation function were continually growing until they exceeded the

representation limit of the underlying programming language. To cope with this problem

I normalized the feature vectors used in calculating the new feature weights.

Let F (GameState s) be the linear evaluation function, f(GameState s) the function that

returns the vector of all feature evaluations of game state s and fi(GameState s) the

function evaluating the ith feature. Let xt denote the game state of time-step t, then

the formula used to update the weight of the ith feature including normalization is

wi,t+1 = wi,t + α×
(
F (xt+1)− F (xt)

)
×

∑t
k=1 λt−kfi(xk)

‖f(xt)‖ ×
∥∥∑t

k=1 λt−kf(xk)
∥∥

with ‖·‖ the Euclidean Norm.

92

6. Learning Player

6.2. Implementation of the Learning Process

To implement the learning process the learning player extends the enhanced evaluation

player by adding a learn method, methods to make the feature weights persistent and a

data structure storing feature evaluations of past turns required to compute the current

feature weight updates.

The learn method is called at the end of each game turn of the learning player as

well as once after the player is eliminated from the game. After the last learning step of

the game has been performed the current feature weights are stored in a file. They are

reloaded when the player begins its next game.

When a learning player plays its first game, the feature weights are randomly generated

with

weights ∈ [0, 0.001]

The learning player encompasses two parameters: α the step-size parameter and λ the

parameter specifying the impact of earlier game states on the learning process.

93

7. Experiments

To be able to rate the playing skill of my players I performed several experiments setting

the playing strength of the various players in relation to each other and several human

players. I also measured the complexity of the games played in the Risk framework.

7.1. Complexity Measurement

In the complexity measurements I measur the frequency of each decision and the number

of valid actions per occurrence of the decision.

7.1.1. Methods

To measure the complexity of the decisions in the Risk framework, I developed a tool

monitoring the occurrence of decisions in the game manager. The tool keeps track of

the number of times the decision occurred in each game turn as well as the number of

valid actions for each occurrence of a decision.

As explained in Section 2.5.5, I simplified the Attack and Place new Armies decisions

in the Risk framework. Therefore, in addition to measuring the number of valid actions

actually occurring in the Risk framework, I also calculate the number of valid actions

that would occur without the simplifications. In case of the Placing new Armies decision

I also measure the number of reinforcement armies the players receive as well as the

number of territories they occupy at the time of the decision.

Additionally, I keep track of the duration of the games, i.e. the number of game rounds

as well as the number of game turns.

Table 7.1 summarises the settings used in the experiment.

94

7. Experiments

Parameter Value

Number of Games 1, 000

Number of Players 4

Measured Players 4

Player Enhanced Evaluation Player

Reinforcement Distribution One-Max

Table 7.1.: Settings for the Risk Complexity Measurement

7.1.2. Results

Some characteristics of the distributions are shown in tables 7.2 and 7.3 while table 7.4

presents the results of the measurement of the game duration. It is easy to see that the

Decision Absolute
Occurrence per Turn

Min 25P Median 75P Max Average

Trade Cards 44, 144 0 0 1 1 3 0.634

Place Armies 71, 990 1 1 1 1 3 1.034

Attack 492, 987 1 4 5 9 74 7.084

Combat Move 98, 852 0 0 1 2 19 1.420

Fortify Position 69, 589 1 1 1 1 1 1.000

Table 7.2.: Frequencies of Risk Decisions

Place new Armies decision is the single most complex decision in Risk. The number of

valid actions is roughly 19 orders of magnitude greater than the second largest one. The

impact of the simplified placement method used in the Risk Framework is also clearly

visible from the measured data. The number of valid actions in that case is only little

more than twice as high as the second largest one.

The histograms of the distributions of the frequencies of the decisions as well as the

histograms of the distributions of the valid actions per decision occurrence are depicted

in Appendix A. The histogram showing the number of occupied territories at the time

of the Place new Armies game phase is also shown in figure 7.1.

95

7. Experiments

Decision Min 25P Median 75P Max Average

Trade Cards 1 1 2 3 85 2.761

Place Armies 1 165 3, 003 2.496× 106 1024 1021

Place Armies, RFW 3 27 65 160 1, 845 147.945

Attack 1 5 8 11 62 8.724

Attack, RFW 1 5 7 8 37 8.372

Combat Move 2 3 6 10 171 7.655

Fortify Position 1 7 26 80 1, 413 67.913

Table 7.3.: Valid Actions of Risk Decisions

Parameter Value

Number of Games 1, 000

Number of Game Rounds 21, 616

Number of Game Turns 69, 589

Average Game Rounds per Game 21.616

Average Game Turns per Game and Player 17.397

Table 7.4.: Durations of Risk Games

96

7. Experiments

Besides being useful for analysing the complexity of Risk (Section 2.5), the histogram

shows the impact of the Enemy Estimated Reinforcements Feature. From 12 territories

onwards, groups of territories with roughly the same relative frequency can be identified.

These clusters result from players striving to reduce the number of reinforcement armies

of the enemy players. Players occupying 12, 15, ..., 39 territories tend to be attacked

more often, hence losing a territory more often1. This explains the reduced frequency of

these territory numbers as well as the increased frequency of the territory numbers with

one territory less than the next cluster, i.e. 11, 14, ..., 38.

Figure 7.1.: Distribution of the Number of Occupied Territories in the Place Armies

decision

7.2. Rating System

To be able to compare the playing skill of different players I defined a benchmark player

and a rating system.

1In the case of these number of occupied territories, the loss of one territory subsequently reduces the

number of reinforcement armies by one.

97

7. Experiments

7.2.1. Benchmark Player

The benchmark player is the enhanced evaluation player as presented in Chapter 5 with

the One-Max reinforcement distribution procedure.

7.2.2. Rating a Player

The rating of the playing strength of a player is a measurement of its playing skill

relative to the playing skill of the benchmark player. Naturally, the benchmark player

has a player rating (PR) of 100%.

The player rating is defined by letting the test player play against the benchmark

player for several games. This is done in four player games with one instance of the test

player and three instances of the benchmark player.

Let GP denote the number of played test games and GW the number of test games won

by the test player, then the player rating of a test player is

PR =
GW

GP
× 4

7.3. Enhanced Evaluation Player

To be able to rate the impacts on the playing strength of the changes to the basic evalu-

ation player, I compared several versions of the evaluation player against the benchmark

player.

7.3.1. Methods

I performed ratings for the basic evaluation player and for each of its three enhancements.

All of these ratings are based on test runs consisting of at least 1,000 games each.

Basic Evaluation Player

The basic evaluation player (Chapter 4) is rated.

Target Continent

The basic evaluation player with the addition of the target continent (Section 5.2) is

rated.

98

7. Experiments

Plans

The basic evaluation player with the addition of the plans (Section 5.3) is rated. For

each of the three different plans the basic evaluation player with the addition of just

that plan, as well as a version with the addition of all three plans, is rated.

Reinforcement Distribution

The basic evaluation player with the addition of the different reinforcement distribution

procedures (Section 5.4) is rated. For each of the different distribution procedures a

basic evaluation player with the addition of that procedure is rated.

7.3.2. Results

Table 7.5 and figure 7.2 show the player ratings of all the players rated in this experiment.

The results evince that the enhanced version of the evaluation player has a significantly

improved playing skill. It is also easy to see that the plans have the most impact on

the improvement of the BEP, each one of them increases the player rating from 1.2%

to roughly 77%. Surprisingly, the combination of all three plans leads only to a slightly

higher rating as each plan on its own.

In comparison to these improvements the impact of the target continent might seem

small, but nevertheless it results in a victory probability almost 20 times as high as the

one of the BEP.

The least impact is achieved by the different reinforcement distribution procedures. Even

though an increase in the player rating can be measured, the improvement is, especially

in relation to the other enhancements, way behind my expectations. In the case of the

Quarter-One-Max procedure, the player rating is even less than the one of the BEP.

7.4. TD Learning

To be able to measure the success of the learning player, I let several players train on a

number of games and rate them during the course of their progres.

99

7. Experiments

Player Won Played Rating

Basic Evaluation Player 3 1, 000 1.2%

BEP with TC 56 1, 000 22.4%

BEP with PEP 391 2, 000 78.2%

BEP with AP 374 2, 000 74.8%

BEP with CCP 385 2, 000 77.0%

BEP with all Plans 201 1, 000 80.4%

BEP with One-Max 9 1, 000 3.6%

BEP with Half-Quarter-One-Max 6 1, 000 2.4%

BEP with Quarter-Quarter-One-Max 5 1, 000 2.0%

BEP with Quarter-One-Max 1 1, 000 0.4%

Benchmark Player — — 100.0%

Table 7.5.: Summary of the Player Ratings of the BEP Enhancements

Figure 7.2.: Summary of the Player Ratings of the BEP Enhancements

100

7. Experiments

Player ααα λλλ

Learning Player Red 1/ dn/1, 000e 0.5

Learning Player Black 1
n 0.5

Learning Player Yellow 0.25 0.5

Learning Player Blue if n < 2,000: 1− 0.00025× n else: 1/ dn/2, 000e 0.5

Table 7.6.: Players Participating in the Training Games. With n the number of games

the learning player has already experienced.

7.4.1. Methods

This experiment consists mainly of two parts. First, the training of the learning players

and second, the rating of the players at certain steps in the course of the training.

Training

I let four different learning players, each with a different α-function, learn on 10,000

training games. All of the learning players use the One-Max reinforcement distribution

procedure. The training games are played by six players, four independent instances of

the learning players and two benchmark players. This is done to average the impact of

different outcomes of the training games on the learning process of the players.

Table 7.6 summarises the settings for the four learning players while figure 7.3 shows a

graph of the different alpha functions.

Rating

I rate all learning players every 1,000 training games, with all ratings based on test runs

consisting of 250 games each.

7.4.2. Results

Table 7.7 and figure 7.4 compare the average player ratings of the various learning

players.

The detailed results of the individual players are presented in Appendix B and the

development of the averaged feature weights during the learning process can be found

101

7. Experiments

Figure 7.3.: Graphs of the alpha functions of the different learning players

in Appendix C.

When comparing the learning curves of the four players it can be seen that the players

Red, Yellow and Blue all three increase their player rating by a minimum of 20%, while

player Black does not seem to make any progres. This is due to fact that the alpha

function of player black approaches zero very fast. By analysing the feature weight

changes2 of player Black I realised that significant changes were made in the first 50

games only. After that many games the alpha value was too low to allow the learning

algorithms to make any considerable change to the feature weights. The feature weights

of the other players (Appendix C) on the other hand all seem to converge to the same

values.

In general, the feature weights do not seem to have as big an effect as I thought. Most

probably this is due to the fact that the plans (Section 5.3) do not rely on the evaluation

function and have a major impact on the playing strength of the players (Section 7.3.2).

2Because the weight changes of player Black do not offer anything interesting besides this conclusion,

they are omitted in this work.

102

7. Experiments

Experience
Player

Red-� Black-� Yellow-� Blue-�

0,000 85.2% 90.4% 66.8% 84.0%

1,000 98.4% 75.6% 114.8% 94.4%

2,000 86.0% 86.4% 98.0% 89.2%

3,000 89.2% 90.0% 98.4% 97.6%

4,000 90.4% 90.0% 111.6% 86.0%

5,000 101.2% 98.4% 106.0% 88.8%

6,000 100.4% 100.0% 110.0% 92.0%

7,000 110.8% 86.0% 98.0% 103.2%

8,000 101.6% 92.8% 100.8% 101.2%

9,000 100.8% 88.4% 106.8% 99.6%

10,000 108.4% 92.8% 100.8% 104.0%

Table 7.7.: Average Player Ratings of the Various Learning Players

7.5. Human Opponents

To be able to compare the artificial players with external ones I rated the playing strength

of several human players using the rating system introduced in Section 7.2.

7.5.1. Methods

Rating human players accurately is more difficult than rating artificial players. Naturally,

the number of games played in the experiments is rather limited compared to the number

of games played in the rating of artificial players. Furthermore, human players themselves

are very heterogeneous in their playing strength.

In total I rated eight different human players. To get an indication of their playing

skills and experience, I let every human classify himself according to his Risk experience

either as a beginner or an advanced player.

7.5.2. Results

Table 7.8 shows the player ratings of the different human players I rated while figure 7.5

depicts a comparison between the benchmark player and the human players.

103

7. Experiments

Figure 7.4.: Average Player Ratings of the Various Learning Players

The result from the experiment shows that the average human player has a higher

playing rating than the benchmark player. Considering the deficiencies of the evaluation

player (Section 5.1), even though lessened by the enhancements of the EEP, this outcome

is not surprising. On the contrary, it is amazing to realise that a relative simple player,

who does not look ahead even a single decision, is capable of regularly defeating the

average human novice and able to beat an experienced human player.

During the course of the experiment I got the impression that the human players

(especially the advanced ones) quickly recognize patterns in the actions of the benchmark

player and start to adapt their strategy according to their predictions of the artificial

players behaviour. While being far from perfect, I generally perceived an improvement

of the playing strength of the human players as a consequence of this adaption. Limited

by the insufficient number of test games, I did not research this topic any further.

If further games including human players should be done, it would be advisable to

implement a more user-friendly graphical user interface. Currently there is only a very

basic and tiresome text-based interface for the human player 3.6.2.

104

7. Experiments

Player Risk-Experience Won Played Rating

Human 1 Beginner 1 8 50.0%

Human 2 Beginner 1 9 44.4%

Human 3 Beginner 2 7 114.3%

Human 4 Advanced 6 20 120.0%

Human 5 Advanced 3 8 150.0%

Human 6 Advanced 5 8 250.0%

Human 7 Advanced 5 10 200.0%

Human 8 Advanced 2 5 160.0%

All Beginners — 4 24 66.7%

All Advanced — 21 51 164.7%

All Players — 25 75 133.3%

Benchmark Player — — — 100.0%

Table 7.8.: Player Ratings of Several Human Players

Figure 7.5.: Comparison of Human Players with the Benchmark Player

105

8. Conclusion

Risk is a very complex game, with both infinite game-state and game-tree complexities.

Even calculating a good approximation of the average complexity of the game proves to

be complex.

My work has shown that it is crucial in Risk to combine several actions to achieve a

high-level goal. The addition of just a single pre-defined high-level goal paired with the

means to combine several actions to achieve it, has increased the probability to win a

game by more than 60 times (Section 7.3.2), while the addition of just a high-level goal

has increased the probability by almost 20 times.

Even though the enhanced evaluation player significantly surpasses its predecessor, it

does not eliminate the deficits of the basic player, but rather strives to eliminate the

most apparent symptoms of these deficits.

Looking ahead is not likely to solve the flaws, because the complexity of Risk makes

it infeasible to look ahead more than a few (simplified) actions. But, of course, it will

surely further increase the playing strength of the player.

I believe that the key to building very strong Risk players are dynamic plans. Instead

of having three pre-defined high-level goals, the player would have to define reasonable

goals1 on its own using the evaluation function. Then a plan would have to be created

that would connect the actions of the player in a way that provides the highest probability

of achieving that goal. Of course, after each decision the situation would have to be re-

evaluated, though that might prove to be infeasible.

The results of TD learning seem very promising, even though the player rating was

only increased by an average 20%. As explained in Section 7.4.2, I believe this is due to

the little impact the evaluation function has on the overall playing strength of the EEP.

1In this context a goal is not limited to a single favourable fact, i.e. eliminating an enemy player, but it

can be any combination of such fovourable facts, i.e. eliminating an enemy player and destroying the

occupation of a continent by an enemy player and completely conquering a continent for the actual

player.

106

8. Conclusion

If the evaluation function determined for which high-level goal a plan would be made,

the evaluation function, and subsequently TD learning, too, would have a major effect

on the playing strength.

107

A. Complexity Measurement Histograms

Figure A.1.: Distribution of the valid actions of the Place Armies decisions as imple-

mented in the Risk Framework

108

A. Complexity Measurement Histograms

Figure A.2.: Distribution of the occurrences of the Trade decision

Figure A.3.: Distribution of the valid actions of the Trade decisions

109

A. Complexity Measurement Histograms

Figure A.4.: Distribution of the occurrences of the Place Armies decision

Figure A.5.: Distribution of the valid actions of the Place Armies decisions

110

A. Complexity Measurement Histograms

Figure A.6.: Distribution of the Number of Reinforcement Armies in the Place Armies

decision

Figure A.7.: Distribution of the Number of Occupied Territories in the Place Armies

decision

111

A. Complexity Measurement Histograms

Figure A.8.: Distribution of the occurrences of the Attack decision

Figure A.9.: Distribution of the valid actions of the Attack decisions

112

A. Complexity Measurement Histograms

Figure A.10.: Distribution of the occurrences of the Combat Move decision

Figure A.11.: Distribution of the valid actions of the Combat Move decisions

113

A. Complexity Measurement Histograms

Figure A.12.: Distribution of the valid actions of the Fortify Position decisions

114

B. Detailed Learning Curves

Figure B.1.: Player Rating of the Learning Player Red

115

B. Detailed Learning Curves

Experience
Player

Red-a Red-b Red-c Red-d

0,000 80.0% 110.4% 73.6% 76.8%

1,000 91.2% 104.0% 86.4% 112.0%

2,000 86.4% 84.8% 97.6% 75.2%

3,000 65.6% 88.0% 102.4% 100.8%

4,000 64.0% 83.2% 115.2% 99.2%

5,000 88.0% 123.2% 100.8% 92.8%

6,000 115.2% 115.2% 78.4% 92.8%

7,000 110.4% 105.6% 123.2% 104.0%

8,000 104.0% 100.8% 100.8% 100.8%

9,000 99.2% 92.8% 99.2% 112.0%

10,000 102.4% 100.8% 120.0% 110.4%

Table B.1.: Player Ratings of the Learning Player Red

Experience
Player

Black-a Black-b Black-c Black-d

0,000 107.2% 102.4% 88.0% 64.0%

1,000 78.4% 86.4% 84.8% 52.8%

2,000 108.8% 76.8% 105.6% 54.4%

3,000 89.6% 113.6% 86.4% 70.4%

4,000 97.6% 86.4% 97.6% 78.4%

5,000 113.6% 88.0% 100.8% 91.2%

6,000 102.4% 128.0% 91.2% 78.4%

7,000 96.0% 100.8% 70.4% 76.8%

8,000 88.0% 118.4% 78.4% 86.4%

9,000 102.4% 81.6% 92.8% 76.8%

10,000 89.6% 110.4% 94.4% 76.8%

Table B.2.: Player Ratings of the Learning Player Black

116

B. Detailed Learning Curves

Experience
Player

Yellow-a Yellow-b Yellow-c Yellow-d

0,000 73.6% 86.4% 80.0% 27.2%

1,000 128.0% 113.6% 113.6% 104.0%

2,000 104.0% 91.2% 96.0% 100.8%

3,000 89.6% 81.6% 97.6% 124.8%

4,000 92.8% 94.4% 140.8% 118.4%

5,000 105.6% 94.4% 116.8% 107.2%

6,000 104.0% 121.6% 104.0% 110.4%

7,000 88.0% 104.0% 104.0% 96.0%

8,000 94.4% 121.6% 83.2% 104.0%

9,000 115.2% 102.4% 113.6% 96.0%

10,000 99.2% 91.2% 113.6% 99.2%

Table B.3.: Player Ratings of the Learning Player Yellow

Experience
Player

Blue-a Blue-b Blue-c Blue-d

0,000 72.0% 75.2% 89.6% 99.2%

1,000 113.6% 72.0% 91.2% 100.8%

2,000 94.4% 84.8% 83.2% 94.4%

3,000 102.4% 94.4% 112.0% 81.6%

4,000 92.8% 91.2% 81.6% 78.4%

5,000 105.6% 81.6% 64.0% 104.0%

6,000 72.0% 89.6% 83.2% 123.2%

7,000 104.0% 118.4% 94.4% 96.0%

8,000 105.6% 110.4% 96.0% 92.8%

9,000 105.6% 78.4% 89.6% 124.8%

10,000 112.0% 96.0% 102.4% 105.6%

Table B.4.: Player Ratings of the Learning Player Blue

117

B. Detailed Learning Curves

Figure B.2.: Player Rating of the Learning Player Black

Figure B.3.: Player Rating of the Learning Player Yellow

118

B. Detailed Learning Curves

Figure B.4.: Player Rating of the Learning Player Blue

119

C. Feature Weight Changes

Figure C.1.: Development of the Armies Feature

120

C. Feature Weight Changes

Figure C.2.: Development of the Best Enemy Feature

Figure C.3.: Development of the Continent Safety Feature

121

C. Feature Weight Changes

Figure C.4.: Development of the Continent Threat Feature

Figure C.5.: Development of the Distance to Frontier Feature

122

C. Feature Weight Changes

Figure C.6.: Development of the Enemy Estimated Reinforcement Feature

Figure C.7.: Development of the Enemy Occupied Continents Feature

123

C. Feature Weight Changes

Figure C.8.: Development of the Hinterland Feature

Figure C.9.: Development of the Maximum Threat Feature

124

C. Feature Weight Changes

Figure C.10.: Development of the More Than One Army Feature

Figure C.11.: Development of the Occupied Territories Feature

125

C. Feature Weight Changes

Figure C.12.: Development of the Own Estimated Reinforcement Feature

Figure C.13.: Development of the Own Occupied Continents Feature

126

C. Feature Weight Changes

Figure C.14.: Development of the Own Occupied Risk Card Territories Feature

Figure C.15.: Development of the Risk Cards Feature

127

C. Feature Weight Changes

Figure C.16.: Development of the Continent Army Domination Feature

Figure C.17.: Development of the Continent Domination Feature

128

Bibliography

Sharon Blatt. Risky business: An in-depth look at the game risk. Rose-Hulman Institute

of Technology Undergraduate Mathematics Journal, 3(2), 2002.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.

MIT Press, 2001.

Johannes Fürnkranz. Machine learning in games: A survey. In Johannes Fürnkranz and

Miroslav Kubat, editors, Machines that Learn to Play Games, chapter 2, pages 11–59.

Nova Science Publishers, Huntington, NY, 2001. URL http://www.ai.univie.ac.

at/cgi-bin/tr-online?number+2000-31.

Risiko de Luxe Spielanleitung. Hasbro Deutschland GmbH.

Risk Collector’s 40th Anniversary Edition. Hasbro Inc., 1999.

Risk boardgame picture was published on the Hasbro website. Hasbro Inc.,

2004. URL www.hasbro.com/pl/page.viewproduct/product_id.9491/dn/games/

default.cfm.

H. Jaap van den Herik, Jos W. H. M. Uiterwĳk, and Jack van Rĳswĳck. Games solved:

Now and in the future. Artificial Intelligence, 134(1-2):277–311, 2002.

Owen Lyne, Leon Atkinson, Peter George, and Don Woods. Risk faq - version 5.51.

http://www.maths.nottingham.ac.uk/personal/odl/riskfaq.html, 06 2004.

Jason A. Osborne. Markov chains for the risk board game revisited. Mathematics

Magazine, 76(2):129–135, 2003.

Stuart Russell and Peter Norvig. Artifical Intelligence: A Modern Approach,. Prentice-

Hall, Englewood Cliffs, NJ, ISBN 0-13-103805-2, 912 pp., 1995, 1995.

129

http://www.ai.univie.ac.at/cgi-bin/tr-online?number+2000-31
http://www.ai.univie.ac.at/cgi-bin/tr-online?number+2000-31
www.hasbro.com/pl/page.viewproduct/product_id.9491/dn/games/default.cfm
www.hasbro.com/pl/page.viewproduct/product_id.9491/dn/games/default.cfm

Bibliography

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press,

Cambridge, MA, 1998.

Richard S. Sutton. Learning to predict by the methods of temporal differences. Machine

Learning, 3:9–44, 1988. URL citeseer.ist.psu.edu/sutton88learning.html.

Baris Tan. Markov chains and the risk board game. Mathematics Magazine, 70(5):

349–357, 1997.

Wikipedia. Game tree. http://en.wikipedia.org/wiki/Game_tree, 12 2004.

130

citeseer.ist.psu.edu/sutton88learning.html

Acknowledgements

This work would not be what it finally has become if not for the help, guidance, counsel,

encouragement and time of many people.

First of all, I want to thank Thorsten Nowak and Matthias Firner for countless hours

of discussions about Risk strategies and design choices. I also thank my father, Günter

Wolf, for his continual support. Furthermore, I want to emphasize the very good coop-

eration with my Professor, Johannes Fürnkranz. I could always discuss my ideas and

was totally free in my decisions.

Finally, I want to thank all people who contributed to my work in any way, especially

the volunteers participating in the Human Opponents experiment.

Alexander Kober, Christina Müller, Elena Lauer, Frank Pellkofer, Katja Kurz, Leonie

von Bremen, Sabine Kaucic, Stefan Schwab, Stephan Remspecher, Stephanie Blank,

Sven Rettig, Farrah Fritz and Thomas Fritz.

131

Ehrenwörtliche Erklärung

Hiermit versichere ich, die vorliegende Diplomarbeit ohne Hilfe Dritter und nur mit den

angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus den

Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit

hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, März 2005 Michael Wolf

132

	Introduction
	Risk - The Game
	Overview
	Equipment
	Gameboard
	Risk Cards

	Rules
	Object of the Game
	Game Setup
	Playing the Game
	Trading in Risk Cards
	Placing new Armies
	Attacking
	Fortifying the Position

	Probabilities
	Complexity
	State-Space Complexity
	Branching Factor
	Game-Tree Complexity
	Comparison with Classic Games
	Adaptions of the Risk Framework

	Existing Implementations

	The Risk Framework
	Overview
	Game Manager
	Gameboard
	Rules
	Map
	Player
	Random Player
	Human Text Player

	Battle Computer

	Basic Evaluation Player
	Overview
	Useful Functions
	Continent Rating

	Decision Making Process
	chooseBest
	Evaluators

	Evaluation Function
	Features
	Armies Feature
	Best Enemy Feature
	Continent Safety Feature
	Continent Threat Feature
	Distance to Frontier Feature
	Enemy Estimated Reinforcements Feature
	Enemy Occupied Continents Feature
	Hinterland Feature
	Maximum Threat Feature
	More Than One Army Feature
	Occupied Territories Feature
	Own Estimated Reinforcements Feature
	Own Occupied Continents Feature
	Own Occupied Risk Card Territories Feature
	Risk Cards Feature

	Trade Evaluation Function
	Trade-Features
	Occupied Territories Trade-Feature
	Unoccupied Territories Trade-Feature
	Trade Value Trade-Feature

	Enhanced Evaluation Player
	Drawbacks of the Basic Evaluation Player
	Target Continent
	Continent Army Domination Feature
	Continent Domination Feature

	Plans
	Activating Plans
	Player Elemination Plan
	Australia Plan
	Continent Conquering Plan

	Reinforcement Distribution

	Learning Player
	Temporal-Difference Learning
	Introduction
	The TD(Lambda) Learning Algorithm
	TD Learning in Risk

	Implementation of the Learning Process

	Experiments
	Complexity Measurement
	Methods
	Results

	Rating System
	Benchmark Player
	Rating a Player

	Enhanced Evaluation Player
	Methods
	Results

	TD Learning
	Methods
	Results

	Human Opponents
	Methods
	Results

	Conclusion
	Complexity Measurement Histograms
	Detailed Learning Curves
	Feature Weight Changes

